Skip to main content

Understanding Quantum Computing Through Drunken Walks

  • Conference paper
  • First Online:
Pattern Recognition and Data Analysis with Applications

Abstract

Quantum random walks have caught the attention of quantum information theorists in recent years. Classical walks have been used to solve or design several highly efficient randomized algorithms, and they are also used in many quantum algorithms, but quantum walks provide an exponential speedup over classical walks since they can solve some oracle problems. For several practical problems, such as the element distinctness problem, the triangle finding problem, and evaluating NAND trees, quantum walks provide polynomial speedups over classical algorithms. In this paper, we propose a new quantum random walk representation based on the drunken walk and the classical random walk. This current portrayal would make it easier for people to comprehend the potential of quantum computing. It will also be shown how to solve a large deviation analysis through quantum walks. This paper includes an explanation of how an inebriated person might locate his friend in a bar after leaving the restroom, as well as a comparison of quantum walks and classical walks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993). https://doi.org/10.1103/PhysRevA.48.1687

    Article  Google Scholar 

  2. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. STOC ’01. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 50–59 (2001). https://doi.org/10.1145/380752.380758

  3. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. STOC ’01. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 37–49 (2001). https://doi.org/10.1145/380752.380757

  4. Kempe, J.: Quantum random walks. An introductory overview. Contemp. Phys. 44, 307–327 (2009)

    Article  Google Scholar 

  5. Chowdhury, A.N., Somma, R.D.: Quantum algorithms for gibbs sampling and hitting time estimation. Quant. Inf. Comp. 17(1/2), 0041–0064 (2017)

    MathSciNet  Google Scholar 

  6. Montanaro, A.: Quantum speedup of Monte Carlo methods. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (2015). https://doi.org/10.1098/rspa.2015.0301. ISSN: 1364-5021

  7. Dhahri, A., Ko, K.C., Yoo, J.H.: Quantum Markov chains associated with open quantum random walks. J. Stat. Phys. 176(5), 1272–1295 (2019)

    Article  MathSciNet  Google Scholar 

  8. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007). https://doi.org/10.1137/S0097539705447311

    Article  MathSciNet  MATH  Google Scholar 

  9. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. STOC ‘07: In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 575–584 (2007). https://doi.org/10.1145/1250790.1250874

  10. Childs, M.A., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70(2), 022314 (2004). https://doi.org/10.1103/PhysRevA.70.022314

  11. Montanaro, A.: Quantum-walk speedup of backtracking algorithms. Theor. Comput. 14, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  12. Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108(1) (2012). https://doi.org/10.1103/PhysRevLett.108.010502

  13. Rakovszky, T., Asboth, K.J.: Localization, delocalization, and topological phase transitions in the one-dimensional split-step quantum walk. Phys. Rev. A 92(5) (2015). https://doi.org/10.1103/PhysRevA.92.052311

  14. Acasiete, F., Agostini, P.F., Moqadam, K.J., Portugal, R.: Implementation of quantum walks on IBM quantum computers. Quantum Inf. Proc. 19. https://doi.org/10.1007/s11128020-02938-5 (2020)

  15. Krovi, H.: Symmetry in quantum walks. Quantum Phys. (quant-ph). arXiv:0711.1694 (2007)

  16. Orthey, C.A., Amorim, M.P.E.: On the spreading of quantum walks starting from local and delocalized states. Quantum Phys. (quant-ph). arXiv:1706.06257 (2017)

  17. Balu, R., Castillo, D., Siopsis, G.: Physical realization of topological quantum walks on IBM-q and beyond. Quantum Sci. Technol. 3, 035001 (2018)

    Article  Google Scholar 

  18. Moll, N., Barkoutsos, P., Bishop, L.S., Chow, M.J., Cross, A., Egger, J.D., Filipp, S., Fuhrer, A., Gambetta, M.J., Ganzhorn, M., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3, 030503 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biswas, S., Goswami, R.S. (2022). Understanding Quantum Computing Through Drunken Walks. In: Gupta, D., Goswami, R.S., Banerjee, S., Tanveer, M., Pachori, R.B. (eds) Pattern Recognition and Data Analysis with Applications. Lecture Notes in Electrical Engineering, vol 888. Springer, Singapore. https://doi.org/10.1007/978-981-19-1520-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1520-8_52

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1519-2

  • Online ISBN: 978-981-19-1520-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics