Skip to main content

A Non-isolated Two-Phase Interleaved Bidirectional Buck-Boost Converter (2ph-IBDB2C) for Battery Storage Applications

  • Conference paper
  • First Online:
Innovations in Electrical and Electronic Engineering (ICEEE 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 894))

Included in the following conference series:

  • 681 Accesses

Abstract

The bi-directional converter is one of the important subsystems in a modern grid. A bi-directional converter contributes to system stability by allowing power to flow in both directions between the sources and storage system. This paper presents and discusses a two-phase interleaved bidirectional DC-DC buck-boost converter (2ph-IBDB2C). The architecture of the proposed converter is analyzed in detail. The selected converter is simulated in MATLAB/Simulink, and the results are presented. The converter performance in boost and buck modes is then examined based on the control input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ren, L., Zhang, P.: Generalized microgrid power flow. IEEE Trans. Smart Grid 9(4), 3911–3913 (2018). https://doi.org/10.1109/TSG.2018.2813080

    Article  Google Scholar 

  2. Xin, H., Zhang, L., Wang, Z., Gan, D., Wong, K.P.: Control of island AC microgrids using a fully distributed approach. IEEE Trans. Smart Grid 6(2), 943–945 (2015). https://doi.org/10.1109/TSG.2014.2378694

    Article  Google Scholar 

  3. Nejabatkhah, F., Li, Y.W.: Overview of power management strategies of hybrid AC/DC microgrid. IEEE Trans. Power Electron. 30(12), 7072–7089 (2015). https://doi.org/10.1109/TPEL.2014.2384999

    Article  Google Scholar 

  4. Nasser, N., Fazeli, M.: Buffered-microgrid structure for future power networks; a seamless microgrid control. IEEE Trans. Smart Grid 12(1), 131–140 (2021). https://doi.org/10.1109/TSG.2020.3015573

    Article  Google Scholar 

  5. Sheik Mohammed, S., Krishnendu, J.M.: Energy management control of DC microgrid with electric vehicle and hybrid energy storage system. In: 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2019, no. September, pp. 1360–1364 (2019). https://doi.org/10.1109/ICICICT46008.2019.8993171

  6. Carter, R., Cruden, A., Hall, P.J., Zaher, A.S.: An improved lead-acid battery pack model for use in power simulations of electric vehicles. IEEE Trans. Energy Convers. 27(1), 21–28 (2012). https://doi.org/10.1109/TEC.2011.2170574

    Article  Google Scholar 

  7. Vasak, M., Kujundzic, G.: A battery management system for efficient adherence to energy exchange commands under longevity constraints. IEEE Trans. Ind. Appl. 54(4), 3019–3033 (2018). https://doi.org/10.1109/TIA.2018.2812138

    Article  Google Scholar 

  8. Neto, P.B.L., Saavedra, O.R., De Souza Ribeiro, L.A.: A dual-battery storage bank configuration for isolated microgrids based on renewable sources. IEEE Trans. Sustain. Energy, 9(4), 1618–1626 (2018) https://doi.org/10.1109/TSTE.2018.2800689

  9. Ahmadi, F., et al.: Design and implementation of a new transformer less bidirectional DC-DC converter with wide conversion ratios. IEEE Trans. Power Electron. 3(4), 3493–3503 (2012). https://doi.org/10.1109/TPEL.2020.3045986

    Article  Google Scholar 

  10. Jm, K., Sheik Mohammed, S., Ahamed, T.P.I., Shafeeque, M.: Design and simulation of stand-alone DC microgrid with energy storage system. In: IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, INCOS 2019 (2019). https://doi.org/10.1109/INCOS45849.2019.8951384

  11. Hintz, A., Prasanna, U.R., Rajashekara, K.: Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application. IEEE Trans. Ind. Electron. 62(5), 3163–3172 (2015). https://doi.org/10.1109/TIE.2014.2371778

    Article  Google Scholar 

  12. Askarian, I., Pahlevani, M., Knight, A.M.: Three-port bidirectional DC/DC converter for DC nano grids. IEEE Trans. Power Electron. 36(7), 8000–8011 (2021). https://doi.org/10.1109/TPEL.2020.3046453

    Article  Google Scholar 

  13. Ahmadi, F., Adib, E., Azari, M.: Soft switching bidirectional converter for reflex charger with minimum switches. IEEE Trans. Ind. Electron. 67(10), 8355–8362 (2020). https://doi.org/10.1109/TIE.2019.2947813

    Article  Google Scholar 

  14. Tomar, P.S., Sharma, A.K., Hada, K.: Energy storage in DC microgrid system using non-isolated bidirectional soft-switching DC/DC converter. In: 2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances, CERA 2017, vol. 2018-Janua, pp. 439–444 (2018). https://doi.org/10.1109/CERA.2017.8343370

  15. Zeng, J., Qiao, W., Qu, L.: An isolated three-port bidirectional DC-DC converter for photovoltaic systems with energy storage. IEEE Trans. Ind. Appl. 51(4), 3493–3503 (2015). https://doi.org/10.1109/TIA.2015.2399613

    Article  Google Scholar 

  16. Wu, Y.E., Ke, Y.T.: A novel bidirectional isolated DC-DC converter with high voltage gain and wide input voltage. IEEE Trans. Power Electron. 36(7), 7973–7985 (2021). https://doi.org/10.1109/TPEL.2020.3045986

    Article  Google Scholar 

  17. Belkhier, Y., Achour, A., Shaw, R.N., Sahraoui, W., Ghosh, A.: Adaptive linear feedback energy-based back stepping and PID control strategy for PMSG driven by a grid-connected wind turbine. In: Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N. (eds.) Innovations in Electrical and Electronic Engineering. LNEE, vol. 756, pp. 177–189. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0749-3_13

    Chapter  Google Scholar 

  18. Huang, B.J.: Interleaved voltage-doubler boost converter for power factor correction. In: 2018 International Power Electronics Conference IPEC-Niigata - ECCE Asia 2018, pp. 3528–3532 (2018). https://doi.org/10.23919/IPEC.2018.8507419

  19. Wang, Y.F., Xue, L.K., Wang, C.S., Wang, P., Li, W.: Interleaved high-conversion-ratio bidirectional DC-DC converter for distributed energy-storage systems-circuit generation, analysis, and design. IEEE Trans. Power Electron. 31(8), 5547–5561 (2016). https://doi.org/10.1109/TPEL.2015.2496274

    Article  Google Scholar 

  20. Metin, N.A., Boyar, A., Kabalci, E.: Design and analysis of bi-directional DC-DC driver for electric vehicles. In: Proceedings of 2019 IEEE 1st Global Power, Energy and Communication Conference GPECOM 2019, pp. 227–232 (2019). https://doi.org/10.1109/GPECOM.2019.8778532

  21. de Melo, R.R., Tofoli, F.L., Daher, S., Antunes, F.L.M.: Interleaved bidirectional DC–DC converter for electric vehicle applications based on multiple energy storage devices. Electr. Eng. 102(4), 2011–2023 (2020). https://doi.org/10.1007/s00202-020-01009-3

    Article  Google Scholar 

  22. Mohammed, S.S., Syji, B.M.: Energy management of a standalone low voltage DC microgrid using FPGA based controller. J. Green Eng. 10(5), 1984–2005 (2020)

    Google Scholar 

  23. Thomas, S.M., Mohammed, S.S.: Solar-powered EV charging station with G2V and V2G charging configuration. J. Green Eng. 10(4), 1704–1731 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lijin, K.L., Mohammed, S.S., Shanir, P.P.M. (2022). A Non-isolated Two-Phase Interleaved Bidirectional Buck-Boost Converter (2ph-IBDB2C) for Battery Storage Applications. In: Mekhilef, S., Shaw, R.N., Siano, P. (eds) Innovations in Electrical and Electronic Engineering. ICEEE 2022. Lecture Notes in Electrical Engineering, vol 894. Springer, Singapore. https://doi.org/10.1007/978-981-19-1677-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1677-9_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1676-2

  • Online ISBN: 978-981-19-1677-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics