Skip to main content
Log in

Quantum Markov Chains Associated with Open Quantum Random Walks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we construct (nonhomogeneous) quantum Markov chains associated with open quantum random walks. The quantum Markov chain, like the classical Markov chain, is a fundamental tool for the investigation of the basic properties of the underlying dynamics such as reducibility/irreducibility, recurrence/transience, accessibility, ergodicity, etc. So, the quantum Markov chain machinery opens many new features of the dynamics. On the other hand, as will be shown in this paper, the open quantum random walks serves as a very interesting nontrivial model for which one can construct the associated quantum Markov chains. Here, after constructing the quantum Markov chain associated with the open quantum random walks, we focus on the discussion of the reducibility and irreducibility of open quantum random walks via the corresponding quantum Markov chains. Particularly we show that the concept of reducibility/irreducibility of open quantum random walks in this approach is equivalent to the one previously done by Carbone and Pautrat. We provide with some examples. We see also that the classical Markov chains can be reconstructed as quantum Markov chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attal, S., Guillotin-Plantard, N., Sabot, C.: Central limit theorems for open quantum random walks and quantum measurement records. Ann. Henri Poincaré 16(1), 15–43 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Attal, S., Petruccione, F., Sabot, C., Sinayskiy, I.: Open quantum random walks. J. Stat. Phys. 147, 832–852 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Attal, S., Petruccione, F., Sinayskiy, I.: Open quantum walks on graphs. Phys. Lett. A 376(18), 1545–1548 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Carbone, R., Pautrat, Y.: Open quantum random walks: reducibility, period, ergodic properties. Ann. Henri Poincaré 17, 99–135 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Dhahri, A., Mukhamedov, F.: Open quantum random walks, quantum Markov chains and recurrence. Rev. Math. Phys. 31(7), 1950020 (2019)

    Article  MathSciNet  Google Scholar 

  6. Lardizabal, C.F.: Open quantum random walks and the mean hitting time formula. Quantum Inf. Comput. 17(1/2), 79–105 (2017)

    MathSciNet  Google Scholar 

  7. Lardizabal, C.F., Souza, R.R.: Open quantum random walks: ergodicity, hitting times, gambler’s ruin and potential theory. J. Stat. Phys. 164(5), 1122–1156 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Accardi, L.: Nonrelativistic quantum mechanics as a noncommutative Markov process. Adv. Math. 20, 329–366 (1976)

    Article  MATH  Google Scholar 

  9. Accardi, L.: Local perturbations of conditional expectations. J. Math. Anal. Appl. 72, 34–69 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Accardi, L.: Topics in quantum probability. Phys. Rep. 77, 169–192 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  11. Accardi, L., Koroliuk, D.: Quantum Markov Chains: The Recurrence Problem, QP III. World Scientific, Singapore (1991)

    MATH  Google Scholar 

  12. Accardi, L., Koroliuk, D.: Stopping times for quantum Markov chains. J. Theor. Probab. 5, 521–535 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Accardi, L., Fidaleo, F.: Quantum Markov fields. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 06, 123 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Accardi, L., Fidaleo, F.: Non-homogeneous quantum Markov states and quantum Markov fields. J. Funct. Anal. 200(2), 324–347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Accardi, L., Mukhamedov, F., Saburov, M.: On quantum Markov chains on Cayley tree I: uniqueness of the associated chain with \(XY\)-model on the Cayley tree of order two. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14(03), 443–463 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Accardi, L., Mukhamedov, F., Saburov, M.: On quantum Markov chains on Cayley tree II: phase transitions for the associated chain with \(XY\)-model on the Cayley tree of order three. Ann. Henri Poincaré 12(6), 1109–1144 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Accardi, L., Mukhamedov, F., Saburov, M.: On quantum Markov chains on Cayley tree III: Ising model. J. Stat. Phys. 157(2), 303–329 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lu, Y.-G.: Quantum Markov chains and classical random sequences. Nagoya Math. J. 139, 173–183 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brattelli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics 1, 2nd edn. Springer-Verlag, New York (1987)

    Book  Google Scholar 

  20. Nakagami, Y.: Infinite tensor products of von Neumann algebras, I. Kodai Math. Sem. Rep. 22, 341–354 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  21. Accardi, L., Watson, G.S.: Quantum random walks. In: Accardi, L., von Waldenfels, W. (eds.) Quantum Probability and Applications IV. Lecture Notes in Mathematics. Springer, Berlin, Heidelberg (1989)

    Google Scholar 

  22. Riesz, F., Sz-Nagy, B.: Functional Analysis. Ungar, New York (1955)

    MATH  Google Scholar 

  23. Fagnola, F.: Quantum Markov semigroups and quantum flows. Proyecciones 18, 1–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Accardi, L., Frigerio, A.: Markovian cocycles. Proc. R. Ir. Acad. 83A, 251–263 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Park, Y.M.: Dynamical entropy of generalized quantum Markov chains. Lett. Math. Phys. 32, 63–74 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Park, Y.M., Shin, H.H.: Dynamical entropy of generalized quantum Markov chains over infinite dimensional algebras. J. Math. Phys. 38, 6287–6303 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fagnola, F., Pellicer, R.: Irreducible and periodic positive maps. Commun. Stoch. Anal. 3, 407–418 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Stroock, D.W.: An introduction to Markov processes. Springer, Berlin (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to anonymous referees for giving many valuable comments. It improved the paper very much. A. Dhahri acknowledges the support by the research Grant of the Chungbuk National University in 2015. The research by H. J. Yoo was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03936006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Jae Yoo.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Equivalence of Concepts of Reducibility/Irreducibility of OQRWs Defined in [4] and in This Paper

Equivalence of Concepts of Reducibility/Irreducibility of OQRWs Defined in [4] and in This Paper

First of all we recall the definition of reducibility/irreducibility used in [4]. Let \(\Phi \) be a positive map on the ideal \(\mathcal {I}_1(\mathfrak h)\) of trace class operators on a Hilbert space \(\mathfrak h\). When we come to our model, \(\mathfrak h\) is \({\mathcal {H}}\otimes {\mathcal {K}}\) and \(\Phi \) is \({\mathcal {M}}\). \(\Phi \) is said to be irreducible (see [4, Definition 3.1]) if the only orthogonal projections p reducing \(\Phi \), i.e. such that \(\Phi (p\mathcal {I}_1(\mathfrak h)p)\subset p\mathcal {I}_1(\mathfrak h)p\), are \(p=0\) and I. Applying to OQRWs, Carbone and Pautrat have shown (terminology in our language):

Proposition A.1

([4, Proposition 3.8]) The completely positive and trace preserving map \({\mathcal {M}}\) is irreducible if and only if for any \(i,j\in \Lambda \) and any \(\psi ,\xi \in {\mathcal {H}}\setminus \{0\}\), there is a path \(\pi \in {\mathcal {P}}(i,j)\) such that \(\langle \xi ,B_\pi \psi \rangle \ne 0\).

Now we show the definitions of reducibility/irreducibility of OQRWs given in [4] and in the present paper are equivalent. First we remark that as given by [4, Proposition 6.1, item 3], once an OQRW is reducible (in the sense of [4]) one can always find a reducing projection p of the block-diagonal form: \(p=\sum _j p(j)\otimes |j\rangle \langle j|\). Conversely speaking, if there is no nontrivial block-diagonal reducing projection the OQRW is irreducible. Suppose the OQRW is reducible in the sense of [4] with a reducing projection \(p=\sum _j p(j)\otimes |j\rangle \langle j|\). By [4, Proposition 6.2], it holds that for any \(i,j\in \Lambda \),

$$\begin{aligned} B_j^ip(j)=p(i)B_j^ip(j). \end{aligned}$$
(A.1)

Take an initial state \(\rho ^{(0)}=\sum _j\rho ^{(0)}_j\otimes |j\rangle \langle j|\) such that \(p(j)\rho ^{(0)}_jp(j)=\rho ^{(0)}_j\) for all \(j\in \Lambda \). We can show by induction that for all \(n\ge 0\) and \(j\in \Lambda \),

$$\begin{aligned} p(j)\rho ^{(n)}_jp(j)=\rho ^{(n)}_j. \end{aligned}$$
(A.2)

In fact, suppose (A.2) holds for \(n=0,\cdots ,k\). Then, by the assumption hypothesis and (A.1)

$$\begin{aligned} p(j)\rho ^{(k+1)}_jp(j)= & {} \sum _ip(j)B_i^j\rho ^{(k)}_i{B_i^j}^*p(j)\\= & {} \sum _ip(j)B_i^jp(i)\rho ^{(k)}_ip(i){B_i^j}^*p(j)\\= & {} \sum _iB_i^jp(i)\rho ^{(k)}_ip(i){B_i^j}^*\\= & {} \sum _iB_i^j\rho ^{(k)}_i{B_i^j}^*=\rho ^{(k+1)}_j. \end{aligned}$$

Now (A.2) holds and by Theorem 4.12 the OQRW is reducible in the sense of this paper (recall (A.2) is equivalent to \(\rho ^{(n)}_jp(j)=\rho ^{(n)}_j\)).

Conversely, suppose that the OQRW is reducible in the sense of present paper. By Theorem 4.12, there is a nontrivial projection \(p=\sum _j p(j)\otimes |j\rangle \langle j|\) such that (A.2) holds for \(n\ge n_0\) for some \(n_0\). Find a \(j\in \Lambda \) such that \(p(j)\ne I_{\mathcal {H}}\). By the assumption we have for any \(k\ge 0\),

$$\begin{aligned} {\mathrm {Tr}}(\rho ^{(n_0+k)}_jp(j)^\perp )={\mathrm {Tr}}(\rho ^{(n_0+k)}_jp(j)p(j)^\perp )=0. \end{aligned}$$

Take an \(i\in \Lambda \) such that \(\rho ^{(n_0)}_i\ne 0\). From the above relation we have

$$\begin{aligned} 0= & {} {\mathrm {Tr}}(\rho ^{(n_0+k)}_jp(j)^\perp )\\= & {} \sum _{i_0,\ldots ,i_{k-1}}{\mathrm {Tr}}\left( B_{\pi (i_0,\ldots ,i_{k-1},j)}\rho ^{(n_0)}_{i_0}B^*_{\pi (i_0,\ldots ,i_{k-1},j)}p(j)^\perp \right) \\\ge & {} {\mathrm {Tr}}\left( B_{\pi }\rho ^{(n_0)}_{i}B^*_{\pi }p(j)^\perp \right) ={\mathrm {Tr}}\left( \rho ^{(n_0)}_{i}B^*_{\pi }p(j)^\perp B_{\pi }\right) \ge 0, \end{aligned}$$

for any path \(\pi \in {\mathcal {P}}(i,j)\) of length k. Thus for any \(0\ne \psi \in {\mathcal {H}}\) lying in the spectral projection of \(\rho ^{(n_0)}_i\) away from zero, e.g., any eigenvector of \(\rho ^{(n_0)}_i\) corresponding to nonzero eigenvalue,

$$\begin{aligned} \langle \psi ,B^*_{\pi }p(j)^\perp B_{\pi }\psi \rangle =0. \end{aligned}$$

Therefore, for any such a vector \(0\ne \psi \) and \(0\ne \xi \in p(j)^\perp \), and for any path \(\pi \in {\mathcal {P}}(i,j)\),

$$\begin{aligned} |\langle \xi ,B_\pi \psi \rangle |= & {} |\langle \xi ,p(j)^\perp B_\pi \psi \rangle |\\\le & {} \Vert \xi \Vert \langle p(j)^\perp B_\pi \psi ,p(j)^\perp B_\pi \psi \rangle ^{1/2}=0. \end{aligned}$$

By Proposition A.1, it says that the OQRW is reducible in the sense of [4]. This completes the proof of equivalence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhahri, A., Ko, C.K. & Yoo, H.J. Quantum Markov Chains Associated with Open Quantum Random Walks. J Stat Phys 176, 1272–1295 (2019). https://doi.org/10.1007/s10955-019-02342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02342-z

Keywords

Mathematics Subject Classification

Navigation