Skip to main content

Microfluidics in Chemical Biology

  • Chapter
  • First Online:
Microfluidics and Multi Organs on Chip

Abstract

Chemical biology is the field where two scientific disciplines, that is, chemistry and biology, join. Techniques derived from chemistry are used to study or manipulate biological or natural products. Chemical biology helps develop bioassays for the quantification of various compounds. The wisdom from chemistry is used to develop techniques to purify proteins and nucleic acids or use small molecules for multiple applications, such as sensing, drug discovery, tissue engineering, disease modelling and molecular genetics. The 1970s witnessed the development of a novel field of engineering that manipulates micro- or nano-quantities of fluids using channels and pumps for specific applications called microfluidics. The development of various microfabrication techniques and novel materials in the past few decades has led to efficient microfluidic platforms. The convergence of microfluidics, chemistry and biology gives us a platform where minute quantities of samples are orchestrated to ensemble an overall result that helps researchers in various scientific fields. This chapter briefly discusses the application of microfluidics in chemical biology in bioassays, separation and purification of proteins and nucleotides, molecular self-assembly, tissue engineering and nucleotide sequencing. These aspects include exposure to electrophoresis and chromatography in microfluidic devices, gradients in microfluidic devices, surface modification strategies, and polymerase chain reaction (PCR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hou X, Zhang YS, Santiago GT-d, Alvarez MM, Ribas J, Jonas SJ, Weiss PS, Andrews AM, Aizenberg J, Khademhosseini A (2017) Interplay between materials and microfluidics. Nat Rev Mater 2(5):17016. https://doi.org/10.1038/natrevmats.2017.16

    Article  CAS  Google Scholar 

  2. Niculescu A-G, Chircov C, Bîrcă AC, Grumezescu AM (2021) Fabrication and applications of microfluidic devices: a review. Int J Mol Sci 22(4):2011. https://doi.org/10.3390/ijms22042011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ohno K-i, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29(22):4443–4453. https://doi.org/10.1002/elps.200800121

    Article  CAS  PubMed  Google Scholar 

  4. ChipShop m Microfluidics (2021) microfluidic ChipShop. https://www.microfluidic-chipshop.com/

  5. Solutions PE Micro Devices Facility (2021). https://www.engineeringsolutions.philips.com/looking-expertise/mems-micro-devices/micro-devices-facility/

  6. Soares RRG, Neumann F, Caneira CRF, Madaboosi N, Ciftci S, Hernández-Neuta I, Pinto IF, Santos DR, Chu V, Russom A, Conde JP, Nilsson M (2019) Silica bead-based microfluidic device with integrated photodiodes for the rapid capture and detection of rolling circle amplification products in the femtomolar range. Biosens Bioelectron 128:68–75. https://doi.org/10.1016/j.bios.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  7. Reinholt SJ, Craighead HG (2018) Microfluidic device for aptamer-based cancer cell capture and genetic mutation detection. Anal Chem 90(4):2601–2608. https://doi.org/10.1021/acs.analchem.7b04120

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, Rho HS, Stevens M, Tibbe AGJ, Gardeniers H, Terstappen LWMM (2015) Microfluidic device for DNA amplification of single cancer cells isolated from whole blood by self-seeding microwells. Lab Chip 15(22):4331–4337. https://doi.org/10.1039/C5LC00816F

    Article  CAS  PubMed  Google Scholar 

  9. Kim SC, Jalal UM, Im SB, Ko S, Shim JS (2017) A smartphone-based optical platform for colorimetric analysis of microfluidic device. Sensors Actuators B Chem 239:52–59. https://doi.org/10.1016/j.snb.2016.07.159

    Article  CAS  Google Scholar 

  10. Charbaji A, Heidari-Bafroui H, Anagnostopoulos C, Faghri M (2021) A new paper-based microfluidic device for improved detection of nitrate in water. Sensors 21(1):102. https://doi.org/10.3390/s21010102

    Article  CAS  Google Scholar 

  11. Koesdjojo MT, Pengpumkiat S, Wu Y, Boonloed A, Huynh D, Remcho TP, Remcho VT (2015) Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom. J Chem Educ 92(4):737–741. https://doi.org/10.1021/ed500401d

    Article  CAS  Google Scholar 

  12. Sechi D, Greer B, Johnson J, Hashemi N (2013) Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal Chem 85(22):10733–10737. https://doi.org/10.1021/ac4014868

    Article  CAS  PubMed  Google Scholar 

  13. Xiao G, He J, Qiao Y, Wang F, Xia Q, Wang X, Yu L, Lu Z, Li C-M (2020) Facile and low-cost fabrication of a thread/paper-based wearable system for simultaneous detection of lactate and pH in human sweat. Adv Fiber Mater 2(5):265–278. https://doi.org/10.1007/s42765-020-00046-8

    Article  CAS  Google Scholar 

  14. Kumar A, Hens A, Arun RK, Chatterjee M, Mahato K, Layek K, Chanda N (2015) A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst 140(6):1817–1821. https://doi.org/10.1039/C4AN02333A

    Article  CAS  PubMed  Google Scholar 

  15. Cai L, Wu Y, Xu C, Chen Z (2013) A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract. J Chem Educ 90(2):232–234. https://doi.org/10.1021/ed300385j

    Article  CAS  Google Scholar 

  16. Suresh V, Qunya O, Kanta BL, Yuh LY, Chong KSL (2018) Non-invasive paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis. R Soc Open Sci 5(3):171980. https://doi.org/10.1098/rsos.171980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fava EL, Martimiano do Prado T, Almeida Silva T, Cruz de Moraes F, Censi Faria R, Fatibello-Filho O (2020) New disposable electrochemical paper-based microfluidic device with multiplexed electrodes for biomarkers determination in urine sample. Electroanalysis 32(5):1075–1083. https://doi.org/10.1002/elan.201900641

    Article  CAS  Google Scholar 

  18. Guo X, Guo Y, Liu W, Chen Y, Chu W (2019) Fabrication of paper-based microfluidic device by recycling foamed plastic and the application for multiplexed measurement of biomarkers. Spectrochim Acta A Mol Biomol Spectrosc 223:117341. https://doi.org/10.1016/j.saa.2019.117341

    Article  CAS  PubMed  Google Scholar 

  19. Choobbari ML, Rad MB, Jahanshahi A, Ghourchian H (2020) A sample volume independent paper microfluidic device for quantifying glucose in real human plasma. Microfluid Nanofluid 24(9):74. https://doi.org/10.1007/s10404-020-02382-y

    Article  CAS  Google Scholar 

  20. Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W (2013) Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta 788:39–45. https://doi.org/10.1016/j.aca.2013.06.021

    Article  CAS  PubMed  Google Scholar 

  21. Rossini EL, Milani MI, Lima LS, Pezza HR (2021) Paper microfluidic device using carbon dots to detect glucose and lactate in saliva samples. Spectrochim Acta A Mol Biomol Spectrosc 248:119285. https://doi.org/10.1016/j.saa.2020.119285

    Article  CAS  PubMed  Google Scholar 

  22. Ellerbee AK, Phillips ST, Siegel AC, Mirica KA, Martinez AW, Striehl P, Jain N, Prentiss M, Whitesides GM (2009) Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal Chem 81(20):8447–8452. https://doi.org/10.1021/ac901307q

    Article  CAS  PubMed  Google Scholar 

  23. Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674(2):227–233. https://doi.org/10.1016/j.aca.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  24. Vicente FA, Plazl I, Ventura SPM, Žnidaršič-Plazl P (2020) Separation and purification of biomacromolecules based on microfluidics. Green Chem 22(14):4391–4410. https://doi.org/10.1039/C9GC04362D

    Article  CAS  Google Scholar 

  25. Ou X, Chen P, Huang X, Li S, Liu B-F (2020) Microfluidic chip electrophoresis for biochemical analysis. J Sep Sci 43(1):258–270. https://doi.org/10.1002/jssc.201900758

    Article  CAS  PubMed  Google Scholar 

  26. Bao B, Wang Z, Thushara D, Liyanage A, Gunawardena S, Yang Z, Zhao S (2021) Recent advances in microfluidics-based chromatography—a mini review. Separations 8(1):3. https://doi.org/10.3390/separations8010003

    Article  CAS  Google Scholar 

  27. Fleminger G, Solomon B, Wolf T, Hadas E (1990) Effect of polyethylene glycol on the non-specific adsorption of proteins to Eupergit C and agarose. J Chromatogr A 510:271–279. https://doi.org/10.1016/S0021-9673(01)93761-6

    Article  CAS  Google Scholar 

  28. Roman GT, Carroll S, McDaniel K, Culbertson CT (2006) Micellar electrokinetic chromatography of fluorescently labeled proteins on poly(dimethylsiloxane)-based microchips. Electrophoresis 27(14):2933–2939. https://doi.org/10.1002/elps.200500795

    Article  CAS  PubMed  Google Scholar 

  29. Liang Y, Cong Y, Liang Z, Zhang L, Zhang Y (2009) Microchip isoelectric focusing with monolithic immobilized pH gradient materials for proteins separation. Electrophoresis 30(23):4034–4039. https://doi.org/10.1002/elps.200900209

    Article  CAS  PubMed  Google Scholar 

  30. Marshall LA, Rogacs A, Meinhart CD, Santiago JG (2014) An injection molded microchip for nucleic acid purification from 25 microliter samples using isotachophoresis. J Chromatogr A 1331:139–142. https://doi.org/10.1016/j.chroma.2014.01.036

    Article  CAS  PubMed  Google Scholar 

  31. Wang R, Xie H, Xu Y-b, Jia Z-p, Meng X-d, Zhang J-h, Ma J, Wang J, Wang X-h (2012) Study on detection of mutation DNA fragment in gastric cancer by restriction endonuclease fingerprinting with capillary electrophoresis. Biomed Chromatogr 26(3):393–399. https://doi.org/10.1002/bmc.1673

    Article  CAS  PubMed  Google Scholar 

  32. Henley WH, Ramsey JM (2012) High electric field strength two-dimensional peptide separations using a microfluidic device. Electrophoresis 33(17):2718–2724. https://doi.org/10.1002/elps.201200069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Salafi T, Zeming KK, Zhang Y (2017) Advancements in microfluidics for nanoparticle separation. Lab Chip 17(1):11–33. https://doi.org/10.1039/C6LC01045H

    Article  CAS  Google Scholar 

  34. Li Y, Feng X, Du W, Li Y, Liu B-F (2013) Ultrahigh-throughput approach for analyzing single-cell genomic damage with an agarose-based microfluidic comet array. Anal Chem 85(8):4066–4073. https://doi.org/10.1021/ac4000893

    Article  CAS  PubMed  Google Scholar 

  35. Duarte GRM, Price CW, Augustine BH, Carrilho E, Landers JP (2011) Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip. Anal Chem 83(13):5182–5189. https://doi.org/10.1021/ac200292m

    Article  CAS  PubMed  Google Scholar 

  36. Tetala KKR, Vijayalakshmi MA (2016) A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Anal Chim Acta 906:7–21. https://doi.org/10.1016/j.aca.2015.11.037

    Article  CAS  PubMed  Google Scholar 

  37. Gubala V, Siegrist J, Monaghan R, O’Reilly B, Gandhiraman RP, Daniels S, Williams DE, Ducrée J (2013) Simple approach to study biomolecule adsorption in polymeric microfluidic channels. Anal Chim Acta 760:75–82. https://doi.org/10.1016/j.aca.2012.11.030

    Article  CAS  PubMed  Google Scholar 

  38. Jang Y-C, Jha SK, Chand R, Islam K, Kim Y-S (2011) Capillary electrophoresis microchip for direct amperometric detection of DNA fragments. Electrophoresis 32(8):913–919. https://doi.org/10.1002/elps.201000697

    Article  CAS  PubMed  Google Scholar 

  39. Osiri JK, Shadpour H, Soper SA (2010) Ultra-fast two-dimensional microchip electrophoresis using SDS μ-CGE and microemulsion electrokinetic chromatography for protein separations. Anal Bioanal Chem 398(1):489–498. https://doi.org/10.1007/s00216-010-3914-2

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Rafei SM, Xie L, Chew MB-R, Ji HM, Chen Y, Rajoo R, Ong K-L, Tan R, Lau S-H, Chow VTK, Heng C-K, Teo K-H, Kang TG (2011b) A self-contained disposable cartridge microsystem for dengue viral ribonucleic acid extraction. Sensors Actuators B Chem 160(1):1557–1564. https://doi.org/10.1016/j.snb.2011.08.076

    Article  CAS  Google Scholar 

  41. Hughes-Chinkhota CN, Banda M, Smolinski JM, Thomas RA, Petibone DM, Tucker JD, Auner GW (2011) Oligonucleotide immobilization using 10-(carbomethoxy)decyl-dimethylchlorosilane for mRNA isolation and cDNA synthesis on a microfluidic chip. Sensors Actuators B Chem 155(2):437–445. https://doi.org/10.1016/j.snb.2010.12.043

    Article  CAS  Google Scholar 

  42. Viefhues M, Regtmeier J, Anselmetti D (2013) Fast and continuous-flow separation of DNA-complexes and topological DNA variants in microfluidic chip format. Analyst 138(1):186–196. https://doi.org/10.1039/C2AN36056J

    Article  CAS  PubMed  Google Scholar 

  43. Kim J, Hilton JP, Yang K-A, Pei R, Stojanovic M, Lin Q (2013) Nucleic acid isolation and enrichment on a microchip. Sensors Actuators A Phys 195:183–190. https://doi.org/10.1016/j.sna.2012.07.022

    Article  CAS  Google Scholar 

  44. Reedy CR, Bienvenue JM, Coletta L, Strachan BC, Bhatri N, Greenspoon S, Landers JP (2010) Volume reduction solid phase extraction of DNA from dilute, large-volume biological samples. Forensic Sci Int Genet 4(3):206–212. https://doi.org/10.1016/j.fsigen.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  45. Kashkary L, Kemp C, Shaw KJ, Greenway GM, Haswell SJ (2012) Improved DNA extraction efficiency from low level cell numbers using a silica monolith based micro fluidic device. Anal Chim Acta 750:127–131. https://doi.org/10.1016/j.aca.2012.05.019

    Article  CAS  PubMed  Google Scholar 

  46. Shaw KJ, Joyce DA, Docker PT, Dyer CE, Greenway GM, Greenman J, Haswell SJ (2011) Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device. Lab Chip 11(3):443–448. https://doi.org/10.1039/C0LC00346H

    Article  CAS  PubMed  Google Scholar 

  47. Rahong S, Yasui T, Yanagida T, Nagashima K, Kanai M, Klamchuen A, Meng G, He Y, Zhuge F, Kaji N, Kawai T, Baba Y (2014) Ultrafast and wide range analysis of DNA molecules using rigid network structure of solid nanowires. Sci Rep 4(1):5252. https://doi.org/10.1038/srep05252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kitagawa F, Kubota K, Sueyoshi K, Otsuka K (2010) One-step preparation of amino-PEG modified poly(methyl methacrylate) microchips for electrophoretic separation of biomolecules. J Pharm Biomed Anal 53(5):1272–1277. https://doi.org/10.1016/j.jpba.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  49. Roy S, Das T, Yue CY (2013) High performance of cyclic olefin copolymer-based capillary electrophoretic chips. ACS Appl Mater Interfaces 5(12):5683–5689. https://doi.org/10.1021/am401081d

    Article  CAS  PubMed  Google Scholar 

  50. Lu JJ, Wang S, Li G, Wang W, Pu Q, Liu S (2012) Chip-capillary hybrid device for automated transfer of sample preseparated by capillary isoelectric focusing to parallel capillary gel electrophoresis for two-dimensional protein separation. Anal Chem 84(16):7001–7007. https://doi.org/10.1021/ac3017168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jubery TZ, Hossan MR, Bottenus DR, Ivory CF, Dong W, Dutta P (2012) A new fabrication technique to form complex polymethylmethacrylate microchannel for bioseparation. Biomicrofluidics 6(1):016503. https://doi.org/10.1063/1.3683163

    Article  CAS  PubMed Central  Google Scholar 

  52. Chan AS, Danquah MK, Agyei D, Hartley PG, Zhu Y (2014b) A simple microfluidic chip design for fundamental bioseparation. J Anal Methods Chem 2014:175457. https://doi.org/10.1155/2014/175457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chan AS, Danquah MK, Agyei D, Hartley PG, Zhu Y (2014a) A parametric study of a monolithic microfluidic system for on-chip biomolecular separation. Sep Sci Technol 49(6):854–860. https://doi.org/10.1080/01496395.2013.872144

    Article  CAS  Google Scholar 

  54. He M, Zeng Y, Jemere AB, Jed Harrison D (2012) Tunable thick polymer coatings for on-chip electrophoretic protein and peptide separation. J Chromatogr A 1241:112–116. https://doi.org/10.1016/j.chroma.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  55. Krivitsky V, Hsiung L-C, Lichtenstein A, Brudnik B, Kantaev R, Elnathan R, Pevzner A, Khatchtourints A, Patolsky F (2012) Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all. Nano Lett 12(9):4748–4756. https://doi.org/10.1021/nl3021889

    Article  CAS  PubMed  Google Scholar 

  56. Obino D, Vassalli M, Franceschi A, Alessandrini A, Facci P, Viti F (2021) An overview on microfluidic systems for nucleic acids extraction from human raw samples. Sensors 21(9):3058. https://doi.org/10.3390/s21093058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wen J, Legendre LA, Bienvenue JM, Landers JP (2008) Purification of nucleic acids in microfluidic devices. Anal Chem 80(17):6472–6479. https://doi.org/10.1021/ac8014998

    Article  CAS  PubMed  Google Scholar 

  58. Carvalho J, Diéguez L, Ipatov A, Guerreiro JR, Garrido-Maestu A, Azinheiro S, Prado M (2021) Single-use microfluidic device for purification and concentration of environmental DNA from river water. Talanta 226:122109. https://doi.org/10.1016/j.talanta.2021.122109

    Article  CAS  PubMed  Google Scholar 

  59. Park J, Han DH, Hwang S-H, Park J-K (2020) Reciprocating flow-assisted nucleic acid purification using a finger-actuated microfluidic device. Lab Chip 20(18):3346–3353. https://doi.org/10.1039/D0LC00432D

    Article  CAS  PubMed  Google Scholar 

  60. Jung JH, Park BH, Choi YK, Seo TS (2013) A microbead-incorporated centrifugal sample pretreatment microdevice. Lab Chip 13(17):3383–3388. https://doi.org/10.1039/C3LC50266J

    Article  CAS  PubMed  Google Scholar 

  61. Schneider L, Fraser M, Tripathi A (2021) Integrated magneto–electrophoresis microfluidic chip purification on library preparation device for preimplantation genetic testing for aneuploidy detection. RSC Adv 11(24):14459–14474. https://doi.org/10.1039/D1RA01732B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meagher RJ, Light YK, Singh AK (2008) Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags. Lab Chip 8(4):527–532. https://doi.org/10.1039/B716462A

    Article  CAS  PubMed  Google Scholar 

  63. Hu R, Feng X, Chen P, Fu M, Chen H, Guo L, Liu B-F (2011) Rapid, highly efficient extraction and purification of membrane proteins using a microfluidic continuous-flow based aqueous two-phase system. J Chromatogr A 1218(1):171–177. https://doi.org/10.1016/j.chroma.2010.10.090

    Article  CAS  PubMed  Google Scholar 

  64. Fan J-B, Luo J, Luo Z, Song Y, Wang Z, Meng J, Wang B, Zhang S, Zheng Z, Chen X, Wang S (2019) Bioinspired microfluidic device by integrating a porous membrane and heterostructured nanoporous particles for biomolecule cleaning. ACS Nano 13(7):8374–8381. https://doi.org/10.1021/acsnano.9b03918

    Article  CAS  PubMed  Google Scholar 

  65. Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci U S A 99(26):16531. https://doi.org/10.1073/pnas.262485199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, Ismagilov RF (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc Natl Acad Sci U S A 103(51):19243. https://doi.org/10.1073/pnas.0607502103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using Nanoliter-size droplets. J Am Chem Soc 125(37):11170–11171. https://doi.org/10.1021/ja037166v

    Article  CAS  PubMed  Google Scholar 

  68. Zheng B, Tice JD, Roach LS, Ismagilov RF (2004b) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-Chip X-ray diffraction. Angew Chem Int Ed 43(19):2508–2511. https://doi.org/10.1002/anie.200453974

    Article  CAS  Google Scholar 

  69. Leng J, Salmon J-B (2009) Microfluidic crystallization. Lab Chip 9(1):24–34. https://doi.org/10.1039/B807653G

    Article  CAS  PubMed  Google Scholar 

  70. Zheng B, Ismagilov RF (2005) A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew Chem Int Ed 44(17):2520–2523. https://doi.org/10.1002/anie.200462857

    Article  CAS  Google Scholar 

  71. Juárez-Martínez G, Steinmann P, Roszak AW, Isaacs NW, Cooper JM (2002) High-throughput screens for postgenomics: studies of protein crystallization using microsystems technology. Anal Chem 74(14):3505–3510. https://doi.org/10.1021/ac0112519

    Article  CAS  PubMed  Google Scholar 

  72. Zhou X, Lau L, Lam WWL, Au SWN, Zheng B (2007) Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization. Anal Chem 79(13):4924–4930. https://doi.org/10.1021/ac070306p

    Article  CAS  PubMed  Google Scholar 

  73. Hansen CL, Sommer MOA, Quake SR (2004) Systematic investigation of protein phase behavior with a microfluidic formulator. Proc Natl Acad Sci U S A 101(40):14431. https://doi.org/10.1073/pnas.0405847101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Manuel Garcı́a-Ruiz J (2003) Nucleation of protein crystals. J Struct Biol 142(1):22–31. https://doi.org/10.1016/S1047-8477(03)00035-2

    Article  CAS  PubMed  Google Scholar 

  75. Anderson MJ, Hansen CL, Quake SR (2006) Phase knowledge enables rational screens for protein crystallization. Proc Natl Acad Sci U S A 103(45):16746. https://doi.org/10.1073/pnas.0605293103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sommer MOA, Larsen S (2005) Crystallizing proteins on the basis of their precipitation diagram determined using a microfluidic formulator. J Synchrotron Radiat 12(6):779–785

    Article  CAS  Google Scholar 

  77. Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432(7016):492–495. https://doi.org/10.1038/nature03109

    Article  CAS  PubMed  Google Scholar 

  78. Lounaci M, Rigolet P, Abraham C, Le Berre M, Chen Y (2007) Microfluidic device for protein crystallization under controlled humidity. Microelectron Eng 84(5):1758–1761. https://doi.org/10.1016/j.mee.2007.01.269

    Article  CAS  Google Scholar 

  79. Shim J-u, Cristobal G, Link DR, Thorsen T, Fraden S (2007a) Using microfluidics to decouple nucleation and growth of protein crystals. Cryst Growth Des 7(11):2192–2194. https://doi.org/10.1021/cg700688f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shim J-u, Cristobal G, Link DR, Thorsen T, Jia Y, Piattelli K, Fraden S (2007b) Control and measurement of the phase behavior of aqueous solutions using microfluidics. J Am Chem Soc 129(28):8825–8835. https://doi.org/10.1021/ja071820f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lau BTC, Baitz CA, Dong XP, Hansen CL (2007) A complete microfluidic screening platform for rational protein crystallization. J Am Chem Soc 129(3):454–455. https://doi.org/10.1021/ja065855b

    Article  CAS  PubMed  Google Scholar 

  82. Gerdts CJ, Tereshko V, Yadav MK, Dementieva I, Collart F, Joachimiak A, Stevens RC, Kuhn P, Kossiakoff A, Ismagilov RF (2006) Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization. Angew Chem Int Ed 45(48):8156–8160. https://doi.org/10.1002/anie.200602946

    Article  CAS  Google Scholar 

  83. Talreja S, Kenis PJA, Zukoski CF (2007) A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform. Langmuir 23(8):4516–4522. https://doi.org/10.1021/la063734j

    Article  CAS  PubMed  Google Scholar 

  84. Hansen CL, Classen S, Berger JM, Quake SR (2006) A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J Am Chem Soc 128(10):3142–3143. https://doi.org/10.1021/ja0576637

    Article  CAS  PubMed  Google Scholar 

  85. Khoo HS, Lin C, Huang S-H, Tseng F-G (2011) Self-assembly in micro- and nanofluidic devices: a review of recent efforts. Micromachines 2(1):17–48. https://doi.org/10.3390/mi2010017

    Article  Google Scholar 

  86. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99(8):4769. https://doi.org/10.1073/pnas.082065899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Isaacs L, Chin DN, Bowden N, Xia Y, Whitesides GM (1999) Self-assembling systems on scales from nanometers to millimeters: design and discovery. In: Perspectives in supramolecular chemistry. Wiley, Hoboken, NJ, pp 1–46. https://doi.org/10.1002/9780470511497.ch1

    Chapter  Google Scholar 

  88. Zheng B, Tice JD, Ismagilov RF (2004a) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76(17):4977–4982. https://doi.org/10.1021/ac0495743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ota S, Yoshizawa S, Takeuchi S (2009) Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew Chem Int Ed 48(35):6533–6537. https://doi.org/10.1002/anie.200902182

    Article  CAS  Google Scholar 

  90. Chung K-y, Mishra NC, Wang C-c, Lin F-h, Lin K-h (2009) Fabricating scaffolds by microfluidics. Biomicrofluidics 3(2):022403. https://doi.org/10.1063/1.3122665

    Article  CAS  PubMed Central  Google Scholar 

  91. Toprakcioglu Z, Challa PK, Levin A, Knowles TPJ (2018) Observation of molecular self-assembly events in massively parallel microdroplet arrays. Lab Chip 18(21):3303–3309. https://doi.org/10.1039/C8LC00862K

    Article  CAS  PubMed  Google Scholar 

  92. Hen M, Ronen M, Deitch A, Barbiro-Michaely E, Oren Z, Sukenik CN, Gerber D (2015) An off-the-shelf integrated microfluidic device comprising self-assembled monolayers for protein array experiments. Biomicrofluidics 9(5):054108. https://doi.org/10.1063/1.4930982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang C, Saeki T, Endo M, Sugiyama H, Weng C, Lee G, Sugano K, Tsuchiya T, Tabata O (2011) Configurable assembly of DNA origami on MEMS by microfluidic device. In: 2011 6th IEEE international conference on nano/micro engineered and molecular systems, 20–23 Feb 2011, pp 197–200. https://doi.org/10.1109/NEMS.2011.6017328

    Chapter  Google Scholar 

  94. Engst CR, Ablay M, Divitini G, Ducati C, Liedl T, Keyser UF (2012) DNA origami nanopores. Nano Lett 12(1):512–517. https://doi.org/10.1021/nl204098n

    Article  CAS  PubMed  Google Scholar 

  95. Wang J, Yue L, Li Z, Zhang J, Tian H, Willner I (2019) Active generation of nanoholes in DNA origami scaffolds for programmed catalysis in nanocavities. Nat Commun 10(1):4963. https://doi.org/10.1038/s41467-019-12933-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y (2014) DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 8(7):6633–6643. https://doi.org/10.1021/nn502058j

    Article  CAS  PubMed  Google Scholar 

  97. Kong F, Zhang H, Qu X, Zhang X, Chen D, Ding R, Mäkilä E, Salonen J, Santos HA, Hai M (2016) Gold nanorods, DNA origami, and porous silicon nanoparticle-functionalized biocompatible double emulsion for versatile targeted therapeutics and antibody combination therapy. Adv Mater 28(46):10195–10203. https://doi.org/10.1002/adma.201602763

    Article  CAS  PubMed  Google Scholar 

  98. DelRosso NV, Derr ND (2017) Exploiting molecular motors as nanomachines: the mechanisms of de novo and re-engineered cytoskeletal motors. Curr Opin Biotechnol 46:20–26. https://doi.org/10.1016/j.copbio.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  99. Li S, Jiang Q, Ding B, Nie G (2019) Anticancer activities of tumor-killing nanorobots. Trends Biotechnol 37(6):573–577. https://doi.org/10.1016/j.tibtech.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  100. Bila H, Kurisinkal EE, Bastings MMC (2019) Engineering a stable future for DNA-origami as a biomaterial. Biomater Sci 7(2):532–541. https://doi.org/10.1039/C8BM01249K

    Article  CAS  PubMed  Google Scholar 

  101. Nie Z, Li W, Seo M, Xu S, Kumacheva E (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128(29):9408–9412. https://doi.org/10.1021/ja060882n

    Article  CAS  PubMed  Google Scholar 

  102. Bai F, Zhang H, Li X, Li F, Joo SW (2021) Generation and dynamics of Janus droplets in shear-thinning fluid flow in a double Y-type microchannel. Micromachines 12(2):149. https://doi.org/10.3390/mi12020149

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cheng L, Cai B, Zuo Y, Xiao L, Rao L, He Z, Yang Y, Liu W, Guo S, Zhao X-Z (2017) Janus droplet parallel arrangements using a simple Y-channel flow-focusing microfluidic device. Chem Phys Lett 673:93–98. https://doi.org/10.1016/j.cplett.2017.02.030

    Article  CAS  Google Scholar 

  104. Litti L, Trivini S, Ferraro D, Reguera J (2021) 3D printed microfluidic device for magnetic trapping and SERS quantitative evaluation of environmental and biomedical analytes. ACS Appl Mater Interfaces 13(29):34752–34761. https://doi.org/10.1021/acsami.1c09771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dashtimoghadam E, Mirzadeh H, Taromi FA, Nyström B (2013) Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery. Polymer 54(18):4972–4979. https://doi.org/10.1016/j.polymer.2013.07.022

    Article  CAS  Google Scholar 

  106. Dendukuri D, Hatton TA, Doyle PS (2007) Synthesis and self-assembly of amphiphilic polymeric microparticles. Langmuir 23(8):4669–4674. https://doi.org/10.1021/la062512i

    Article  CAS  PubMed  Google Scholar 

  107. Li W, Chen Q, Baby T, Jin S, Liu Y, Yang G, Zhao C-X (2021a) Insight into drug encapsulation in polymeric nanoparticles using microfluidic nanoprecipitation. Chem Eng Sci 235:116468. https://doi.org/10.1016/j.ces.2021.116468

    Article  CAS  Google Scholar 

  108. Descamps L, Audry M-C, Howard J, Mekkaoui S, Albin C, Barthelemy D, Payen L, Garcia J, Laurenceau E, Le Roy D, Deman A-L (2021) Self-assembled permanent micro-magnets in a polymer-based microfluidic device for magnetic cell sorting. Cell 10(7):1734. https://doi.org/10.3390/cells10071734

    Article  CAS  Google Scholar 

  109. MacFarlane LR, Shaikh H, Garcia-Hernandez JD, Vespa M, Fukui T, Manners I (2021) Functional nanoparticles through π-conjugated polymer self-assembly. Nat Rev Mater 6(1):7–26. https://doi.org/10.1038/s41578-020-00233-4

    Article  CAS  Google Scholar 

  110. Ahmadi M, Siavashy S, Ayyoubzadeh SM, Kecili R, Ghorbani-Bidkorbeh F (2021) Controllable synthesis of polymeric micelles by microfluidic platforms for biomedical applications: a systematic review. Iran J Pharm Res 20(2):229–240. https://doi.org/10.22037/ijpr.2021.114226.14769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10(6):584–591. https://doi.org/10.1016/j.cbpa.2006.10.016

    Article  CAS  PubMed  Google Scholar 

  112. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5(4):401–406. https://doi.org/10.1039/B417651K

    Article  CAS  PubMed  Google Scholar 

  113. Kim JH, Sim J, Kim H-J (2018) Neural stem cell differentiation using microfluidic device-generated growth factor gradient. Biomol Ther (Seoul) 26(4):380–388. https://doi.org/10.4062/biomolther.2018.001

    Article  CAS  Google Scholar 

  114. O’Grady B, Balikov DA, Wang JX, Neal EK, Ou Y-C, Bardhan R, Lippmann ES, Bellan LM (2019) Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels. Biomater Sci 7(4):1358–1371. https://doi.org/10.1039/C8BM01199K

    Article  PubMed  PubMed Central  Google Scholar 

  115. van der Meer AD, van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol 4(5):461–470. https://doi.org/10.1039/c2ib00176d

    Article  CAS  Google Scholar 

  116. Lin F, Saadi W, Rhee SW, Wang S-J, Mittal S, Jeon NL (2004) Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip 4(3):164. https://doi.org/10.1039/b313600k

    Article  CAS  PubMed  Google Scholar 

  117. Luo X, Berlin DL, Betz J, Payne GF, Bentley WE, Rubloff GW (2010) In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes. Lab Chip 10(1):59–65. https://doi.org/10.1039/B916548G

    Article  PubMed  Google Scholar 

  118. Shah JJ, Geist J, Gaitan M (2010) Microwave-induced adjustable nonlinear temperature gradients in microfluidic devices. J Micromech Microeng 20(10):105025. https://doi.org/10.1088/0960-1317/20/10/105025

    Article  Google Scholar 

  119. Kopp Martin U, Mello Andrew J, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280(5366):1046–1048. https://doi.org/10.1126/science.280.5366.1046

    Article  Google Scholar 

  120. Ahrberg CD, Manz A, Chung BG (2016) Polymerase chain reaction in microfluidic devices. Lab Chip 16(20):3866–3884. https://doi.org/10.1039/C6LC00984K

    Article  CAS  PubMed  Google Scholar 

  121. Ha ML, Lee NY (2015) Miniaturized polymerase chain reaction device for rapid identification of genetically modified organisms. Food Control 57:238–245. https://doi.org/10.1016/j.foodcont.2015.04.014

    Article  CAS  Google Scholar 

  122. Jiao Z, Zhao L, Tang C, Shi H, Wang F, Hu B (2019) Droplet-based PCR in a 3D-printed microfluidic chip for miRNA-21 detection. Anal Methods 11(26):3286–3293. https://doi.org/10.1039/C9AY01108K

    Article  CAS  Google Scholar 

  123. Snodgrass R, Gardner A, Jiang L, Fu C, Cesarman E, Erickson D (2016) KS-detect–validation of solar thermal PCR for the diagnosis of Kaposi’s sarcoma using pseudo-biopsy samples. PLoS One 11(1):e0147636

    Article  Google Scholar 

  124. Zhang C, Wang H, Xing D (2011a) Multichannel oscillatory-flow multiplex PCR microfluidics for high-throughput and fast detection of foodborne bacterial pathogens. Biomed Microdevices 13(5):885–897. https://doi.org/10.1007/s10544-011-9558-y

    Article  PubMed  Google Scholar 

  125. Chan K, Wong P-Y, Yu P, Hardick J, Wong K-Y, Wilson SA, Wu T, Hui Z, Gaydos C, Wong SS (2016) A rapid and low-cost PCR thermal cycler for infectious disease diagnostics. PLoS One 11(2):e0149150

    Article  Google Scholar 

  126. Ouyang Y, Duarte GRM, Poe BL, Riehl PS, dos Santos FM, Martin-Didonet CCG, Carrilho E, Landers JP (2015) A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control. Anal Chim Acta 901:59–67. https://doi.org/10.1016/j.aca.2015.09.042

    Article  CAS  PubMed  Google Scholar 

  127. Pak N, Saunders DC, Phaneuf CR, Forest CR (2012) Plug-and-play, infrared, laser-mediated PCR in a microfluidic chip. Biomed Microdevices 14(2):427–433. https://doi.org/10.1007/s10544-011-9619-2

    Article  CAS  PubMed  Google Scholar 

  128. Hurth C, Yang J, Barrett M, Brooks C, Nordquist A, Smith S, Zenhausern F (2014) A miniature quantitative PCR device for directly monitoring a sample processing on a microfluidic rapid DNA system. Biomed Microdevices 16(6):905–914. https://doi.org/10.1007/s10544-014-9895-8

    Article  CAS  PubMed  Google Scholar 

  129. Giuffrida MC, Zanoli LM, D’Agata R, Finotti A, Gambari R, Spoto G (2015) Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Anal Bioanal Chem 407(6):1533–1543. https://doi.org/10.1007/s00216-014-8405-4

    Article  CAS  PubMed  Google Scholar 

  130. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63. https://doi.org/10.1093/nar/28.12.e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rane TD, Chen L, Zec HC, Wang T-H (2015) Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP). Lab Chip 15(3):776–782. https://doi.org/10.1039/C4LC01158A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xu G, Si H, Jing F, Sun P, Zhao D, Wu D (2020a) A double-deck self-digitization microfluidic chip for digital PCR. Micromachines 11(12):1025. https://doi.org/10.3390/mi11121025

    Article  PubMed Central  Google Scholar 

  133. Zhu Y, Lu D, Lira ME, Xu Q, Du Y, Xiong J, Mao M, Chung HC, Zheng G (2016) Droplet digital polymerase chain reaction detection of HER2 amplification in formalin fixed paraffin embedded breast and gastric carcinoma samples. Exp Mol Pathol 100(2):287–293. https://doi.org/10.1016/j.yexmp.2015.11.027

    Article  CAS  PubMed  Google Scholar 

  134. Hussain M, Fantuzzo R, Mercorelli S, Cullen C (2016) A direct droplet digital PCR method for quantification of residual DNA in protein drugs produced in yeast cells. J Pharm Biomed Anal 123:128–131. https://doi.org/10.1016/j.jpba.2016.01.050

    Article  CAS  PubMed  Google Scholar 

  135. Bian X, Jing F, Li G, Fan X, Jia C, Zhou H, Jin Q, Zhao J (2015) A microfluidic droplet digital PCR for simultaneous detection of pathogenic Escherichia coli O157 and Listeria monocytogenes. Biosens Bioelectron 74:770–777. https://doi.org/10.1016/j.bios.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  136. Li Z, Liu J, Wang P, Tao C, Zheng L, Sekine S, Zhuang S, Zhang D, Yamaguchi Y (2021b) Multiplex amplification of target genes of periodontal pathogens in continuous flow PCR microfluidic chip. Lab Chip 21(16):3159–3164. https://doi.org/10.1039/D1LC00457C

    Article  CAS  PubMed  Google Scholar 

  137. Bioscience M Flexible molecular platform (2021). https://www.meridianbioscience.com/

  138. Hoffmann F (2021) Cobas® Liat® system. Roche Diagnostics International, Switzerland. https://diagnostics.roche.com/global/en/products/instruments/cobas-liat.html

    Google Scholar 

  139. Tachibana H, Saito M, Tsuji K, Yamanaka K, Hoa LQ, Tamiya E (2015) Self-propelled continuous-flow PCR in capillary-driven microfluidic device: microfluidic behavior and DNA amplification. Sensors Actuators B Chem 206:303–310. https://doi.org/10.1016/j.snb.2014.09.004

    Article  CAS  Google Scholar 

  140. Shen J, Zheng J, Li Z, Liu Y, Jing F, Wan X, Yamaguchi Y, Zhuang S (2021) A rapid nucleic acid concentration measurement system with large field of view for a droplet digital PCR microfluidic chip. Lab Chip 21(19):3742–3747. https://doi.org/10.1039/D1LC00532D

    Article  CAS  PubMed  Google Scholar 

  141. Xu X, Zhang Q, Song J, Ruan Q, Ruan W, Chen Y, Yang J, Zhang X, Song Y, Zhu Z, Yang C (2020b) A highly sensitive, accurate, and automated single-cell RNA sequencing platform with digital microfluidics. Anal Chem 92(12):8599–8606. https://doi.org/10.1021/acs.analchem.0c01613

    Article  CAS  PubMed  Google Scholar 

  142. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181. https://doi.org/10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  143. Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, Mazutis L (2017) Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12(1):44–73. https://doi.org/10.1038/nprot.2016.154

    Article  CAS  PubMed  Google Scholar 

  144. Pellegrino M, Sciambi A, Treusch S, Durruthy-Durruthy R, Gokhale K, Jacob J, Chen TX, Geis JA, Oldham W, Matthews J, Kantarjian H, Futreal PA, Patel K, Jones KW, Takahashi K, Eastburn DJ (2018) High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics. Genome Res 28(9):1345–1352. https://doi.org/10.1101/gr.232272.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiju G. Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joseph, A., Karthikeyan, A., Nair, S.G., Prince, V.R., Nafrin, P.E., Nair, B.G. (2022). Microfluidics in Chemical Biology. In: Mohanan, P.V. (eds) Microfluidics and Multi Organs on Chip . Springer, Singapore. https://doi.org/10.1007/978-981-19-1379-2_4

Download citation

Publish with us

Policies and ethics