Skip to main content

Computational Fluid Dynamics Applications in Cardiovascular Medicine—from Medical Image-Based Modeling to Simulation: Numerical Analysis of Blood Flow in Abdominal Aorta

  • Chapter
  • First Online:
Advances in Fluid Mechanics

Abstract

Computational Fluid Dynamics (CFD) is a non-invasive in silico technique that can be used for characterizing the blood flow in the cardiovascular system under physiological or pathological conditions with potential applications in the clinical decision-making, therapy planning and strategies or medical device design and optimization. The aim of this chapter is to present a brief review regarding the medical image-based segmentation capabilities, CFD solvers and the main directions of CFD in hemodynamics together with an example starting from a patient-specific abdominal aorta and its branches modeling to blood flow simulation. A 3D model was reconstructed based on Computed Tomography Angiography images using a segmentation open source software (ITK-Snap 3.6.0). Two different software environments were used comparatively for numerical analysis: a commercial package (Ansys Fluent 19.2) and an open source cardiovascular modeling package (SimVascular). The main hemodynamic parameters were assessed, showing that both numerical simulations predict the presence of the complex flow patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor, C.A., Figueroa, C.A.: Patient-specific modeling of the cardiovascular mechanics. Annu Rev Biome Eng. 11, 109–134 (2009). https://doi.org/10.1146/annurev.bioeng.10.061807.160521

    Article  Google Scholar 

  2. Randles, A., Frakes, D.H., Leopold, J.A.: Computational fluid dynamics and additive manufacturing to diagnose and treat cardiovascular disease. Trends Biotechnol. 35(11), 1049–1061 (2017). https://doi.org/10.1016/j.tibtech.2017.08.008

    Article  Google Scholar 

  3. Polanczyk, A., Klinger, M., Nanobachvili, J., Huk, I., Neumayer, C.: Artificial circulatory model for analysis of human and artificial vessels. Appl. Sci. 8(7), 1017 (2018). https://doi.org/10.3390/app8071017

    Article  Google Scholar 

  4. Polanczyk, A., Podgorski, M., Polanczyk, M., Piechota-Polanczyk, A., Neumayer, C., Stefanczyk, L.: A novel patient-specific Human Cardiovascular System Phantom (HCSP) for reconstructions of pulsatile blood hemodynamic inside abdominal aortic aneurysm. IEEE Access 6, 61896–61903 (2018). https://doi.org/10.1109/ACCESS.2018.2876377

    Article  Google Scholar 

  5. Gray, R.A., Pathmanathan, P.: Patient-specific cardiovascular computational modeling: diversity of personalization and challenges. J. Cardiovasc. Transl. Res. 11, 80–88 (2018). https://doi.org/10.1007/s12265-018-9792-2

    Article  Google Scholar 

  6. Bluestein, D.: Utilizing computational fluid dynamics in cardiovascular engineering and medicine – what you need to know: its translation to the clinic/bedside. Artif. Organs. 41(2), 117–121. https://doi.org/10.1111/aor.12914

  7. Lan, H., Updegrove, A., Wilson, N.M., Maher, G.D., Shadden, S.C., Marsden, A.L.: A re-engineered software interface and workflow for the open-source SimVasccular cardiovascular modeling package. J Biomech. Eng. 140(2), 0245011–02450111 (2018). https://doi.org/10.1115/1.4038751

    Article  Google Scholar 

  8. Douglas, P.S., Pontone, G., Hlatky, M.A., Patel, M.R., Norgaard, B.L., Byrne, R.A., Curzen, N., Purcell, I., Gutberlet, M., Rioufol, G., Hink, U., Schuchlenz, H.W., Feuchtner, G., Gilard, M., Andreini, D., Jensen, J.M., Hadamitzky, M., Chiswell, K., Cyr, D., Wilk, A., Wang, F., Rogers, C., De Bruyne, B.: Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies versus usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRCT: outcome and resource impacts study. Eur. Heart J. 36(47), 3359–3367. https://doi.org/10.1093/eurheartj/ehv444

  9. FDA.: Reporting of Computational Modeling Studies in Medical Devices Submission, Guidance for Industry and Food and Drug Administration Staff (2016)

    Google Scholar 

  10. Vannier, M.W., Marsh, J.L.: Three-dimensional imaging, surgical planning, and image-guided therapy. Radiol. Clin. North Am. 34(3), 545–563 (1996)

    Google Scholar 

  11. Spicer, S.A., Taylor, C.A.: Simulation-based medical planning for cardiovascular disease: visualization system foundations. Comput. Aided Surg. 5(2), 82–89 (2000). https://doi.org/10.1002/1097-0150(2000)5:2%3c82::AID-IGS2%3e3.0.CO;2-5

    Article  Google Scholar 

  12. Milner, J.S., Moore, J.A., Rutt, B.K., Steinman, D.A.: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28(1), 143–156 (1998). https://doi.org/10.1016/s0741-5214(98)70210-1

    Article  Google Scholar 

  13. Doost, S.N., Ghista, D., Su, B., Zhong, L., Morsi, Y.S.: Heart blood flow simulation: a perspective review. BioMed. Eng. Online 15, 101 (2016). https://doi.org/10.1186/s12938-016-0224-8

    Article  Google Scholar 

  14. Mittal, R., Seo, J.H., Vedula, V., Choi, Y.J., Liu, H., Huang, H.H., Jain, S., Younes, L., Abraham, T., George, R.T.: Computational modeling of cardiac hemodynamics: current status and future outlook. J. Comput. Phys. 305, 1065–1082 (2016). https://doi.org/10.1016/j.jcp.2015.11.022

    Article  MathSciNet  MATH  Google Scholar 

  15. Caballero, A.D., Lain, S.: A review on computational fluid dynamics modelling in human thoracic aorta. Cardiovasc. Eng. Technol. 4, 103–130 (2013). https://doi.org/10.1007/s13239-013-0146-6

    Article  Google Scholar 

  16. Wong, K.K.L., Wang, D., Ko, J.K.L., Mazumdar, J., Le, T.-T., Ghista, D.: Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures. BioMed. Eng. Online 16(1), 35 (2017). https://doi.org/10.1186/s12938-017-0326-y

    Article  Google Scholar 

  17. Loscalzo, J.: Harrison’s Cardiovascular Medicine. McGraw-Hill Medical, New York (2010)

    Google Scholar 

  18. Koskinas, K.C., Chatzizisis, Y.S., Antoniadis, A.P., Giannoglou, G.D.: Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J. Am. Coll. Cardiol. 59(15), 1337–1349 (2012). https://doi.org/10.1016/j.jacc.2011.10.903

    Article  Google Scholar 

  19. Morris, P.D., Narracott, A., von Tengg-Kobligk, H., Silva Soto, D.A., Hsiao, S., Lungu, A., Evans, P., Bressloff, N.W., Lawford, P.V., Hose, D.R., Gunn, J.P.: Computational fluid dynamics modelling in cardiovascular medicine. Heart 102(1), 18–28 (2016). https://doi.org/10.1136/heartjnl-2015-308044

    Article  Google Scholar 

  20. Kikinis, R., Pieper, S.D., Vosburgh, K.G.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz, F. (ed.) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY (2014). https://doi.org/10.1007/978-1-4614-7657-3_19

  21. Clark, D., Badea, A., Liu, Y., Johnson, G.A., Badea, C.T.: Registration-based segmentation of murine 4D cardiac micro-CT data using symmetric normalization. Phys. Med. Biol. 57(19), 6125–6145 (2012). https://doi.org/10.1088/0031-9155/57/19/6125

    Article  Google Scholar 

  22. Khlebnikov, R., Figueroa, C.A.: CRIMSON: towards a software environmentfor patient-specific blood flow simulationfor diagnosis and treatment. In: Oyarzun Laura, C. et al. (ed.) Clinical Image-Based Procedures. Translational Research in Medical Imaging. CLIP 2015. Lecture Notes in Computer Science, vol. 9401. Springer, Cham. (2015). https://doi.org/10.1007/978-3-319-31808-0_2

  23. Amorim, P., Moraes, T., Silva, J., Pedrini, H.: InVesalius: an interactive rendering framework for health care support. In: Bebis, G. et al. (ed.) Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science, vol. 9474, pp. 45–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27857-5_5

  24. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  Google Scholar 

  25. Huellebrand, M., Messroghli, D., Tautz, L., Kuehne, T., Hennemuth, A.: An extensible software platform for interdisciplinary cardiovascular imaging research. Comput. Methods Programs Biomed. 184, 105277 (2020). https://doi.org/10.1016/j.cmpb.2019.105277

  26. Liu, X., Gao, Z., Xiong, H., Ghista, D., Ren, L., Zhang, H., Wu, W., Huang, W., Hau, W.K.: Three-dimensional hemodynamics analysis of the circle of Willis in the patient-specific nonintegral arterial structures. Biomech. Model Mechanobiol. 15, 1439–1456 (2016). https://doi.org/10.1007/s10237-016-0773-6

    Article  Google Scholar 

  27. Stein, D., Fritzsche, K.H., Nolden, M., Meinzer, H.P., Wolf, I.: The extensible open-source rigid and affine image registration module of the Medical Imaging Interaction Toolkit (MITK). Comput. Methods Programs Biomed. 100(1), 79–86 (2010). https://doi.org/10.1016/j.cmpb.2010.02.008

    Article  Google Scholar 

  28. Real3d VolViCon User Manual. https://real3d.pk/volvicon/assets/files/Real3d_VolViCon_Help.pdf. Accessed 02 Feb. 2021

  29. Lopez-Perez, A., Sebastian, R., Izquierdo, M., Ruiz, R., Bishop, M., Ferrero, J.M.: Personalized cardiac computational models: from clinical data to simulation of infarct-related ventricular tachycardia. Front. Physiol. 10, 580 (2019). https://doi.org/10.3389/fphys.2019.00580

    Article  Google Scholar 

  30. Rezaeimoghaddam, M., Oguz, G.N., Ates, M.S., Bozkaya, T.A., Piskin, S., Lashkarinia, S.S., Tenekecioglu, E., Karagoz, H., Pekkan, K.: Patient-specific hemodynamics of new coronary artery bypass configurations. Cardiovasc. Eng. Technol. 11(6), 663–678 (2020). https://doi.org/10.1007/s13239-020-00493-9

    Article  Google Scholar 

  31. Updegrove, A., Wilson, N.M., Merkow, J., Lan, H., Marsden, A.L., Shadden, S.C.: SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45(3), 525–541 (2017). https://doi.org/10.1007/s10439-016-1762-8

    Article  Google Scholar 

  32. Sommer, K.N., Shepard, L.M., Mitsouras, D., Iyer, V., Angel, E., Wilson, M.F., Rybicki, F.J., Kumamaru, K.K., Sharma, U.C., Reddy, A., Fujimoto, S., Ionita, C.N.: Patient-specific 3D-printed coronary models based on coronary computed tomography angiography volumes to investigate flow conditions in coronary artery disease. Biomed. Phys. Eng. Express 6(4), 045007 (2020). https://doi.org/10.1088/2057-1976/a93f6e

  33. O’Hara, R.P., Chand, A., Vidiyala, S., Arechavala, S.M., Mitsouras, D., Rudin, S., Ionita, C.N.: Advanced 3D mesh manipulation in stereolithographic files and post-print processing for the manufacturing of patient-specific vascular flow phantoms. Proc. SPIE Int. Soc. Opt. Eng. 9789, 978909 (2016). https://doi.org/10.1117/12.2217036

  34. Brewis, I., Mclaughlin, J.A.: Improved visualisation of patient-specific heart structure using three-dimensional printing coupled with image-processing techniques inspired by astrophysical methods. J. Med. Imaging Health Inform. 9(2), 267–273 (2019). https://doi.org/10.1166/jmihi.2019.2644

    Article  Google Scholar 

  35. Narata, A.P., de Moura, F.S., Patat, F., Marzo, A., Larrabide, I., Gregoire, J.-M., Perrault, C., Sennoga, C.A., Bouakaz, A.: A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models. AIP Adv. 10, 045106 (2020). https://doi.org/10.1063/1.5141350

  36. Modi, Y.K., Sanadhya, S.: Design and additive manufacturing of patient-specific cranial and pelvic bone implants from computed tomography data. J. Braz. Soc. Mech. Sci. Eng. 40(10), 503 (2018). https://doi.org/10.1007/s40430-018-1425-9

    Article  Google Scholar 

  37. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Sixth Eurographics Italian Chapter Conference, pp. 129–136 (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

  38. Subramaniam, D.R., Stoddard, W.A., Mortensen, K.H., Ringgaard, S., Trolle, C., Gravholt, C.H., Gutmark, E.J., Mylavarapu, G., Backeljauw, P.F., Gutmark-Little, I.: Continuous measurement of aortic dimensions in Turner syndrome: a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 19(1), 20 (2017). https://doi.org/10.1186/s12968-017-0336-8

    Article  Google Scholar 

  39. Ajam, A., Aziz, A.A., Asirvadam, V.S., Muda, A.S., Faye, I., Gardezi, S.J.S.: A review on segmentation and modeling of cerebral vasculature for surgical planning. IEEE Access 5, 15222–15240 (2017). https://doi.org/10.1109/ACCESS.2017.2718590

    Article  Google Scholar 

  40. Tian, Y., Chen, Q., Wang, W., Peng, Y., Wang, Q., Duan, F., Wu, Z.: A vessel active contour model for vascular segmentation. Biomed. Res. Int. 6, 106490 (2014). https://doi.org/10.1155/2014/106490

  41. Steinman, D.A.: Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann Biomed Eng. 30(4), 483–497 (2002). https://doi.org/10.1114/1.1467679

    Article  Google Scholar 

  42. Hazer, D., Unterhinninghofen, R., Kostrzewa, M., Kauczor, H.U., Dillmann, R., Richter, G.M.: A workflow for computational fluid dynamics simulations using patient-specific aortic models. In: Conference Proceedings—24th CADFEM Users’ Meeting 2006—International Congress on FEM Technology with 2006 German ANSYS Conference (2006). https://www.researchgate.net/publication/242205379_A_Workflow_for_Computational_Fluid_Dynamics_Simulations_using_Patient-Specific_Aortic_Models

  43. Berg, P., Voß, S., Saalfeld, S., et al.: Multiple aneurysms AnaTomy CHallenge 2018 (MATCH): phase I: segmentation. Cardiovasc. Eng. Tech. 9, 565–581 (2018). https://doi.org/10.1007/s13239-018-00376-0

    Article  Google Scholar 

  44. Zhu, Y., Chen, R., Juan, Y.-H., Li, H., Wang, J., Yu, Z., Liu, H.: Clinical validation and assessment of aortic hemodynamics using computational fluid dynamics simulations from computed tomography angiography. BioMed. Eng. OnLine 17, 53 (2018). https://doi.org/10.1186/s12938-018-0485-5

    Article  Google Scholar 

  45. Schirmer, C.M., Malek, A.M.: Estimation of wall shear stress dynamic fluctuations in intracranial atherosclerotic lesions using computational fluid dynamics. Neurosurgery 63(2), 326–334; discussion 334–335 (2008). https://doi.org/10.1227/01.NEU.0000313119.73941.9E

  46. Schirmer, C.M., Malek, A.M.: Computational fluid dynamic characterization of carotid bifurcation stenosis in patient-based geometries. Brain Behav. 2(1), 42–52 (2012). https://doi.org/10.1002/br89.25

    Article  Google Scholar 

  47. Alnaes, M.S., Isaksen, J., Mardal, K.A., Romner, B., Morgan, M.K., Ingebrigtsen, T.: Computation of hemodynamics in the circle of Willis. Stroke 38(9), 2500–2505 (2007)

    Article  Google Scholar 

  48. Lee, U.Y., Chung, G.H., Jung, J., Kwak, H.S.: Size-dependent distribution of patient-specific hemodynamic factors in unruptured cerebral aneurysms using computational fluid dynamics. Diagnostics 10(2), 64 (2020). https://doi.org/10.3390/diagnostics10020064

    Article  Google Scholar 

  49. Numata, S., Itatani, K., Kanda, K., Doi, K., Yamazaki, S., Morimoto, K., Manabe, K., Ikemoto, K., Yaku, H.: Blood flow analysis of the aortic arch using computational fluid dynamics. Eur. J. Cardiothorac. Surg. 49(6), 1578–1585 (2016). https://doi.org/10.1093/ejcts/ezv459

  50. Polanczyk, A., Piechota-Polanczyk, A., Domenig, C., Nanobachvili, J., Huk, I., Neumayer, C.: Computational fluid dynamic accuracy in mimicking changes in blood hemodynamics in patients with AcuteType IIIb aortic dissection treated with TEVAR. Appl. Sci. 8(8), 1309 (2018). https://doi.org/10.3390/app8081309

    Article  Google Scholar 

  51. Singh-Gryzbon, S., Ncho, B., Sadri, V., Bhat, S.S., Kollapaneni, S.S., Balakumar, D., Wei, Z.A., Ruile, P., Neumann, F.-J., Blanke, P., Yoganathan, A.P.: Influence of patient-specific characteristics on transcatheter heart valve neo-sinus flow: an in silico study. Ann. Biomed. Eng. 48(10), 2400–2411 (2020). https://doi.org/10.1007/s10439-020-02532-x

    Article  Google Scholar 

  52. Ghodrati, M., Maurer, A., Schloglhofer, T., Khienwad, T., Zimpfer, D., Beitzke, D., Zonta, F., Moscato, F., Schima, H., Aigner, P.: The influence of left ventricular assist device inflow cannula position on thrombosis risk. Artif. Organs. 44(9), 939–946 (2020). https://doi.org/10.1111/aor.13705

    Article  Google Scholar 

  53. Courchaine, K., Rugonyi, S.: Quantifying blood flow dynamics during cardiac development: demystifying computational methods. Phil. Trans. R. Soc. B. Biol. Sci. 373(1759), 2017033 (2018). https://doi.org/10.1098/rstb.2017.0330

  54. Polanczyk, A., Podyma, M., Stefanczyk, L., Szubert, W., Zbicinski, I.: A 3D model of thrombus formation in a stent-graft after implantation in the abdominal aorta. J. Biomech. 48(3), 425–431 (2018). https://doi.org/10.1016/j.jbiomech.2014.12.033

    Article  Google Scholar 

  55. Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D.: Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J. Biomech. 37(5), 709–720 (2004). https://doi.org/10.1016/j.jbiomech.2003.09.016

    Article  Google Scholar 

  56. Skiadopoulos, A., Neofytou, P., Housiadas, C.: Comparison of blood rheological models in patient specific cardiovascular system simulations. J. Hydrodyn. 29(2), 293–304 (2017). https://doi.org/10.1016/S1001-6058(16)60739-4

    Article  Google Scholar 

  57. Caballero, A.D., Lain, S.: Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput. Methods Biomech. Biomed. Eng. 18(11), 1200–1216 (2015). https://doi.org/10.1080/10255842.2014.887698

    Article  Google Scholar 

  58. Lin, S., Han, X., Bi, Y., Ju, S., Gu, L.: Fluid-structure interaction in abdominal aortic aneurysm: effect of modeling techniques. Biomed. Res. Int. 2017, 7023078 (2017). https://doi.org/10.1155/2017/7023078

    Article  Google Scholar 

  59. Luraghi, G., Wu, W., De Gaetano, F., Matas, J.F.R., Moggridge, G.D., Serrani, M., Stasiak, J., Constantino, M.L., Migliavacca, F.: Evaluation of an aortic valve prosthesis: fluid-structure interaction orstructural simulation? J. Biomech. 58, 45–51 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.004

    Article  Google Scholar 

  60. Chiastra, C., Migliavacca, F., Martinez, M.A., Malve, M.: On the necessity of modelling fluid-structure interaction for stented coronary arteries. J. Mech. Behav. Biomed. Mater. 34, 217–230 (2014)

    Article  Google Scholar 

  61. Mao, W., Li, K., Sun, W.: Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 7(4), 374–388 (2016). https://doi.org/10.1007/s13239-016-0285-7

    Article  Google Scholar 

  62. https://www.3ds.com/. Accessed 29 Jan. 2021

  63. Dennis, K.D., Kallmes, D.F., Dragomir-Daescu, D.: Cerebral aneurysm blood flow simulations are sensitive to basic solver settings. J. Biomech. 57, 46–53 (2017). https://doi.org/10.1016/j.jbiomech.2017.03.020

    Article  Google Scholar 

  64. https://www.ansys.com/products/fluids/ansys-fluent. Accessed 29 Jan. 2021

  65. Antiga, L., Piccineli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11), 1097–1112 (2008). https://doi.org/10.1007/s11517-008-0420-1

    Article  Google Scholar 

  66. https://www.ansys.com/products/fluids/ansys-cfx. Accessed 29 Jan. 2021

  67. http://www.crimson.software/. Accessed 29 Jan. 2021

  68. Shin, E., Kim, J.J., Lee, S., Ko, K.S., Rhee, B.D., Han, J., Kim, N.: Hemodynamics in diabetic human aorta using computational fluid dynamics. PLoS ONE 13(8), e0202671 (2018). https://doi.org/10.1371/journal.pone.0202671

  69. https://www.comsol.com/. Accessed 29 Jan. 2021

  70. Bayraktar, E., Mierka, O., Turek, S.: Benchmark computations of 3D laminar flow around a cylinder with CFX, OpenFOAM and FeatFlow. Int. J. Comput. Sci. Eng. 7(3), 253–266 (2012). https://doi.org/10.1504/IJCSE.2012.048245

    Article  Google Scholar 

  71. http://www.featflow.de/. Accessed 29 Jan. 2021

  72. Ateshian, G.A., Shim, J.J., Maas, S.A., Weiss, J.A.: Finite element framework for computational fluid dynamics in FEBIO. J. Biomech. Eng. 140(2), 0210011–02100117 (2018). https://doi.org/10.1115/1.4038716

    Article  Google Scholar 

  73. https://febio.org/. Accessed 29 Jan. 2021

  74. Groen, D., Hetherington, J., Carver, H.B., Nash, R.W., Bernabeu, M.O., Coveney, P.V.: Analysing and modelling the performance of the HemeLB lattice-Boltzmann simulation environment. J. Comput. Sci. 4(5), 412–422 (2013). https://doi.org/10.1016/j.jocs.2013.03.002

    Article  Google Scholar 

  75. http://www.2020science.net/software/hemelb.html. Accessed 29 Jan. 2021

  76. https://www.openfoam.com/. Accessed 29 Jan. 2021

  77. http://simvascular.github.io/. Accessed 29 Jan. 2021

  78. Ouared, R., Larrabide, I., Brina, O., Bouillot, P., Erceg, G., Yilmaz, H., Lovblad, K.-O., Pereira, V.M.: Computational fluid dynamics analysis of flow reduction induced by flow-diverting stents in intracranial aneurysms: a patient-unspecific hemodynamics change perspective. J. Neurointerv. Surg. 8(12), 1288–1293 (2016). https://doi.org/10.1136/neurintsurg-2015-012154

    Article  Google Scholar 

  79. Tesche, C., Gray, H.N.: Machine learning and deep neural networks applications in coronary flow assessment: the case of computed tomography fractional flow reserve. J. Thorac. Imaging 35(1), S66–S71 (2020). https://doi.org/10.1097/RTI.0000000000000483

    Article  Google Scholar 

  80. Canchi, T., Kumar, S.D., Ng, E.Y.K., Narayanan, S.: A review of computational methods to predict the risk of rupture of abdominal aortic aneurysms. Biomed. Res. Int. 2015, 861627 (2015). https://doi.org/10.1155/2015/861627

  81. Li, G., Wang, H., Zhang, M., Tupin, S., Qiao, A., Liu, Y., Ohta, M., Anzai, H.: Prediction of 3D cardiovascular hemodynamics before and after coronary artery bypass surgery via deep leasrning. Commun. Biol. 4(1), 99 (2021). https://doi.org/10.1038/s42003-020-01638-1

    Article  Google Scholar 

  82. Sankaran, S., Grady, L., Taylor, C.A.: Impact of geometric uncertainty on hemodynamic simulations using machine learning. Comput. Methods Appl. Mech. Eng. 297, 167–190 (2015). https://doi.org/10.1016/j.cma.2015.08.014

    Article  MathSciNet  MATH  Google Scholar 

  83. Eslami, P., Hartman, E.M.J., Albaghadai, M., Karady, J., Jin, Z., Thondapu, V., Cefalo, N.V., Lu, M.T., Coskun, A., Stone, P.H., Marsden, A., Hoffmann, U., Wentzel, J.J.: Validation of wall shear stress assessment in non-invasive coronary CTA versus invasive imaging: a patient-specific computational study. Ann. Biomed. Eng. (2020). https://doi.org/10.1007/s10439-020-02631-9

    Article  Google Scholar 

  84. Gundert, T.J., Marsden, A.L., Yang, W., LaDisa, J.F., Jr.: Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng. 134(1), 011002 (2012). https://doi.org/10.1115/1.4005542

  85. Boutopoulos, I.D., Lampropoulos, D.S., Miller, B.G.C., Loukopoulos, K., V.C.: Two-phase biofluid flow model for magnetic drug targeting. Symmetry 12(7), 1083 (2020). https://doi.org/10.3390/sym12071083

  86. Bernad, S.I., Craciunescu, I., Sandhu, G.S., Dragomir-Daescu, D., Tombacz, E., Vekas, L., Turcu, R.: Fluid targeted delivery of functionalized magnetoresponsive nanocomposite particles to a ferromagnetic stent 519, 167489 (2021). https://doi.org/10.1016/j.jmmm.2020.167489

  87. Mo, X., Meng, Q., Yang, X., Li, H.: The impact of inflow angle on aneurysm hemodynamics: a simulation study based on patient-specific intracranial aneurysm models. Front Neurol. 11, 534096 (2020). https://doi.org/10.3389/fneur.2020.534096

  88. Van de Velde, L.: Computational fluide dynamics: a clinician’s tool for femoral artery stenosis. Dissertation, University of Twente, Enschede, The Netherlands (2018). https://essay.utwente.nl/74902/1/Velde_MA_TNW.pdf. Accesed 29 Jan. 2021

  89. ANSYS Fluent 19.2 User’s Guide.

    Google Scholar 

  90. Totorean, A.F., Bernad, S.I., Susan-Resiga, R.F.: Fluid dynamics in helical geometries with applications for by-pass grafts. Appl. Math. Comput. 272(3), 604–613 (2016). https://doi.org/10.1016/j.amc.2015.05.030

    Article  MathSciNet  MATH  Google Scholar 

  91. Ruiz-Soler, A., Kabinejadian, F., Slevin, M.A., Bartolo, P.J., Keshmiri, A.: Optimisation of a novel spiral-inducing bypass graft using computational fluid dynamics. Sci. Rep. 7(1), 1865 (2017). https://doi.org/10.1038/s41598-017-01930-x

    Article  Google Scholar 

  92. Sakorafas, G.H., Sarr, M.G., Peros, G.: Celiac artery stenosis: an underappreciated and unpleasant surprise in patients undergoing pancreaticoduodenectomy. J. Am. Coll. Surg. 206(2), 349–356 (2008). https://doi.org/10.1016/j.jamcollsurg.2007.09.002

    Article  Google Scholar 

  93. Prakash, M.V., Rajini, T., Shasirekha, M.: The abdominal aorta and its branches: anatomical variations and clinical implications. Folia Morphol. (Warsz). 70(4), 282–286 (2011)

    Google Scholar 

  94. Ippolito, D., Talei Franzesi, C., Fior, D., Bonaffini, P.A., Minutolo, O., Sironi, S.: Low kV settings CT angiography (CTA) with low dose contrast medium volume protocol in the assessment of thoracic and abdominal aorta disease: a feasibility study. Br. J. Radiol. 88, 20140140 (2015). https://doi.org/10.1259/bjr.20140140

    Article  Google Scholar 

  95. Torii, R., Wood, N.B., Hadjiloizou, N., Dowsey, A.W., Wright, A.R., Hughes, A.D., Davies, J., Francis, D.P., Mayet, J., Yang, G.-Z., Thom, G.S.AMc.G., Xu, X.Y.: Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun. Numer. Meth. Eng. 25, 565–580 (2009). https://doi.org/10.1002/cnm.1231

  96. Soulis, J.V., Giannoglou, G.D., Chatzizisis, Y.S., Farmakis, T.M., Giannakoulas, G.A., Parcharidis, G.E., Louridas, G.E.: Spatial and phasic oscillation of non-newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis. Coron. Artery Dis. 17(4), 351–358 (2006). https://doi.org/10.1097/00019501-200606000-00005

    Article  Google Scholar 

  97. Johnston, B.M., Johnston, P.R., Corney, S., Kilpatrick, D.: Non-newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39(6), 1116–1128 (2006). https://doi.org/10.1016/j.jbiomech.2005.01.034

    Article  Google Scholar 

  98. Katritsis, D., Kaiktsis, L., Chaniotis, A., Pantos, J., Efstathopoulos, E.P., Marmarelis, V.: Wall shear stress: theoretical considerations and methods of measurement. Prog. Cardiovasc. Dis. 49(5), 307–329 (2007). https://doi.org/10.1016/j.pcad.2006.11.001

    Article  Google Scholar 

  99. Soulis, J.V., Lampri, O.P., Fytanidis, D.K., Giannoglou, G.D.: Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta. In: 2011 10th International Workshop on Biomedical Engineering, pp. 1–4. IEEE, New York (2011). https://doi.org/10.1109/IWBE.2011.6079011

  100. Perktold, K., Resch, M., Florian, H.: Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J. Biomech. Eng. 113(4), 464–475 (1991). https://doi.org/10.1115/1.2895428

    Article  Google Scholar 

  101. Anor, T., Grinberg, L., Baek, H., Madsen, J.R., Jayaraman, M.V., Karniadakis, G.E.: Modeling of blood flow in arterial trees. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(5), 612–623 (2010). https://doi.org/10.1002/wsbm.90

    Article  Google Scholar 

  102. Zeng, D., Boutsianis, E., Ammann, M., Boomsma, K., Wildermuth, S., Poulikakos, D.: A study of the compliance of a right coronary artery and its impact on wall shear stress. J. Biomech. Eng. 130(4), 041014–041111 (2008). https://doi.org/10.1115/1.2937744

    Article  Google Scholar 

  103. Fischer, P.F., Loth, F., Lee, S.E., Lee, S.-W., Smith, D.S., Bassiouny, H.S.: Simulation of high-Reynolds number vascular flows. Comput. Methods Appl. Mech. Eng. 196(31), 3049–3060 (2007). https://doi.org/10.1016/j.cma.2006.10.015

    Article  MathSciNet  MATH  Google Scholar 

  104. Lee, S.E., Lee, S.-W., Fischer, P.F., Bassiouny, H.S., Loth, F.: Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J. Biomech. 41(11), 2551–2561 (2008). https://doi.org/10.1016/j.jbiomech.2008.03.038

    Article  Google Scholar 

  105. Sherwin, S.J., Blackburn, H.M.: Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533, 297–327 (2005). https://doi.org/10.1017/S0022112005004271

    Article  MathSciNet  MATH  Google Scholar 

  106. Liu, B.: The influences of stenosis on the downstream flow pattern in curved arteries. Med. Eng. Phys. 29, 868–876 (2007). https://doi.org/10.1016/j.medengphy.2006.09.009

    Article  Google Scholar 

  107. Totorean, A.F., Hudrea, C.I., Bosioc, A.I., Bernad, S.I.: Flow field evolution in stented versus stenosed coronary artery. Proc. Rom. Acad. Ser. A-Math. Phys. 18(3), 248–255 (2017)

    Google Scholar 

  108. Totorean, A.F., Bosioc, A.I., Bernad, S.I., Susan-Resiga, R.: Critical flow region in the coronary bypass graft anastomosis. Proc. Romanian Acad., Ser. A 16(2), 201–208 (2015)

    Google Scholar 

  109. Meng, H., Wang, Z., Hoi, Y., Gao, L., Metaxa, E., Swartz, D.D., Kolega, J.: Complex He-modynamics at the apex of an arterial bifurcation induces vascular remodeling resem-bling cerebral aneurysm initiation. Stroke 38, 1924–1931 (2007). https://doi.org/10.1161/STROKEAHA.106.481234

    Article  Google Scholar 

  110. Bernad, S.I., Susan-Resiga, D., Bernad, E.S.: Hemodynamic effects on particle target-ing in the arterial bifurcation for different magnet positions. Molecules 24(13), 2509 (2019). https://doi.org/10.3390/molecules24132509

  111. Sherwin, S.J., Caro, C.G., Watkins, N., Doorly, D.J., Peiro, J.: Influence of non-planar geometry on flow separation. J. Physiol. 513, 2 (1998)

    Google Scholar 

  112. Sherwin, S.J., Shah, O., Doorly, D.J., McLean, M., Watkins, N., Caro, C.G., Peiro, J., Tarnawski, M., Dumoulin, C.L.: Visualisation and computational study of flow at model planar and non-planar end-to-side arterial bypass grafts. J. Physiol. 504, 44 (1997)

    Google Scholar 

  113. Sunamura, M., Ishibashi, H., Karino, T.: Flow patterns and preferred sites of intimal thickening in diameter-mismatched vein graft interpositions. Surgery 141(6), 764–776 (2007). https://doi.org/10.1016/j.surg.2006.12.019

    Article  Google Scholar 

  114. Malek, A.M., Alper, S.L., Izumo, S.: Hemodynamic shear stress and its role in ather-osclerosis. JAMA 282(21), 2035–2042 (1999). https://doi.org/10.1001/jama.282.21.2035

    Article  Google Scholar 

  115. Hsieh, H.-J., Liu, C.-A., Huang, B., Tseng, A.H.H., Wang, D.L.: Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J. Biomed. Sci. 21(1), 3 (2014). https://doi.org/10.1186/1423-0127-21-3

    Article  Google Scholar 

  116. Sottiurai, V.S.: Distal anastomotic intimal hyperplasia: histocytomorphology, path-ophysiology, etiology, and prevention. Int. J. Angiol. 8(1), 1–10 (1999). https://doi.org/10.1007/BF01616834

    Article  Google Scholar 

  117. Reininger, A.J., Heinzmann, U., Reininger, C.B., Friedrich, P., Wurzinger, L.J.: Flow me-diated fibrin thrombus formation in an endothelium-lined model of arterial branching. Thromb. Res. 74(6), 629–641 (1994). https://doi.org/10.1016/0049-3848(94)90219-4

    Article  Google Scholar 

  118. Dejana, E., Lampugnani, M.G., Martinez-Estrada, O., Bazzoni, G.: The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. Int. J. Dev. Biol. 44, 743–748 (2000)

    Google Scholar 

  119. Robotti, F., Franco, D., Banninger, L., Wyler, J., Starck, C.T., Falk, V., Poulikakos, D., Ferrari, A.: The influence of surface micro-structure on endothelialization under supraphysiological wall shear stress. Biomaterials 35, 8479–8486 (2014). https://doi.org/10.1016/j.biomaterials.2014.06.046

    Article  Google Scholar 

  120. Dejana, E., Tournier-Lasserve, E., Weinstein, B.M.: The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell. 16(2), 209–221 (2009). https://doi.org/10.1016/j.devcel.2009.01.004

    Article  Google Scholar 

  121. Chien, S.: Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292(3), H1209–H1224 (2007). https://doi.org/10.1152/ajpheart.01047.2006

    Article  Google Scholar 

  122. Orsenigo, F., Giampietro, C., Ferrari, A., Corada, M., Galaup, A., Sigismund, S., et al.: Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat. Commun. 3, 1208 (2012). https://doi.org/10.1038/ncomms2199

    Article  Google Scholar 

  123. Lampugnani, M.G., Dejana, E.: The control of endothelial cell functions by adherens junctions. Novartis Found. Symp. 283, 4–13 (2007). https://doi.org/10.1002/9780470319413.ch2

    Article  Google Scholar 

  124. Hoi, Y., Meng, H., Woodward, S.H., Bendok, B.R., Hanel, R.A., Guterman, L.R., Hopkins, L.N.: Effects of arterial geometry on aneurysm growth: threedimensional computational fluid dynamics study. J. Neurosurg. 101(4), 676–681 (2004). https://doi.org/10.3171/jns.2004.101.4.0676

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alin-Florin Totorean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Totorean, AF., Bernad, S.I., Ciocan, T., Totorean, IC., Bernad, E.S. (2022). Computational Fluid Dynamics Applications in Cardiovascular Medicine—from Medical Image-Based Modeling to Simulation: Numerical Analysis of Blood Flow in Abdominal Aorta. In: Zeidan, D., Zhang, L.T., Da Silva, E.G., Merker, J. (eds) Advances in Fluid Mechanics. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-19-1438-6_1

Download citation

Publish with us

Policies and ethics