Skip to main content

Importance of Ultrasonic Testing and Its Metrology Through Emerging Applications

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications

Abstract

Ultrasonics or ultrasound is the sonic waves with frequencies higher than the upper audible limit of humans and is used in numerous studies and applications. Ultrasonic waves are applied in a variety of industries, including the manufacturing and process industries, medicine, domestic, civil, marine communications, wind turbines, and many more. In the medical field, ultrasound is used for both diagnostic and therapeutic applications. In industries, it is used during manufacturing, flaws, or voids for quality assessment and chemical processing. Due to its numerous advantages, ultrasonic testing is one of the most extensively utilized nondestructive testing (NDT) methods for the examination of structures. The present chapter is mainly focused on the significance of ultrasonic testing and related metrology. Emerging ultrasonic measurement techniques are also briefly discussed, as they would lead to greater measurement capabilities in the future. It is expected that the comprehensive overview of the progress in ultrasound in recent years would prove to be a useful information and knowledge bank for the student, researchers, engineers, scientists, and metrologists working or involved in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • ASTM International C597-02 standard test method for pulse velocity through concrete. https://www.astm.org/c0597-02.html

  • Aswal DK (ed) (2020) Metrology for inclusive growth of India. Springer, Singapore

    Google Scholar 

  • Azar L (2009, February). Cavitation in ultrasonic cleaning and cell disruption. Controlled Environments, pp 14–17

    Google Scholar 

  • Bombarda D, Vitetta GM, Ferrante G (2021) Rail diagnostics based on ultrasonic guided waves: an overview. Appl Sci 11(3):1071. https://doi.org/10.3390/app11031071

    Article  Google Scholar 

  • Boonsang S, Dewhurst RJ (2005) Signal enhancement in Rayleigh wave interactions using a laser-ultrasound/EMAT imaging system. Ultrasonics 43(7):512–523

    Article  Google Scholar 

  • BS EN 12504-4:2004 testing concrete. Determination of ultrasonic pulse velocity. https://www.thenbs.com/PublicationIndex/documents/details?Pub=BSI&DocID=275284

  • BS EN 45502-1:2015 implants for surgery. Active implantable medical devices General requirements for safety, marking and for information to be provided by the manufacturer. BS EN 45502-1:2015 - European

    Google Scholar 

  • Buckin V (2018) High-resolution ultrasonic spectroscopy. J Sens Sens Syst 7(1):207–217

    Article  Google Scholar 

  • Buckin V, Kudryashov E, O’Driscoll B (2002) High-resolution ultrasonic spectroscopy for material analysis. Am Lab 34(5 Suppl):28–31

    Google Scholar 

  • Cawley P (2001) Non-destructive testing – current capabilities and future directions. Proc Inst Mech Eng L J Mater Des Appl 215(4):213–223

    Google Scholar 

  • Cheng Y, Deng Y, Cao J, Xiong X, Bai L, Li Z (2013) Multi-wave and hybrid imaging techniques: a new direction for nondestructive testing and structural health monitoring. Sensors 13(12):16146–16190

    Article  ADS  Google Scholar 

  • Cherfaoui M (2012) Innovative techniques in non-destructive testing and industrial applications on pressure equipment. Procedia Eng 46:266–278

    Article  Google Scholar 

  • Dobbs ER, Llewellyn JD (1971) Generation of ultrasonic waves without using a transducer. Non-Destr Test 4(1):49–56

    Article  Google Scholar 

  • Drewry MA, Georgiou GA (2007) A review of NDT techniques for wind turbines. Insight Non-Destr Test Cond Monit 49(3):137–141

    Article  Google Scholar 

  • Drukker L, Noble JA, Papageorghiou AT (2020) Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet Gynecol 56(4):498–505

    Article  Google Scholar 

  • Dubey PK, Jain A, Singh S (2015) Improved and automated primary ultrasonic power measurement setup at CSIR-NPL, India. MAPAN 30(4):231–237

    Article  Google Scholar 

  • Dwivedi SK, Vishwakarma M, Soni A (2018) Advances and researches on non destructive testing: a review. Mater Today Proc 5(2):3690–3698

    Article  Google Scholar 

  • Ermolov IN (2005) Achievements in ultrasonic inspection (from materials of the 16th international conference). Russ J Nondestruct Test 41(8):483–489

    Article  Google Scholar 

  • Gaal M, Kotschate D, Bente K (2019, September) Advances in air-coupled ultrasonic transducers for non-destructive testing. In: Proceedings of meetings on acoustics ICU, vol 38, no 1. Acoustical Society of America, p 030003

    Google Scholar 

  • Haller J, Koch C, Costa-Felix RP, Dubey PK, Durando G, Kim YT, Yoshioka M (2016) Final report on key comparison CCAUV.U-K3.1. Metrologia 53(1A):09002

    Article  ADS  Google Scholar 

  • Harris GR (1996) Are current hydrophone low frequency response standards acceptable for measuring mechanical/cavitation indices? Ultrasonics 34(6):649–654

    Article  Google Scholar 

  • Helal J, Sofi M, Mendis P (2015) Non-destructive testing of concrete: a review of methods. Electron J Struct Eng 14(1):97–105

    Google Scholar 

  • Hellier CJ (2013) Handbook of nondestructive evaluation. McGraw-Hill Education, New York

    Google Scholar 

  • IS 13311-1: method of non-destructive testing of concrete, part 1: ultrasonic pulse velocity

    Google Scholar 

  • ISO 14708-1:2014 implants for surgery-active implantable medical devices; part 1: general requirements for safety, marking and for information to be provided by the manufacturer. https://www.iso.org/standard/52804.html. Standards https://www.en-standard.eu

  • Kalpana Y, Sanjay Y, Dubey PK (2022) Metrological investigation and calibration of reference standard block for ultrasonic non-destructive testing. Metrology and measurement systems 29(3)

    Google Scholar 

  • Kays R, Demenko A, Maeika L (2007) Air-coupled ultrasonic non-destructive testing of aerospace components. Insight-Non-Destr Test Cond Monit 49(4):195–199

    Google Scholar 

  • Krautkrämer J, Krautkrämer H (2013) Ultrasonic testing of materials. Springer, Berlin

    Google Scholar 

  • Kumar S, Mahto DG (2013) Recent trends in industrial and other engineering applications of non destructive testing: a review. Int J Sci Eng Res 4(9):31

    Google Scholar 

  • Lavender JD (1976) Ultrasonic testing of steel castings. Steel Founders’ Society of America, Crystal Lake

    Google Scholar 

  • Lévesque D, Ochiai M, Blouin A, Talbot R, Fukumoto A, Monchalin JP (2002, October) Laser-ultrasonic inspection of surface-breaking tight cracks in metals using SAFT processing. In: 2002 IEEE ultrasonics symposium, 2002. Proceedings, vol 1. IEEE, pp 753–756

    Google Scholar 

  • Lewin PA (2010) Nonlinear acoustics in ultrasound metrology and other selected applications. Phys Procedia 3(1):17–23

    Article  ADS  Google Scholar 

  • Lorenzi A, Caetano LF, Campagnolo JL, Lorenzi LS, Silva Filho LCP (2015) Application of ultrasonic pulse velocity to detect concrete flaws. E-J Nondestruct Test Ultrason 11:18430

    Google Scholar 

  • Luo X, Gong H, He Z, Zhang P, He L (2021) Recent advances in applications of power ultrasound for petroleum industry. Ultrason Sonochem 70:105337

    Article  Google Scholar 

  • Mineo C, MacLeod C, Morozov M, Pierce SG, Summan R, Rodden T, Watson D (2017) Flexible integration of robotics, ultrasonics and metrology for the inspection of aerospace components. AIP Conf Proc 1806(1):020026

    Article  Google Scholar 

  • Monchalin JP (2007) Laser-ultrasonics: principles and industrial applications. In: Ultrasonic and advanced methods for nondestructive testing and material characterization. World Scientific, Hackensack, pp 79–115

    Chapter  Google Scholar 

  • Muthumari S, Singh A (2011) Review of various ultrasonic techniques employed in modern industries. Int J Eng Sci Technol 3(4):21

    Google Scholar 

  • Natarajan S, Ponnusamy V (2020) A review on the applications of ultrasound in food processing. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.220.09.516

  • Nelson KA, Lutz DR, Fayer MD, Madison L (1981) Laser-induced phonon spectroscopy. Optical generation of ultrasonic waves and investigation of electronic excited-state interactions in solids. Phys Rev B 24(6):3261

    Article  ADS  Google Scholar 

  • Nudurupati AK (2021) Non-destructive ultrasonic testing of solid rocket motor casing (no. 6647). EasyChair

    Google Scholar 

  • Palaev AG, Dzhemilev ER, Chipura SI (2019a) Ultrasound impact on oil viscosity: current situation, application prospects. Вестник современных исследований 2(3):77–80.

    Google Scholar 

  • Palaev AG, Dzhemilev ER, Chipura SI (2019b) Overview of the main methods of ultrasound application in the oil and gas industry. Передовые инновационные разработки. Перспективы и опыт использования, проблемы внедрения в производство. 2019

    Google Scholar 

  • Pandey DK, Pandey S (2010) Ultrasonics: a technique of material characterization. In: Acoustic waves. Sciyo Publishing, Zagreb, pp 397–430

    Google Scholar 

  • Pei C, Fukuchi T, Zhu H, Koyama K, Demachi K, Uesaka M (2012) A study of internal defect testing with the laser-EMAT ultrasonic method. IEEE Trans Ultrason Ferroelectr Freq Control 59(12):2702–2708

    Article  Google Scholar 

  • Qiu L, Zhang M, Chitrakar B, Bhandari B (2020) Application of power ultrasound in freezing and thawing processes: effect on process efficiency and product quality. Ultrason Sonochem 68:105230

    Article  Google Scholar 

  • Raišutis R, Kazys R, Mazeika L (2008) Application of the ultrasonic pulse-echo technique for quality control of the multi-layered plastic materials. NDT & E Int 41(4):300–311

    Article  Google Scholar 

  • Rajagopalan S, Sharma SJ, Dubey PK (2007) Measurement of ultrasonic velocity with improved accuracy in pulse echo setup. Rev Sci Instrum 78(8):085104

    Article  ADS  Google Scholar 

  • Rawding H (1963) Ultrasonic testing standards. Ultrasonics 1(1):36–38

    Article  Google Scholar 

  • Roshan CC, Raghul C, Ram HV, Suraj KP, Solomon J (2019) Non-destructive testing by liquid penetrant testing and ultrasonic testing – a review. Int J Ad Res Ideas Innov Technol 5(2):694–697

    Google Scholar 

  • Samokrutov A, Shevaldykin V, Bobrov V, Kozlov V (2006) Development of acoustic methods and production of modern digital devices and technologies for ultrasonic non-destructive testing. Ultrasound 61(4):12–21

    Google Scholar 

  • Segreto T, Bottillo A, Teti R (2016) Advanced ultrasonic non-destructive evaluation for metrological analysis and quality assessment of impact damaged non-crimp fabric composites. Procedia CIRP 41:1055–1060

    Article  Google Scholar 

  • Senthilkumar M, Sreekanth TG, Manikanta Reddy S (2021) Nondestructive health monitoring techniques for composite materials: a review. Polym Polym Compos 29(5):528–540

    Google Scholar 

  • Sharma S, Mishra UK, Yadav S, Dubey PK (2019) Improved ultrasonic interferometer technique for propagation velocity and attenuation measurement in liquids. Rev Sci Instrum 90(4):045107

    Article  ADS  Google Scholar 

  • Sharma S, Yadav S, Dubey PK (2020) Continuous wave ultrasonic interferometers with relatively higher excitation are inappropriate for liquid characterization. MAPAN 35(3):427–433

    Article  Google Scholar 

  • Stoessel R, Krohn N, Pfleiderer K, Busse G (2002) Air-coupled ultrasound inspection of various materials. Ultrasonics 40(1–8):159–163

    Article  Google Scholar 

  • Thabet S, Jasim Y, Thabit T (2018) Critically evaluate the capabilities of ultrasonic techniques used for tracing defects in laminated composite materials. Int J Eng Appl Sci 10(3):237–251

    Google Scholar 

  • Tushar TJ, Odedra RK, Goswami D (2015) State of art for determining morphology of concrete using NDT. Int J Sci Technol Eng 2(6):146–149

    Google Scholar 

  • Ushakov VM, Davydov DM (2006) Calibration blocks for ultrasonic nondestructive testing. Russ J Nondestruct Test 42(3):149–155

    Article  Google Scholar 

  • Wollbold J, Neisecke J (1995) Ultrasonic-impulse-echo-technique, advantages of an online-imaging technique for the inspection of concrete. In: Proceedings of the international symposium NDT in civil engineering, Berlin, vol 26, no 28, p 9

    Google Scholar 

  • Yadav K, Yadav S, Dubey PK (2021) A comparative study of ultrasonic contact and immersion method for dimensional measurements. MAPAN 36(2):319–324

    Article  Google Scholar 

  • Yildiz F, Ozdemir AT, Uluisik S (2018, September) Custom design fruit quality evaluation system with non-destructive testing (NDT) techniques. In: 2018 International conference on artificial intelligence and data processing (IDAP). IEEE, pp 1–5

    Google Scholar 

  • Yildiz F, Ozdemir AT, Uluışık S (2019) Evaluation performance of ultrasonic testing on fruit quality determination. J Food Qual 2019:1–7

    Article  Google Scholar 

  • Yilmaz B, Asokkumar A, Jasiunienė E, Kazys RJ (2020) Air-coupled, contact, and immersion ultrasonic non-destructive testing: comparison for bonding quality evaluation. Appl Sci 10(19):6757

    Article  Google Scholar 

  • Zeqiri B (2007) Metrology for ultrasonic applications. Prog Biophys Mol Biol 93(1–3):138–152

    Article  Google Scholar 

  • Zhai G, Jiang T, Kang L (2014) Analysis of multiple wavelengths of lamb waves generated by meander-line coil EMATs. Ultrasonics 54(2):632–636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dubey .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yadav, K., Yadav, S., Dubey, P.K. (2022). Importance of Ultrasonic Testing and Its Metrology Through Emerging Applications. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics