Skip to main content

Optical Coherence Tomography in Brain Gliomas Detection and Peritumoral White Matter State Evaluation

  • Chapter
  • First Online:
Advances in Brain Imaging Techniques

Abstract

Optical coherence tomography (OCT) is a rapidly emerging visualization method providing real-time detailed information about the biological tissues structure without any contrast agents based on the backscattered light detection. In this chapter, we discuss the perspectives of application of OCT in brain glioma surgery. The reader can get acquainted with the problems arising in brain tumor surgery and the possibility of using OCT to solve them. The information about the types of OCT data collected in neurosurgery, approaches for their assessment as well as main features of OCT signal representative for different brain tissue types are presented in the chapter. In addition to the perspectives of using OCT for differentiating tumor and healthy brain tissues, we also demonstrate the possibility of using this technology to evaluate morphological features of white matter in the perifocal area of the tumor and talk about the prospects of using machine learning and artificial intelligence for classifying OCT images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crocetti E, Trama A, Stiller C et al (2012) Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer 48(10):1532–1542. https://doi.org/10.1016/j.ejca.2011.12.013

    Article  PubMed  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  3. Hervey-Jumper SL, Berger MS (2016) Maximizing safe resection of low- and high-grade glioma. J Neuro-Oncol 130(2):269–282. https://doi.org/10.1007/s11060-016-2110-4

    Article  Google Scholar 

  4. Smith JS, Chang EF, Lamborn KR et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26(8):1338–1345. https://doi.org/10.1200/JCO.2007.13.9337

    Article  PubMed  Google Scholar 

  5. Snyder LA, Wolf AB, Oppenlander ME et al (2014) The impact of extent of resection on malignant transformation of pure oligodendrogliomas. J Neurosurg 120(2):309–314. https://doi.org/10.3171/2013.10.JNS13368

    Article  PubMed  Google Scholar 

  6. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62(4):753–764; discussion 264–266. https://doi.org/10.1227/01.neu.0000318159.21731.cf

    Article  PubMed  Google Scholar 

  7. Sanai N, Polley MY, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8. https://doi.org/10.3171/2011.2.jns10998

    Article  PubMed  Google Scholar 

  8. Stummer W, Reulen HJ, Meinel T et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62(3):564–576; discussion 564–576. https://doi.org/10.1227/01.neu.0000317304.31579.17

    Article  PubMed  Google Scholar 

  9. McGirt MJ, Chaichana KL, Gathinji M et al (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110(1):156–162. https://doi.org/10.3171/2008.4.17536

    Article  PubMed  Google Scholar 

  10. Kuhnt D, Becker A, Ganslandt O et al (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro-Oncology 13(12):1339–1348. https://doi.org/10.1093/neuonc/nor133

    Article  PubMed  PubMed Central  Google Scholar 

  11. Almeida JP, Chaichana KL, Rincon-Torroella J et al (2014) The value of extent of resection of glioblastomas: clinical evidence and current approach. Curr Neurol Neurosci Rep 15(2):517. https://doi.org/10.1007/s11910-014-0517-x

    Article  Google Scholar 

  12. Anton K, Baehring JM, Mayer T (2012) Glioblastoma multiforme: overview of current treatment and future perspectives. Hematol Oncol Clin North Am 26(4):825–853. https://doi.org/10.1016/j.hoc.2012.04.006

    Article  PubMed  Google Scholar 

  13. Wolbers JG (2014) Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies. Chin J Cancer 33(1):8–15. https://doi.org/10.5732/cjc.013.10219

    Article  PubMed  PubMed Central  Google Scholar 

  14. Colditz MJ, Jeffree RL (2012) Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: clinical, radiological and pathological studies. J Clin Neurosci 19(11):1471–1474. https://doi.org/10.1016/j.jocn.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  15. Diez Valle R, Tejada Solis S, Idoate Gastearena MA et al (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neuro-Oncol 102(1):105–113. https://doi.org/10.1007/s11060-010-0296-4

    Article  CAS  Google Scholar 

  16. Roberts DW, Valdés PA, Harris BT et al (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. J Neurosurg 114(3):595–603. https://doi.org/10.3171/2010.2.JNS091322

    Article  PubMed  Google Scholar 

  17. Valdes PA, Kim A, Brantsch M et al (2011) Delta-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro-Oncology 13(8):846–856. https://doi.org/10.1093/neuonc/nor086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raheja A, Tandon V, Suri A et al (2015) Initial experience of using high field strength intraoperative MRI for neurosurgical procedures. J Clin Neurosci 22(8):1326–1331. https://doi.org/10.1016/j.jocn.2015.02.027

    Article  PubMed  Google Scholar 

  19. Bohringer HJ, Lankenau E, Stellmacher F et al (2009) Imaging of human brain tumor tissue by near-infrared laser coherence tomography. Acta Neurochir (Wien) 151(5):507–517; discussion 517. https://doi.org/10.1007/s00701-009-0248-y

    Article  CAS  Google Scholar 

  20. Hartmann K, Stein KP, Neyazi B et al (2021) Optical coherence tomography of cranial dura mater: microstructural visualization in vivo. Clin Neurol Neurosurg 200:106370. https://doi.org/10.1016/j.clineuro.2020.106370

    Article  PubMed  Google Scholar 

  21. Yashin KS, Kiseleva EB, Gubarkova EV et al (2019) Cross-polarization optical coherence tomography for brain tumor imaging. Front Oncol 9:201. https://doi.org/10.3389/fonc.2019.00201

    Article  PubMed  PubMed Central  Google Scholar 

  22. Juarez-Chambi RM, Kut C, Rico-Jimenez JJ et al (2019) AI-assisted in situ detection of human glioma infiltration using a novel computational method for optical coherence tomography. Clin Cancer Res 25(21):6329–6338. https://doi.org/10.1158/1078-0432.CCR-19-0854

    Article  PubMed  PubMed Central  Google Scholar 

  23. Henry FP, Wang Y, Rodriguez CLR et al (2015) In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography. J Biomed Opt 20(4):046002. https://doi.org/10.1117/1.JBO.20.4.046002

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yoon Y, Jeon SH, Park YH et al (2016) Visualization of prostatic nerves by polarization-sensitive optical coherence tomography. Biomed Opt Express 7(9):3170–3183. https://doi.org/10.1364/BOE.7.003170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Boppart SA, Brezinski ME, Pitris C et al (1998) Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. Neurosurgery 43(4):834–841. https://doi.org/10.1097/00006123-199810000-00068

    Article  CAS  PubMed  Google Scholar 

  26. Bizheva K, Unterhuber A, Hermann B et al (2005) Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography. J Biomed Opt 10(1):11006. https://doi.org/10.1117/1.1851513

    Article  PubMed  Google Scholar 

  27. Giese A, Böhringer HJ, Leppert J et al (2006) Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors. In: Proceedings of SPIE, vol 6078, Photonic therapeutics and diagnostics II, p 60782Z. https://doi.org/10.1117/12.674436

  28. Yashin KS, Kiseleva EB, Gubarkova EV et al (2017) Multimodal optical coherence tomography for in vivo imaging of brain tissue structure and microvascular network at glioblastoma. In: Proceedings of SPIE, vol 10050, Clinical and translational neurophotonics, p 100500Z. https://doi.org/10.1117/12.2252286

  29. Leitgeb RA, Werkmeister RM, Blatter C et al (2014) Doppler optical coherence tomography. Prog Retin Eye Res 41(100):26–43. https://doi.org/10.1016/j.preteyeres.2014.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park K, You J, Du C et al (2015) Cranial window implantation on mouse cortex to study microvascular change induced by cocaine. Quant Imaging Med Surg 5(1):97–107. https://doi.org/10.3978/j.issn.2223-4292.2014.11.31

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang K, Huang Y, Pradilla G et al (2011) Real-time intraoperative full-range complex FD-OCT guided cerebral blood vessel identification and brain tumor resection in neurosurgery. In: Proceedings of SPIE, vol 7883, Photonic therapeutics and diagnostics VII, p 78833Y. https://doi.org/10.1117/12.874190

  32. Kut C, Chaichana KL, Xi J et al (2015) Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med 7(292):292ra100. https://doi.org/10.1126/scitranslmed.3010611

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yuan W, Kut C, Liang W et al (2017) Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection. Sci Rep 7:44909. https://doi.org/10.1038/srep44909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yashin KS, Kiseleva EB, Moiseev AA et al (2019) Quantitative nontumorous and tumorous human brain tissue assessment using microstructural co- and cross-polarized optical coherence tomography. Sci Rep 9:2024. https://doi.org/10.1038/s41598-019-38493-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. You J, Pan C, Park K et al (2020) In vivo detection of tumor boundary using ultrahigh-resolution optical coherence angiography and fluorescence imaging. J Biophotonics 13(3):e201960091. https://doi.org/10.1002/jbio.201960091

    Article  PubMed  Google Scholar 

  36. Almasian M, Wilk LS, Bloemen PR et al (2019) Pilot feasibility study of in vivo intraoperative quantitative optical coherence tomography of human brain tissue during glioma resection. J Biophotonics 12(10):e201900037. https://doi.org/10.1002/jbio.201900037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodriguez CL, Szu JI, Eberle MM et al (2014) Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography. Neurophotonics 1(2):025004. https://doi.org/10.1117/1.NPh.1.2.025004

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zoeller GK, Benveniste RJ, Landy H et al (2009) Outcomes and management strategies after nondiagnostic stereotactic biopsies of brain lesions. Stereotact Funct Neurosurg 87(3):174–181. https://doi.org/10.1159/000222661

    Article  PubMed  Google Scholar 

  39. Dammers R, Haitsma IK, Schouten JW et al (2008) Safety and efficacy of frameless and frame-based intracranial biopsy techniques. Acta Neurochir (Wien) 150(1):23–29. https://doi.org/10.1007/s00701-007-1473-x

    Article  CAS  Google Scholar 

  40. Dammers R, Schouten JW, Haitsma IK et al (2010) Towards improving the safety and diagnostic yield of stereotactic biopsy in a single centre. Acta Neurochir (Wien) 152(11):1915–1921. https://doi.org/10.1007/s00701-010-0752-0

    Article  Google Scholar 

  41. Tilgner J, Herr M, Ostertag C et al (2005) Validation of intraoperative diagnoses using smear preparations from stereotactic brain biopsies: intraoperative versus final diagnosis—influence of clinical factors. Neurosurgery 56(2):257–265; discussion 257–265. https://doi.org/10.1227/01.neu.0000148899.39020.87

    Article  PubMed  Google Scholar 

  42. Woodworth G, McGirt M, Samdani A et al (2005) Accuracy of frameless and frame-based image-guided stereotactic brain biopsy in the diagnosis of glioma: comparison of biopsy and open resection specimen. Neurol Res 27(4):358–362. https://doi.org/10.1179/016164105X40057

    Article  PubMed  Google Scholar 

  43. Heper AO, Erden E, Savas A et al (2005) An analysis of stereotactic biopsy of brain tumors and nonneoplastic lesions: a prospective clinicopathologic study. Surg Neurol 64(Suppl 2):S82–S88. https://doi.org/10.1016/j.surneu.2005.07.055

    Article  PubMed  Google Scholar 

  44. Gralla J, Nimsky C, Buchfelder M et al (2003) Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results. Zentralbl Neurochir 64(4):166–170. https://doi.org/10.1055/s-2003-44620

    Article  CAS  PubMed  Google Scholar 

  45. Shooman D, Belli A, Grundy PL (2010) Image-guided frameless stereotactic biopsy without intraoperative neuropathological examination. J Neurosurg 113(2):170–178. https://doi.org/10.3171/2009.12.JNS09573

    Article  PubMed  Google Scholar 

  46. Grossman R, Sadetzki S, Spiegelmann R et al (2005) Haemorrhagic complications and the incidence of asymptomatic bleeding associated with stereotactic brain biopsies. Acta Neurochir (Wien) 147(6):627–631; discussion 631. https://doi.org/10.1007/s00701-005-0495-5

    Article  CAS  Google Scholar 

  47. Field M, Witham TF, Flickinger JC et al (2001) Comprehensive assessment of hemorrhage risks and outcomes after stereotactic brain biopsy. J Neurosurg 94(4):545–551. https://doi.org/10.3171/jns.2001.94.4.0545

    Article  CAS  PubMed  Google Scholar 

  48. Dorward NL, Paleologos TS, Alberti O et al (2002) The advantages of frameless stereotactic biopsy over frame-based biopsy. Br J Neurosurg 16(2):110–118. https://doi.org/10.1080/02688690220131705

    Article  CAS  PubMed  Google Scholar 

  49. Lunsford LD, Niranjan A, Khan AA et al (2008) Establishing a benchmark for complications using frame-based stereotactic surgery. Stereotact Funct Neurosurg 86(5):278–287. https://doi.org/10.1159/000147636

    Article  PubMed  Google Scholar 

  50. Lorenser D, Yang X, Kirk RW et al (2011) Ultrathin side-viewing needle probe for optical coherence tomography. Opt Lett 36(19):3894–3896. https://doi.org/10.1364/OL.36.003894

    Article  CAS  PubMed  Google Scholar 

  51. Scolaro L, Lorenser D, McLaughlin RA et al (2012) High-sensitivity anastigmatic imaging needle for optical coherence tomography. Opt Lett 37(24):5247–5249. https://doi.org/10.1364/OL.37.005247

    Article  PubMed  Google Scholar 

  52. McLaughlin RA, Quirk BC, Curatolo A et al (2012) Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. IEEE J Sel Top Quant Electron 18(3):1184–1191. https://doi.org/10.1109/JSTQE.2011.2166757

    Article  CAS  Google Scholar 

  53. Ramakonar H, Quirk BC, Kirk RW et al (2018) Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans. Sci Adv 4(12):eaav4992. https://doi.org/10.1126/sciadv.aav4992

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cuddapah VA, Robel S, Watkins S et al (2014) A neurocentric perspective on glioma invasion. Nat Rev Neurosci 15(7):455–465. https://doi.org/10.1038/nrn3765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Preusser M, Haberler C, Hainfellner JA (2006) Malignant glioma: neuropathology and neurobiology. Wien Med Wochenschr 156(11–12):332–337. https://doi.org/10.1007/s10354-006-0304-7

    Article  PubMed  Google Scholar 

  56. Witwer BP, Moftakhar R, Hasan KM et al (2002) Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97(3):568–575. https://doi.org/10.3171/jns.2002.97.3.0568

    Article  PubMed  Google Scholar 

  57. Potapov AA, Goryainov SA, Zhukov VY et al (2014) The long-associative pathway of the white matter: modern view from the perspective of neuroscience. Zh Vopr Neirokhir Im N N Burdenko 78(5):66–77; discussion 77

    CAS  PubMed  Google Scholar 

  58. Mori S, Frederiksen K, van Zijl PCM et al (2002) Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Ann Neurol 51(3):377–380. https://doi.org/10.1002/ana.10137

    Article  PubMed  Google Scholar 

  59. Mottershead J, Schmierer K, Clemence M et al (2003) High field MRI correlates of myelin content and axonal density in multiple sclerosis. J Neurol 250(11):1293–1301. https://doi.org/10.1007/s00415-003-0192-3

    Article  CAS  PubMed  Google Scholar 

  60. Stikov N, Campbell JSW, Stroh T et al (2015) Quantitative analysis of the myelin g-ratio from electron microscopy images of the macaque corpus callosum. Data Brief 4:368–373. https://doi.org/10.1016/j.dib.2015.05.019

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liewald D, Miller R, Logothetis N et al (2014) Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biol Cybern 108(5):541–557. https://doi.org/10.1007/s00422-014-0626-2

    Article  PubMed  PubMed Central  Google Scholar 

  62. Trapp BD, Kidd GJ (2004) Structure of the myelinated axon. In: Lazarini RA, Griffin JW, Lassmann H, Nave KA, Miller RH, Trapp BD (eds) Myelin biology and disorders. Elsevier, Amsterdam, pp 3–27

    Google Scholar 

  63. Morrell P, Quarles RH (1999) Myelin formation, structure and biochemistry. In: Siegel GJ, Agranoff BW, Alber RW, Risher SK, Uhler MD (eds) Basic neurochemistry, 6th edn. Raven Press, New York, pp 70–93

    Google Scholar 

  64. Kiseleva EB, Yashin KS, Moiseev AA et al (2017) Cross-polarization optical coherent tomography in comparative in vivo and ex vivo studies of optical properties of normal and tumorous brain tissues. Sovrem Tehnol Med 9(4):177–185. https://doi.org/10.17691/stm2017.9.4.22

    Article  Google Scholar 

  65. Strenge P, Lange B, Grill C et al (2020) Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis. In: Proceedings of SPIE, vol 11228, Optical coherence tomography and coherence domain optical methods in biomedicine XXIV, p 112282O. https://doi.org/10.1117/12.2545659

  66. Möller J, Bartsch A, Lenz M et al (2021) Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases. Int J Comput Assist Radiol Surg 16(9):1517–1526. https://doi.org/10.1007/s11548-021-02412-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The development of an approach for quantitative assessment of CP OCT data was supported by the Russian Foundation for Basic Research, grant No. 18-29-01049_mk.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gladkova, N.D. et al. (2022). Optical Coherence Tomography in Brain Gliomas Detection and Peritumoral White Matter State Evaluation. In: Mazumder, N., Gangadharan, G., Kistenev, Y.V. (eds) Advances in Brain Imaging Techniques. Springer, Singapore. https://doi.org/10.1007/978-981-19-1352-5_1

Download citation

Publish with us

Policies and ethics