Skip to main content

Nanotechnological Approaches in Biohydrogen Production

  • Chapter
  • First Online:
Organic Waste to Biohydrogen

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 332 Accesses

Abstract

Hydrogen is the only fuel that does not pollute the atmosphere, which turns into water vapor when it burns. It is recommended instead of fuels such as coal, petroleum, and natural gas, because it is both a clean fuel and the fossil-sourced fuels are running out. It is also believed that hydrogen (H2) was the main energy source in the first stages of the earth and had a great importance in life. Biohydrogen production is a valuable energy conversion process with the disposal of both industrial and domestic wastes that cause environmental pollution. Hydrogen has an energy potential of 122 kJ/g and is about 2.75 times greater than fossil fuels. Biohydrogen production is carried out by photo-fermentation and dark fermentation methods. Low yield in biohydrogen production is a major obstacle to obtaining it commercially. This obstacle is tried to be overcome by studies conducted with nanotechnological approaches and significant improvements have been achieved in hydrogen production efficiency in recent years. This chapter explains the nanobiotechnological potentials of hydrogen production with the use of nanomaterials in organic wastes and highlights the latest developments in reaction mechanisms. Also, in this section, emphasis is placed on the superior properties of nanomaterials in order to make biohydrogen production in a shorter time with higher efficiency, and more economical and sustainable with the use of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad T, Zhang D (2020) A critical review of comparative global historical energy consumption and future demand: the story told so far. Energy Rep 6:1973–1991

    Article  Google Scholar 

  • Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen SU (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy 75:101–118

    Article  CAS  Google Scholar 

  • Asadullah M, Ito SI, Kunimori K, Yamada M, Tomishige K (2002) Energy efficient production of hydrogen and syngas from biomass: development of low-temperature catalytic process for cellulose gasification. Environ Sci Technol 36:4476–4481

    Article  CAS  PubMed  Google Scholar 

  • Barrozo A, Orio M (2019) Molecular electrocatalysts for the hydrogen evolution reaction: input from quantum chemistry. ChemSusChem 12:4905–4915

    Article  CAS  PubMed  Google Scholar 

  • Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109–117

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci 104:18871–18873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong M-L, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy 34:3277–3287

    Article  CAS  Google Scholar 

  • Cicek S, Gungor AA, Adiguzel A, Nadaroglu H (2015) Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J Chem. https://doi.org/10.1155/2015/486948

  • deKrafft KE, Wang C, Lin W (2012) Metal-Organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv Mater 24:2014–2018

    Article  CAS  PubMed  Google Scholar 

  • Demirbas MF (2007) Hydrogen from various biomass species via pyrolysis and steam gasification processes. 28:245–252. https://doi.org/10.1080/009083190890003

  • Elreedy A, Ibrahim E, Hassan N, El-Dissouky A, Fujii M, Yoshimura C, Tawfik A (2017) Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energ Conver Manage 140:133–144

    Article  CAS  Google Scholar 

  • Engliman NS, Abdul PM, Wu S-Y, Jahim JM (2017) Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. Int J Hydrog Energy 42:27482–27493

    Article  CAS  Google Scholar 

  • Frey M (2002) Hydrogenases: hydrogen-activating enzymes. Chem Bio Chem 3:153–160. https://doi.org/10.1002/1439-7633

    Article  CAS  PubMed  Google Scholar 

  • Gadhe A, Sonawane SS, Varma MN (2015a) Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation. Int J Hydrog Energy 40:10734–10743

    Article  CAS  Google Scholar 

  • Gadhe A, Sonawane SS, Varma MN (2015b) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. Int J Hydrog Energy 40:4502–4511

    Article  CAS  Google Scholar 

  • Hädicke O, Grammel H, Klamt S (2011) Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst Biol 5:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129:724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626

    Article  CAS  PubMed  Google Scholar 

  • Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conf Papers Energy 2013:1–9

    Article  CAS  Google Scholar 

  • Karadag D, Puhakka JA (2010) Enhancement of anaerobic hydrogen production by iron and nickel. Int J Hydrog Energy 35(16):8816–8829. https://doi.org/10.1016/j.ijhydene.2010.04.174

    Article  CAS  Google Scholar 

  • Kars G, Gündüz U, Yücel M, Rakhely G, Kovacs KL, Eroğlu İ (2009) Evaluation of hydrogen production by Rhodobacter sphaeroides O.U.001 and its hupSL deficient mutant using acetate and malate as carbon sources. Int J Hydrog Energy 34:2184–2190

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arabian J Chem 12:908–931

    Article  CAS  Google Scholar 

  • Kumar G, Mudhoo A, Sivagurunathan P, Nagarajan D, Ghimire A, Lay CH, Lin CY, Lee DJ, Chang JS (2016) Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour Technol 219:725–737

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom ML, Gakhar R, Raja K, Chidambaram D (2020) Facile synthesis of an efficient Ni–Fe–Co based oxygen evolution reaction electrocatalyst. J Electrochem Soc 167:046507

    Article  CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  CAS  PubMed  Google Scholar 

  • Mahyad B, Janfaza S, Hosseini ES (2015) Bio-nano hybrid materials based on bacteriorhodopsin: potential applications and future strategies. Adv Colloid Interface Sci 225:194–202

    Article  CAS  PubMed  Google Scholar 

  • Martinez AJ (1996) Medical microbiology. Medical microbiology, 4th edn, pp 1–9

    Google Scholar 

  • Mishra P, Krishnan S, Rana S, Singh L, Sakinah M, Ab Wahid Z (2019) Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energ Strat Rev 24:27–37

    Article  Google Scholar 

  • Mohan S, Mohanakrishna G, Reddy S, Raju B, Rao K, Sarma P (2008) Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production. Int J Hydrog Energy 33:6133–6142

    Article  CAS  Google Scholar 

  • Mori K, Taga T, Yamashita H (2015) Synthesis of a Fe–Ni alloy on a ceria support as a noble-metal-free catalyst for hydrogen production from chemical hydrogen storage materials. Chem Cat Chem 7:1285–1291

    CAS  Google Scholar 

  • Mullai P, Yogeswari MK, Sridevi K (2013) Optimisation and enhancement of biohydrogen production using nickel nanoparticles - a novel approach. Bioresour Technol 141:212–219

    Article  CAS  PubMed  Google Scholar 

  • Nadaroglu H, Alayli A, Ceker S, Ogutcu H, Agar G (2020) Biosynthesis of silver nanoparticles and investigation of genotoxic effects and antimicrobial activity. Int J Nano Dimension 11:158–167

    CAS  Google Scholar 

  • Nagakawa H, Takeuchi A, Takekuma Y, Noj T, Kawakami K, Kamiya N, Nango M, Furukawa R, Nagata M (2019) Efficient hydrogen production using photosystem I enhanced by artificial light harvesting dye. Photochem Photobiol Sci 18:309–313

    Article  CAS  PubMed  Google Scholar 

  • Nasr M, Tawfik A, Ookawara S, Suzuki M (2013) Hydrogen production from starch wastewater using anaerobic sludge immobilized on maghemite nanoparticle. 5–7

    Google Scholar 

  • Patel SKS, Lee JK, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol 58:8–18

    Article  CAS  PubMed  Google Scholar 

  • Pugazhendhi A, Shobana S, Nguyen DD, Banu JR, Sivagurunathan P, Chang SW, Ponnusamy VK, Kumar G (2019) Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. Int J Hydrog Energy 44:1431–1440

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers VM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640

    Article  CAS  Google Scholar 

  • Sampath P, Brijesh RKR, Reddy CV, Shetti NP, Kulkarni RV, Raghu AV (2020) Biohydrogen production from organic waste – A review. Chem Eng Technol 43:1240–1248

    Article  CAS  Google Scholar 

  • Sarangi PK, Nanda S (2020) Biohydrogen production through dark fermentation. Chem Eng Technol 43:601–612

    Article  CAS  Google Scholar 

  • Sarma S, Ortega D, Minton NP, Dubey VK, Moholkar VS (2019) Homologous overexpression of hydrogenase and glycerol dehydrogenase in Clostridium pasteurianum to enhance hydrogen production from crude glycerol. Bioresour Technol 284:168–177

    Article  CAS  PubMed  Google Scholar 

  • Schuchmann K, Chowdhury NP, Müller V (2018) Complex multimeric [FeFe] hydrogenases: biochemistry, physiology and new opportunities for the hydrogen economy. Front Microbiol (9):–2911. https://doi.org/10.3389/fmicb.2018.02911

  • Sinharoy A, Pakshirajan K (2020) A novel application of biologically synthesized nanoparticles for enhanced biohydrogen production and carbon monoxide bioconversion. Renew Energy 147:864–873

    Article  CAS  Google Scholar 

  • Smith GD, Ewart GD, Tucker W (1992) Hydrogen production by cyanobacteria. Int J Hydrog Energy 17:695–698

    Article  CAS  Google Scholar 

  • Taherdanak M, Zilouei H, Karimi K (2016) The effects of Fe0 and Ni0 nanoparticles versus Fe+ and Ni2+ ions on dark hydrogen fermentation. Int J Hydrog Energy 41:167–173. https://doi.org/10.1016/j.ijhydene.2015.11.110

    Article  CAS  Google Scholar 

  • Vélez GY, Encinas A, Quintana M (2014) Immobilization of metal and metal oxide nanoparticles on graphene. Functionalization of Graphene 9783527335510:219–254

    Google Scholar 

  • Venkata Mohan S, Velvizhi G, Annie Modestra J, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustain Energy Rev 40:779–797

    Article  CAS  Google Scholar 

  • Wang D, Chen Y (2015) Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. 36:816–828. https://doi.org/10.3109/0738855120151049509

  • Wang P, Chang AY, Novosad V, Chupin VV, Schaller RD, Rozhkova EA (2017) Cell-free synthetic biology chassis for nanocatalytic photon-to-hydrogen conversion. ACS Nano 11:6739–6745

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Fu Q, Wu J, Fan G (2020) Ultrafine Pd nanoparticles supported on soft nitriding porous carbon for hydrogen production from hydrolytic dehydrogenation of dimethyl amine-borane. Nanomaterials 10:1612

    Article  CAS  PubMed Central  Google Scholar 

  • Yang H, Shen J (2006) Effect of ferrous iron concentration on anaerobic biohydrogen production from soluble starch. Int J Hydrog Energy 31:2137–2146

    Article  CAS  Google Scholar 

  • Yao M, Liang W, Chen H, Zhang X (2020) Efficient hydrogen production from formic acid using nitrogen-doped activated carbon supported Pd. Catal Lett 150:2377–2384

    Article  CAS  Google Scholar 

  • Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int J Hydrog Energy 32:17–23

    Article  CAS  Google Scholar 

  • Zhao Y, Chen Y (2011) Nano-TiO2 enhanced photofermentative hydrogen produced from the dark fermentation liquid of waste activated sludge. Environ Sci Tech 45:8589–8595

    Article  CAS  Google Scholar 

  • Zhao W, Zhang Y, Du B, Wei D, Wei Q, Zhao Y (2013) Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142:240–245

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayrunnisa Nadaroglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadaroglu, H., Alayli, A. (2022). Nanotechnological Approaches in Biohydrogen Production. In: Kuddus, M., Yunus, G., Ramteke, P.W., Molina, G. (eds) Organic Waste to Biohydrogen. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-1995-4_10

Download citation

Publish with us

Policies and ethics