Skip to main content

Versatile Fabrication and Use of Polyurethane in Textile Wastewater Dye Removal via Adsorption and Degradation

  • Chapter
  • First Online:
Polymer Technology in Dye-containing Wastewater

Abstract

Polyurethane is known for its wide applicability with easy fabrication along with adjustable characteristics. Furthermore, polyurethane-based materials have been reported to carry effective removal of various synthetic dyes. This chapter reviews the use of polyurethane based on updated reports on dye removal. The development of polyurethane and how green routes synthesis are researched are also highlighted. Modifications of polyurethane have been conducted via grafting, composite, and functionalization. Currently, biobased polyols employed in the fabrication of polyurethane are β-cyclodextrin, castor oil, palm oil, and Moringa oleifera gum. Zr-based metal organic framework and carbonaceous materials are notably promising fillers for adsorptive removal of dyes. Incorporation of nanoparticles into polyurethane matrix provides a photocatalytic feature to the material, hence, working synergistically with the adsorption. Polyurethane has a significant role as a support material for immobilization of fungal culture that could perform enzymatic degradation against dyes. In conclusion, polyurethane could be applied in the wastewater treatment of textile industry by considering the removal efficiency, stability, reusability, and cost-efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acik G, Kamaci M, Altinkok C, Karabulut HRF, Tasdelen MA (2018) Synthesis and properties of soybean oil-based biodegradable polyurethane films. Prog Org Coat 123:261–266. https://doi.org/10.1016/j.porgcoat.2018.07.020

    Article  CAS  Google Scholar 

  2. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications-a review. RSC Adv. https://doi.org/10.1039/c6ra14525f

    Article  Google Scholar 

  3. Alni A, Puspita K, Zulfikar MA (2019) Biosorbent from Chinese cabbage (Brassica pekinensia L.) for phenol contaminated waste water treatment. Key Eng Mater 811:71–79. https://doi.org/10.4028/www.scientific.net/KEM.811.71

    Article  Google Scholar 

  4. Ashjari HR, Dorraji MSS, Fakhrzadeh V, Eslami H, Rasoulifard MH, Rastgouy-Houjaghan M, Gholizadeh P, Kafil HS (2018) Starch-based polyurethane/CuO nanocomposite foam: antibacterial effects for infection control. Int J Biol Macromol 111:1076–1082. https://doi.org/10.1016/j.ijbiomac.2018.01.137

    Article  CAS  Google Scholar 

  5. Ayotte P, Smith RS, Stevenson KP, Dohnálek Z, Kimmel GA, Kay BD (2001) Effect of porosity on the adsorption, desorption, trapping, and release of volatile gases by amorphous solid water. J Geophy Res Planets 106(E12):33387–33392. https://doi.org/10.1029/2000JE001362

    Article  CAS  Google Scholar 

  6. Badri KH, Ismail FH, Shakir ASA, Mohamad S, Hamuzan HA, Hassan NS (2018) Polyurethane membrane as an adsorbent for methyl orange and ethyl violet dyes Malaysian. J Anal Sci 22(6):1040–1047. https://doi.org/10.17576/mjas-2018-2206-14

    Article  Google Scholar 

  7. Badruddoza AZM, Bhattarai B, Suri RPS (2017) Environmentally friendly β-Cyclodextrin–Ionic liquid polyurethane-modified magnetic sorbent for the removal of PFOA, PFOS, and Cr(VI) from water. ACS Sustain Chem Eng 5(10):9223–9232. https://doi.org/10.1021/acssuschemeng.7b02186

    Article  CAS  Google Scholar 

  8. Boyer A, Cloutet E, Tassaing T, Gadenne B, Alfos C, Cramail H (2010) Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: towards novel precursors for polyurethane synthesis. Green Chem 12(12):2205. https://doi.org/10.1039/c0gc00371a

    Article  CAS  Google Scholar 

  9. Carriço CS, Fraga T, Carvalho VE, Pasa VMD (2017) Polyurethane foams for thermal insulation uses produced from castor oil and crude glycerol biopolyols. Molecules. https://doi.org/10.3390/molecules22071091

    Article  Google Scholar 

  10. Carriço CS, Fraga T, Pasa VMD (2016) Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur Polymer J. https://doi.org/10.1016/j.eurpolymj.2016.10.012

    Article  Google Scholar 

  11. Chandra Mohan C, Harini K, Vajiha Aafrin B, Lalitha Priya U, Maria Jenita P, Babuskin S, Karthikeyan S, Sudarshan K, Renuka V, Sukumar M (2018) Extraction and characterization of polysaccharides from tamarind seeds, rice mill residue, okra waste and sugarcane bagasse for its Bio-thermoplastic properties. Carbohyd Poly 186:394–401. https://doi.org/10.1016/J.CARBPOL.2018.01.057

  12. Chen Q, Zheng J, Wen L, Yang C, Zhang L (2019) A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism. Chemosphere 224:509–518. https://doi.org/10.1016/j.chemosphere.2019.02.138

    Article  CAS  Google Scholar 

  13. Choong CE, Lee G, Jang M, Park CM, Ibrahim S (2019) Fabrication of seashell-incorporated polyurethane for sustainable remediation of Fe(II)-contaminated acidic wastewater. J Polym Environ 27(2):309–317. https://doi.org/10.1007/s10924-018-1339-8

    Article  CAS  Google Scholar 

  14. Contreras J, Valdés O, Mirabal-Gallardo Y, de la Torre AF, Navarrete J, Lisperguer J, Durán-Lara EF, Santos LS, Nachtigall FM, Cabrera-Barjas G, Abril D (2020) Development of eco-friendly polyurethane foams based on Lesquerella fendleri (A. Grey) oil-based polyol. Eur Poly J 128:109606. https://doi.org/10.1016/j.eurpolymj.2020.109606

  15. da Rosa Schio R, da Rosa BC, Gonçalves JO, Pinto LAA, Mallmann ES, Dotto GL (2019) Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye. Int J Biol Macromol 121:373–380. https://doi.org/10.1016/j.ijbiomac.2018.09.186

  16. Darmadi D, Irfan M, Iqhramullah M, Marlina Marlina MRL (2018) Synthesis of chitosan modified polyurethane foam for adsorption of mercury (II) ions. J Bahan Alam Terbarukan 7(1):18–27. https://doi.org/10.15294/jbat.v7i1.13614

  17. Das A, Mahanwar P (2020) A brief discussion on advances in polyurethane applications. Adv Ind Eng Poly Res 3(3):93–101. https://doi.org/10.1016/j.aiepr.2020.07.002

    Article  Google Scholar 

  18. Dave VJ, Patel HS (2017) Synthesis and characterization of interpenetrating polymer networks from transesterified castor oil based polyurethane and polystyrene. J Saudi Chem Soc 21(1):18–24. https://doi.org/10.1016/J.JSCS.2013.08.001

    Article  CAS  Google Scholar 

  19. Doley S, Dolui SK (2018) Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties. Eur Polymer J 102:161–168. https://doi.org/10.1016/j.eurpolymj.2018.03.030

    Article  CAS  Google Scholar 

  20. Fang C-H, Liu P-I, Chung L-C, Shao H, Ho C-H, Chen R-S, Fan H-T, Liang T-M, Chang M-C, Horng R-Y (2016) A flexible and hydrophobic polyurethane elastomer used as binder for the activated carbon electrode in capacitive deionization. Desalination 399:34–39. https://doi.org/10.1016/J.DESAL.2016.08.005

    Article  CAS  Google Scholar 

  21. Fang Y, Liu X, Wu X, Tao X, Fei W (2021) Electrospun polyurethane/phytic acid nanofibrous membrane for high efficient removal of heavy metal ions. Environ Technol 42(7):1053–1060. https://doi.org/10.1080/09593330.2019.1652695

    Article  CAS  Google Scholar 

  22. Fernández Rojas M, Pacheco Miranda L, Martinez Ramirez A, Pradilla Quintero K, Bernard F, Einloft S, Carreño Díaz LA (2017) New biocomposites based on castor oil polyurethane foams and ionic liquids for CO2 capture. Fluid Phase Equilib 452:103–112. https://doi.org/10.1016/J.FLUID.2017.08.026

  23. Firdaus FE (2014) Synthesis and characterization of soy-based polyurethane foam with utilization of ethylene glycol in polyol. Makara J Technol 18(1). http://journal.ui.ac.id/technology/journal/article/view/2937

  24. Fitri RA, Wirakusuma A, Fahrina A, Bilad MR, Arahman N (2019) Adsorption performance of low-cost java plum leaves and guava fruits as natural adsorbents for removal of free fatty acids from coconut oil. Int J Eng 32(10):1372–1378. https://doi.org/10.5829/ije.2019.32.10a.06

    Article  Google Scholar 

  25. Gaidukova G, Ivdre A, Fridrihsone A, Verovkins A, Cabulis U, Gaidukovs S (2017) Polyurethane rigid foams obtained from polyols containing bio-based and recycled components and functional additives. Ind Crops Prod 102:133–143. https://doi.org/10.1016/J.INDCROP.2017.03.024

    Article  CAS  Google Scholar 

  26. Gama N, Ferreira A, Barros-Timmons A (2018) Polyurethane foams: past, present, and future. Materials 11(10):1841. https://doi.org/10.3390/ma11101841

    Article  CAS  Google Scholar 

  27. Garces IT, Aslanzadeh S, Boluk Y, Ayranci C (2018) Cellulose nanocrystals (CNC) reinforced shape memory polyurethane ribbons for future biomedical applications and design. J Thermoplast Compos Mater 089270571880633. https://doi.org/10.1177/0892705718806334

  28. Gennen S, Grignard B, Jérôme C, Detrembleur C (2019) CO2 -sourced non-isocyanate poly(Urethane)s with pH-sensitive Imine linkages. Adv Synth Catal 361(2):355–365. https://doi.org/10.1002/adsc.201801230

    Article  CAS  Google Scholar 

  29. Guo A, Demydov D, Zhang W, Petrovic ZS (2002) Polyols and polyurethanes from hydroformylation of soybean oil. J Polym Environ 10(1):49–52. https://doi.org/10.1023/A:1021022123733

    Article  CAS  Google Scholar 

  30. Hadjadj A, Jbara O, Tara A, Gilliot M, Malek F, Maafi EM, Tighzert L (2016) Effects of cellulose fiber content on physical properties of polyurethane based composites. Compos Struct 135:217–223. https://doi.org/10.1016/j.compstruct.2015.09.043

    Article  Google Scholar 

  31. Hussein FB, Abu-Zahra NH (2016) Synthesis, characterization and performance of polyurethane foam nanocomposite for arsenic removal from drinking water. J Water Proc Eng 13:1–5. https://doi.org/10.1016/j.jwpe.2016.07.005

    Article  Google Scholar 

  32. Inderyas A, Bhatti IA, Ashar A, Ashraf M, Ghani A, Yousaf M, Mohsin M, Ahmad M, Rafique S, Masood N, Iqbal M (2020) Synthesis of immobilized ZnO over polyurethane and photocatalytic activity evaluation for the degradation of azo dye under UV and solar light irardiation. Mater Res Express 7(2):025033. https://doi.org/10.1088/2053-1591/ab715f

  33. Iqhrammullah M, Marlina, Hedwig R, Karnadi I, Kurniawan KH, Olaiya NG, Mohamad Haafiz MK, Abdul Khalil HPS, Abdulmadjid SN (2020) Filler-modified castor oil-based polyurethane foam for the removal of aqueous heavy metals detected using laser-induced breakdown spectroscopy (LIBS) technique. Polymers 12(4):903. https://doi.org/10.3390/polym12040903

  34. Iqhrammullah M, Marlina M, Khalil HPSA, Kurniawan KH, Suyanto H, Hedwig R, Karnadi I, Olaiya NG, Abdullah CK, Abdulmadjid SN (2020) Characterization and performance evaluation of cellulose acetate-polyurethane film for lead II ion removal. Polymers 12(6):1317. https://doi.org/10.3390/polym12061317

  35. Iqhrammullah M, Marlina, Nur S (2020) Adsorption behaviour of hazardous dye (methyl orange) on cellulose-acetate polyurethane sheets. IOP Conf Series Mater Sci Eng 845:012035. https://doi.org/10.1088/1757-899X/845/1/012035

  36. Jazi ME, Al-Mohanna T, Aghabozorgi F (2016) Synthesis and applications of isocyanate free polyurethane materials. Global J Sci Front Res B Chem 16(3):1–20. https://pdfs.semanticscholar.org/d887/5723ff1ea02ade527129bd0bace17347fbbc.pdf

  37. Jia J, Yin Y, Liu W, Li X, Wang C (2020) Novel colored polyurethane nanoparticle for recyclable dyeing polyester fabric. J Clean Prod 265:121601. https://doi.org/10.1016/j.jclepro.2020.121601

  38. Jin L, Gao Y, Yin J, Zhang X, He C, Wei Q, Liu X, Liang F, Zhao W, Zhao C (2020) Functionalized polyurethane sponge based on dopamine derivative for facile and instantaneous clean-up of cationic dyes in a large scale. J Hazard Mater 400:123203. https://doi.org/10.1016/j.jhazmat.2020.123203

  39. Khan TA, Nazir M, Khan EA, Riaz U (2015) Multiwalled carbon nanotube–polyurethane (MWCNT/PU) composite adsorbent for safranin T and Pb(II) removal from aqueous solution: batch and fixed-bed studies. J Mol Liq 212:467–479. https://doi.org/10.1016/j.molliq.2015.09.036

    Article  CAS  Google Scholar 

  40. Kim J, Kumar R, Bandodkar AJ, Wang J (2017) Advanced materials for printed wearable electrochemical devices: a review. Adv Electr Mater 3(1):1600260. https://doi.org/10.1002/aelm.201600260

  41. Kumari S, Chauhan GS, Ahn J (2016) Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem Eng J 304:728–736. https://doi.org/10.1016/j.cej.2016.07.008

    Article  CAS  Google Scholar 

  42. Kupeta AJK, Naidoo EB, Ofomaja AE (2018) Kinetics and equilibrium study of 2-nitrophenol adsorption onto polyurethane cross-linked pine cone biomass. J Clean Prod 179:191–209. https://doi.org/10.1016/j.jclepro.2018.01.034

    Article  CAS  Google Scholar 

  43. Lee A, Deng Y (2015) Green polyurethane from lignin and soybean oil through non-isocyanate reactions. Eur Polymer J 63:67–73. https://doi.org/10.1016/j.eurpolymj.2014.11.023

    Article  CAS  Google Scholar 

  44. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3(2):275–290. https://doi.org/10.1016/j.biori.2019.09.001

    Article  Google Scholar 

  45. Li G, Chai K, Zhou L, Tong Z, Ji H (2019) Easy fabrication of aromatic-rich cellulose-urethane polymer for preferential adsorption of acetophenone over 1-phenylethanol. Carbohyd Polym 206:716–725. https://doi.org/10.1016/j.carbpol.2018.11.057

    Article  CAS  Google Scholar 

  46. Li J, Gong J-L, Zeng G-M, Zhang P, Song B, Cao W-C, Liu H-Y, Huan S-Y (2018) Zirconium-based metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges. J Colloid Interface Sci 527:267–279. https://doi.org/10.1016/j.jcis.2018.05.028

    Article  CAS  Google Scholar 

  47. Liu Q, Zhou Y, Lu J, Zhou Y (2020) Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review. Chemosphere 241:125043. https://doi.org/10.1016/j.chemosphere.2019.125043

  48. Liu T, Sun S, Zhou L, Li P, Su Z, Wei G (2019) Polyurethane-supported graphene oxide foam functionalized with carbon dots and TiO2 particles for photocatalytic degradation of dyes. Appl Sci 9(2):293. https://doi.org/10.3390/app9020293

  49. Lubis S, Maulana I, Masyithah (2018) Synthesis and characterization of TiO2/α-Fe2O3 composite using hematite from iron sand for photodegradation removal of dye. J Natural 18(1):38–43. https://doi.org/10.24815/jn.v18i1.8649

  50. Mahmood A, Shi G, Wang Z, Rao Z, Xiao W, Xie X, Sun J (2021) Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: An experimental and DFT studies of adsorption and electronic structure of the interface. J Hazard Mater 401:123402. https://doi.org/10.1016/j.jhazmat.2020.123402

  51. Majul L, Wirth S, Levin L (2020) High dye removal capacity of Peniophora laxitexta immobilized in a combined support based on polyurethane foam and lignocellulosic substrates. Environ Technol 1–12. https://doi.org/10.1080/09593330.2020.1801851

  52. Mallakpour S, Behranvand V (2021) Polyurethane sponge modified by alginate and activated carbon with abilities of oil absorption, and selective cationic and anionic dyes clean-up. J Clean Prod 312:127513. https://doi.org/10.1016/j.jclepro.2021.127513

  53. Manabe S, Adavan Kiliyankil V, Takiguchi S, Kumashiro T, Fugetsu B, Sakata I (2021) Graphene nanosheets homogeneously incorporated in polyurethane sponge for the elimination of water-soluble organic dyes. J Colloid Interface Sci 584:816–826. https://doi.org/10.1016/j.jcis.2020.10.012

  54. Marlina M, Iqhrammullah M, Darmadi, Mustafa I, Rahmi M (2019) The application of chitosan modified polyurethane foam adsorbent. RASĀYAN J Chem 12(2):494–501. https://doi.org/10.31788/RJC.2019.1225080

  55. Marlina M, Iqhrammullah M, Saleha S, Fathurrahmi, Maulina FP, Idroes R (2020) Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH3–N removal. Heliyon 6(8):e04590. https://doi.org/10.1016/j.heliyon.2020.e04590

  56. Mohammadi A, Lakouraj MM, Barikani M (2014) Preparation and characterization of p-tert-butyl thiacalix[4]arene imbedded flexible polyurethane foam: an efficient novel cationic dye adsorbent. React Funct Polym 83:14–23. https://doi.org/10.1016/j.reactfunctpolym.2014.07.003

    Article  CAS  Google Scholar 

  57. Mohammadi Y, Faghihi K (2020) A new magnetic β-cyclodextrin polyurethane nanocomposite for the removal of organic pollutants in wastewater. Iran Polym J 29(10):933–942. https://doi.org/10.1007/s13726-020-00852-2

    Article  CAS  Google Scholar 

  58. Mohammadpour R, Mir Mohamad Sadeghi G (2020) Effect of liquefied lignin content on synthesis of bio-based polyurethane foam for oil adsorption application. J Poly Environ 28(3):892–905. https://doi.org/10.1007/s10924-019-01650-5

  59. Nasiri S, Alizadeh N (2019) Synthesis and adsorption behavior of hydroxypropyl-β-cyclodextrin–polyurethane magnetic nanoconjugates for crystal and methyl violet dyes removal from aqueous solutions. RSC Adv 9(42):24603–24616. https://doi.org/10.1039/C9RA03335A

    Article  CAS  Google Scholar 

  60. Nikkhah AA, Zilouei H, Asadinezhad A, Keshavarz A (2015) Removal of oil from water using polyurethane foam modified with nanoclay. Chem Eng J 262:278–285. https://doi.org/10.1016/j.cej.2014.09.077

    Article  CAS  Google Scholar 

  61. Panda SS, Panda BP, Nayak SK, Mohanty S (2018) A review on waterborne thermosetting polyurethane coatings based on castor oil: synthesis, characterization, and application. Polym Plast Technol Eng 57(6):500–522. https://doi.org/10.1080/03602559.2016.1275681

    Article  CAS  Google Scholar 

  62. Pantone V, Annese C, Fusco C, Fini P, Nacci A, Russo A, D’Accolti L (2017) One-pot conversion of epoxidized soybean oil (ESO) into soy-based polyurethanes by MoCl2O2 catalysis. Molecules 22(2):333. https://doi.org/10.3390/molecules22020333

  63. Patil CK, Jirimali HD, Paradeshi JS, Chaudhari BL, Alagi PK, Hong SC, Gite VV (2018) Synthesis of biobased polyols using algae oil for multifunctional polyurethane coatings. Green Mater 6(4):165–177. https://doi.org/10.1680/jgrma.18.00046

    Article  Google Scholar 

  64. Pillai PKS, Li S, Bouzidi L, Narine SS (2018) Polyurethane foams from chlorinated and non-chlorinated metathesis modified canola oil polyols. J Appl Polym Sci 135(33):46616. https://doi.org/10.1002/app.46616

  65. Purwanto E, Riadi L, Tamara NI, Mellisha Ika K (2014) The optimization of ozonolysis reaction for synthesis of biopolyol from used palm cooking oil. ASEAN J Chem Eng 14(1):1–12

    Google Scholar 

  66. Rabello LG, da Conceição C, Ribeiro R (2021) A novel vermiculite/vegetable polyurethane resin-composite for thermal insulation eco-brick production. Compos B Eng 221:109035. https://doi.org/10.1016/j.compositesb.2021.109035

  67. Rahmi R, Iqhrammullah M, Audina U, Husin H, Fathana H (2021) Adsorptive removal of Cd (II) using oil palm empty fruit bunch-based charcoal/chitosan-EDTA film composite. Sustain Chem Phar 21:100449. https://doi.org/10.1016/j.scp.2021.100449

  68. Rahmi R, Lubis S, Az-Zahra N, Puspita K, Iqhrammullah M (2021) Synergetic photocatalytic and adsorptive removals of metanil yellow using TiO2/grass-derived cellulose/chitosan (TiO2/GC/CH) film composite. Int J Eng 34(8):1827–1836. https://doi.org/10.5829/ije.2021.34.08b.03

  69. Rajput KN, Patel KC, Trivedi UB (2016) β -cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile microbacterium terrae KNR 9 using different starch substrates. Biotechnol Res Int 2016:1–7. https://doi.org/10.1155/2016/2034359

    Article  CAS  Google Scholar 

  70. Ranote S, Kumar D, Kumari S, Kumar R, Chauhan GS, Joshi V (2019) Green synthesis of Moringa oleifera gum-based bifunctional polyurethane foam braced with ash for rapid and efficient dye removal. Chem Eng J 361:1586–1596. https://doi.org/10.1016/j.cej.2018.10.194

    Article  CAS  Google Scholar 

  71. Riaz T, Ahmad A, Saleemi S, Adrees M, Jamshed F, Hai AM, Jamil T (2016) Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal. Carbohyd Polym 153:582–591. https://doi.org/10.1016/j.carbpol.2016.08.011

    Article  CAS  Google Scholar 

  72. Savelyev Y, Rudenko A, Robota L, Koval E, Savelyeva O, Markovskaya L, Veselov V (2009) Novel polymer materials for protecting crew and structural elements of orbital station against microorganisms attack throughout long-term operation. Acta Astronaut 64(1):36–40. https://doi.org/10.1016/j.actaastro.2008.06.013

    Article  CAS  Google Scholar 

  73. Selvasembian R, Gwenzi W, Chaukura N, Mthembu S (2021) Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants. J Hazard Mater 417:125960. https://doi.org/10.1016/j.jhazmat.2021.125960

  74. Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133. https://doi.org/10.1016/j.fbr.2016.06.003

    Article  Google Scholar 

  75. Senthivelan T, Kanagaraj J, Panda RC (2016) Recent trends in fungal laccase for various industrial applications: an eco-friendly approach-a review. Biotechnol Bioprocess Eng 21(1):19–38. https://doi.org/10.1007/s12257-015-0278-7

    Article  CAS  Google Scholar 

  76. Seto C, Chang BP, Tzoganakis C, Mekonnen TH (2021) Lignin derived nano-biocarbon and its deposition on polyurethane foam for wastewater dye adsorption. Int J Biol Macromol 185:629–643. https://doi.org/10.1016/j.ijbiomac.2021.06.185

    Article  CAS  Google Scholar 

  77. Sharmin E, Zafar F (2012) Polyurethane: An Introduction. In: Zafar, F., Sharmin, E., editors. Polyurethane [Internet]. London: IntechOpen; 2012 [cited 2022 Mar 18]. https://www.intechopen.com/chapters/38589/10.5772/51663

  78. Silva RGC, Ferreira TF, Borges ÉR (2020) Identification of potential technologies for 1, 4-Butanediol production using prospecting methodology. J Chem Technol Biotechnol 95(12):3057–3070. https://doi.org/10.1002/jctb.6518

    Article  CAS  Google Scholar 

  79. Suhas, Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Biores Technol 216:1066–1076. https://doi.org/10.1016/j.biortech.2016.05.106

  80. Sui S, Quan H, Hu Y, Hou M, Guo S (2021) A strategy of heterogeneous polyurethane-based sponge for water purification: Combination of superhydrophobicity and photocatalysis to conduct oil/water separation and dyes degradation. J Colloid Interface Sci 589:275–285. https://doi.org/10.1016/j.jcis.2020.12.122

    Article  CAS  Google Scholar 

  81. Szycher M (2013) Szycher’s handbook of polyurethanes 2nd ed.

    Google Scholar 

  82. Tai NL, Adhikari R, Shanks R, Halley P, Adhikari B (2018) Flexible starch-polyurethane films: effect of mixed macrodiol polyurethane ionomers on physicochemical characteristics and hydrophobicity. Carbohyd Polym 197:312–325. https://doi.org/10.1016/j.carbpol.2018.06.019

    Article  CAS  Google Scholar 

  83. Wong YC, Tan YP, Taufiq YH, Ramli I, Tee HS (2015) Biodiesel production via transesterification of palm oil by using CaO–CeO2 mixed oxide catalysts. Fuel 162:288–293. https://doi.org/10.1016/j.fuel.2015.09.012

  84. Yamamoto K, Shiono T, Yoshimura R, Matsui Y, Yoneda M (2018) Influence of hydrophilicity on adsorption of caffeine onto montmorillonite. Adsorpt Sci Technol 36(3–4):967–981. https://doi.org/10.1177/0263617417735480

    Article  CAS  Google Scholar 

  85. Yue H, Zhao Y, Ma X, Gong J (2012) Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 41(11):4218. https://doi.org/10.1039/c2cs15359a

    Article  CAS  Google Scholar 

  86. Zhang Z, Jiang H, Li R, Gao S, Wang Q, Wang G, Ouyang X, Wei H (2021) High-damping polyurethane/hollow glass microspheres sound insulation materials: preparation and characterization. J Appl Polym Sci 138(10):49970. https://doi.org/10.1002/app.49970

  87. Zhao J, Xu L, Su Y, Yu H, Liu H, Qian S, Zheng W, Zhao Y (2021) Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. J Environ Sci 101:177–188. https://doi.org/10.1016/j.jes.2020.08.021

    Article  CAS  Google Scholar 

  88. Zou C, Zhang H, Qiao L, Wang X, Wang F (2020) Near neutral waterborne cationic polyurethane from CO2 -polyol, a compatible binder to aqueous conducting polyaniline for eco-friendly anti-corrosion purposes. Green Chem 22(22):7823–7831. https://doi.org/10.1039/D0GC02592E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to honor the passing of Prof. Ir. Marlina, M.Si from the Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia. She had made a significant contribution in the preparation of this chapter. The first author wishes to thank his mother, sister, and friends (Rayyan, Naufal, Rini, Nenden, Nanas, Nizam, Andhika, Iqbal, Valdi, and others) for the support during the making of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Iqhrammullah or Syahrun Nur Abdulmadjid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqhrammullah, M., Rahmi, Suyanto, H., Puspita, K., Fathana, H., Abdulmadjid, S.N. (2022). Versatile Fabrication and Use of Polyurethane in Textile Wastewater Dye Removal via Adsorption and Degradation. In: Khadir, A., Muthu, S.S. (eds) Polymer Technology in Dye-containing Wastewater. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-19-1516-1_7

Download citation

Publish with us

Policies and ethics