Skip to main content

Recent Trends and Diversity in Ultrasonics

  • Reference work entry
  • First Online:
Handbook of Metrology and Applications
  • 902 Accesses

Abstract

Ultrasonic technology is growing rapidly with a promise of having tremendous potential. A range of diverse applications using ultrasonic sensors have been witnessed recently in several areas ranging from healthcare, food sector, non-destructive testing, level measurement, etc. In industry, it is used for processes including cutting, forming, cleaning, and welding of metals and plastics. New hybrid forms of ultrasonics are also finding latest interest and attraction owing to the improved resolution and penetration depth for medical imaging. The present chapter explores the basics of ultrasonics along with a wide range of applications. Improvements in ultrasonic sensors have now resulted in low-cost, user-friendly, and compact devices. Being a radiation-free alternative, ultrasound has become ubiquitous attracting a wide range of interest resulting in the growing customer market. In retrospect, it should not have been so astonishing that ultrasound is soon to be covering the day-to-day field of importance areas widely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aindow JD, Chivers RC (1982) A narrow-band sing-around ultrasonic velocity measurement system. J Phys E Sci Instrum 15:1027

    Article  ADS  Google Scholar 

  • Bakkali F, Moudden A, Faiz B, Amghar A, Maze G, Montero de Espinosa F, Akhnak M (2001) “Ultrasonic measurement of milk coagulation time” Meas. Sci Technol 12:2154

    ADS  Google Scholar 

  • Benedetto G, Gavioso RM, Guiliano Albo PA, Lago S, Madonna Ripa D, Spagnolo R (2005) Microwave-ultrasonic cell for sound speed measurements in liquids. Int J Thermophys 26:1651

    Article  ADS  Google Scholar 

  • Bhatnagar D, Joshi D, Kumar A (2010) Direct acoustic impedance measurements of dimethyl sulphoxide with benzene, carbontetrachloride and methanol liquid mixtures. J Pure Appl Phys 48:31

    Google Scholar 

  • Bilaniuk N, Wong SK (1993) Speed of sound in pure water as a function of temperature. J Acoust Soc Am 93:1608

    Article  ADS  Google Scholar 

  • Birnbaum G, White GS (1984) Laser Techniques in NDE. In: Sharpe RS (ed) Research techniques in nondestructive testing. Academic, New York, p 259

    Google Scholar 

  • Carstensen EL (1954) Measurement of dispersion of velocity of sound in liquids. J Acoust Soc Am 26:858

    Article  ADS  Google Scholar 

  • Cedrone NP, Curran DR (1954) Electronic pulse methods for measuring the velocity of sound in liquids and solids. J Acoust Soc Am 26:963

    Article  ADS  Google Scholar 

  • Cerf R, Degermann H, Bader M (1970) Measure precise depetites diff’erences de vitesse de propagation des ultrasonsd ans le liquides par comparaison de phase, a l’aide d’unecellule tubulaire. Acust 23:48

    Google Scholar 

  • Crawford FS (1968) Waves – Berkeley physics course, vol 3. McGraw-Hill, New York

    Google Scholar 

  • Dev SB, Sarkar S, Pethrick RA (1973) Model calculations for the swept frequency acoustic resonator. J Phys E Sci Instrum 61:39

    Google Scholar 

  • Edwards C, Taylor GS, Palmer SB (1990) The CO2 laser – a new ultrasonic source. J Nondestr Test Eval 5:135

    Article  ADS  Google Scholar 

  • Eggers F (1967/68) Eine Resonatormethode zur Bestimmung von Schall-Geschwindigkeit und D¨ ampfung an geringen Fl¨ ussigkeitsmengen. Acustica 19:323

    Google Scholar 

  • Eggers F (1992) Ultrasonic velocity and attenuation measurements in liquids with resonators, extending the MHz frequency range. Acustica 76:231

    Google Scholar 

  • Eggers F (1994) Analysis of phase slope or group delay time in ultrasonic resonators and its application for liquid absorption and velocity measurements. Acustica 8:397

    Google Scholar 

  • Eggers F (1997) Model calculations for ultrasonic plate-liquid-plate resonators: peak frequency shift by liquid density and velocity variations. Meas Sci Technol 8:643

    Article  ADS  Google Scholar 

  • Elias M, Garcia-Moliner F (1968) Wave packet propagation and frequency dependent internal friction. In: Mason WP, Thurston R (eds) Physical acoustics, vol 5. Academic, New York, p 163

    Google Scholar 

  • Ernst S, Marczak W, Manikowski R, Zorebski E, Zorebski M (1992) A sing-around apparatus for group velocity measurements in liquids. Testing by standard liquids and discussion of errors. Acoust Lett 15:123

    Google Scholar 

  • Forgacs RL (1960) Improvements in the sing-around technique for ultrasonic velocity measurements. J AcoustSoc Am 32:1697

    Article  ADS  Google Scholar 

  • Goodenough TIJ, Rajendram VS, Meyer S, Prete D (2005) Development of a multi frequency pulse diagnostic ultrasound. Ultrasonics 43:165

    Article  Google Scholar 

  • Greenspan M, Tschiegg CE (1957) Sing-around ultrasonic velocimeter for liquids. Rev Sci Instrum 28:897

    Article  ADS  Google Scholar 

  • Høgseth E, Hedwig G, Høiland H (2000) Rubidium clocksound velocity meter. Rev Sci Instrum 71:4679

    Article  ADS  Google Scholar 

  • Horváth-Szabó G, Høiland H, Høgseth E (1994) An automated apparatus for ultrasound velocity measurements improving the pulse-echo-overlap method to a precision better than 0.5 ppm in liquids. Rev Sci Instrum 65:1644

    Article  ADS  Google Scholar 

  • Hosoda M, Takagi K, Ogawa H, Nomura H, Sakai K (2005) Rapid and precise measurement system for ultrasonic velocity by pulse correlation method designed for chemical analysis. Japan J Appl Phys 44:3268

    Article  ADS  Google Scholar 

  • Hubbard JC (1931) The acoustic resonator interferometer: I. The acoustic system and its equivalent electric network. Phys Rev 38:1011

    Article  ADS  Google Scholar 

  • Hutchins DA (1988) Ultrasonic generation by pulsed lasers. In: Mason WP, Thurston RN (eds) Physical acoustics. Academic Press, New York, pp 18–21

    Google Scholar 

  • Joshi D, Bhatnagar D, Kumar A, Gupta R (2009) Direct measurement of acoustic impedance in liquids by a new pulse echotechnique. MAPAN J Metrol Soc India 24:215

    Google Scholar 

  • Joshi D, Kumar A, Gupta R, Yadav S (2013) Sensitivity enhancement of concurrent technique of acoustic impedance measurement. MAPAN J Metrol Soc India 28:79

    Google Scholar 

  • Joshi D, Gupta R, Kumar A, Kumar Y, Yadav S (2014) A precision ultrasonic phase velocity measurement technique for liquids. MAPAN J Metrol Soc India 29:9

    Google Scholar 

  • Kaatze U, Wehrmann B, Pottel R (1987) Acoustical absorption spectroscopy of liquids between 0.15 and 300 MHz: high resolution ultrasonic resonator method. J Phys E Sci Instrum 20:1025

    Article  ADS  Google Scholar 

  • Kaatze U, Lautscham K, Brai M (1988) Acoustical absorption spectroscopy of liquids between 0.15 and 3000 MHz: II. Ultrasonic pulse transmission method. J Phys E Sci Instrum 21:98

    Article  ADS  Google Scholar 

  • Kaatze U, Knel V, Menzel K, Schwerdtfeger S (1993) Ultrasonic spectroscopy of liquids. Extending the frequency range of the variable sample length pulse technique. Meas Sci Technol 41:257

    Google Scholar 

  • Kline RA (1984) Measurement of attenuation and dispersion using an ultrasonic spectroscopy technique. J Acoust Soc Am 76:167

    Article  Google Scholar 

  • Kumar A, Kumar B, Kumar Y (1997) On the acoustic impedance of salol. Act Acoust 83:82

    Google Scholar 

  • Letang C, Piom M, Verdier C, Lefebvre L (2001) Characterization of wheat-flour-water doughs: a new method using ultrasound. Ultrasonics 39:133

    Article  Google Scholar 

  • McClements DJ, Fairly P (1991) Ultrasonic pulse echo reflectometer. Ultrasonics 29:58

    Article  Google Scholar 

  • McSkimin HJ (1961) Pulse superposition method for measuring ultrasonic wave velocities in solids. J Acoust Soc Am 33:12

    Article  ADS  Google Scholar 

  • Meier K, Kabelac S (2006) Speed of sound increment for fluids with pressures up to 100 MPa. Rev Sci Instrum 77:903

    Article  Google Scholar 

  • Mitaku S, Sakanishi A (1997) Differential ultrasonic velocimeter for measurements of dilute suspensions. RevSci Instrum 48:647

    Article  ADS  Google Scholar 

  • Myers A, Mackinnon L, Hoare FE (1959) Modifications to standard pulse techniques for ultrasonic velocity measurements. J Acoust Soc Am 31:16

    Article  Google Scholar 

  • Nakajima H, Arakawa K (1993) VHF ultrasonic resonator for soft materials. Japan J Appl Phys 32:2213

    Article  ADS  Google Scholar 

  • Nolting B (1999) “Protein folding kinetics.” Biophysical methods. Springer, Berlin

    Book  Google Scholar 

  • Papadakis EP (1967) Ultrasonic phase velocity by the pulse-echo-overlap method. Incorporating diffraction phase corrections. J Acoust Soc Am 42:1045

    Article  ADS  Google Scholar 

  • Papadakis EP (1973) The measurement of small changes inultrasonic velocity and attenuation. Crit Rev Solid State Sci 3:373

    Article  Google Scholar 

  • Papadakis EP (1976) New, compact instrument for pulse-echo-overlap measurements of ultrasonic wave transit times. Rev Sci Instrum 47:806

    Article  ADS  Google Scholar 

  • Pearson DS, Holtermann G, Ellison P, Cremo C, Geeves A (2002) A novel pressure-jump apparatus for the microvolume analysis of protein-ligand and protein-protein interactions: its application to nucleotide binding to skeletal-muscle and smooth-muscle myosinsubfragment-1. Biochem J 366:643

    Article  Google Scholar 

  • Pethrick RA (1972) The swept frequency resonant interferometer: measurement of acoustic dispersion parameters in the low megahertz frequency range. J Phys E Sci Instrum 5:571

    Article  ADS  Google Scholar 

  • Rogez D, Bader M (1984) Ultrasonic velocity dispersion in liquids between 3.3 and 330 MHz using high resolution phase measurement technique. J Acoust Soc Am 76:167

    Article  ADS  Google Scholar 

  • Sachse W, Pao Y-H (1978) On the determination of phase and group velocities of disperse waves in solids. J Appl Phys 49:4320

    Article  ADS  Google Scholar 

  • Sarvazyan AP (1982) Development of methods of precise ultrasonic measurements in small volumes of liquids. Ultrasonics 20:151

    Article  Google Scholar 

  • Srinivasan MS (1998) Physics for engineers, vol 2. New Age International Publishers, New Delhi, p 37

    Google Scholar 

  • Taifi N, Bakkali F, Faiz B, Moudden A, Maze G, Decultot D (2006) Characterization of the synthesis and the firmness of the milk gel using an ultrasonic technique. Meas Sci Technol 17:281

    Article  ADS  Google Scholar 

  • Tardajos G, Gonzales Gaitano G, Montero de Espinosa F (1994) Accurate, sensitive and fully automatic method to measure sound velocity and attenuation. Rev Sci Instrum 65:2933

    Article  ADS  Google Scholar 

  • Tong J, Povey MJW (2002) Pulse echo comparison method with FSUPER to measure velocity dispersion in n-tetradecane in water emulsions. Ultrasonics 40:37

    Article  Google Scholar 

  • Van Venrooij GE (1971) Measurement of ultrasound velocity in human tissue. Ultrasonics 9:240

    Article  Google Scholar 

  • White RM (1963) Generation of elastic waves by transient surface heating. J Appl Phys 34:3559

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Joshi, D., Mehta, D.S. (2023). Recent Trends and Diversity in Ultrasonics. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-99-2074-7_43

Download citation

Publish with us

Policies and ethics