Skip to main content

Flexible 3D Profile Roll Forming Technology

  • Chapter
  • First Online:
Flexible Metal Forming Technologies

Abstract

Nowadays, roll forming becomes one of the most promising sheet metal forming method due to its excellent superiority of capital saving and capability of lightweight, high accuracy manufacturing technique. It has been increasingly used in a wide range of sectors, such as aerospace, automotive, transportation, construction, etc. However, with the requirements of rapid manufacturing and more complex customized profile shape in forming direction, such as variable shape, depth, etc., traditional roll forming is no longer suitable due to the movement restrictions along transverse and vertical directions. Also, with the trend of industry 4.0, traditional roll forming is fundamentally lack of machine learning capability for intelligent manufacturing upgrade. A new replacement called (3D) flexible roll forming has been proposed in recent years to confront the above challenges. The technology is carried out via an advanced control system. It is a complicated flexible manufacturing system composed of many key elements/parts, such as six-axis robot arms, high, blankholder system, smart sensors and other key elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sedlmaier A, Ehrlenspiel K (1984) Integriertes computer-Programmsystem ”Kaltprofilierwalzen” (KPW). Fachberichte für Metallbearbeitung 61, No 11–12

    Google Scholar 

  2. Halmos GT (2006) Roll_Forming_Handbook_

    Google Scholar 

  3. Sun Y (2017) Fundamental study of chain-die forming: identifying the essential characteristics of fabricated AHSS profiles enabling process improvement

    Google Scholar 

  4. Sedlmaier A, Dietl T, Ferreira P (2017) Digitalization in roll forming manufacturing. J Phys Conf Ser 896

    Google Scholar 

  5. Kasaei MM, Naeini HM, Abbaszadeh B, Silva MB, Martins PAF (2015) Flexible roll forming. In: Materials forming and machining, pp 51–71

    Google Scholar 

  6. Ma Y (2014) The control system research of multi-axis flexible roll forming. (Master), North China University of Technology

    Google Scholar 

  7. Sedlmaier A, Dietl T (2018) 3D roll forming center for automotive applications. Elsevier B.V, Procedia Manuf 15:767–774. In: 17th International conference on metal forming, metal forming, pp 16–19

    Google Scholar 

  8. Sedlmaier A, Dietl T, Harrasser J (2017) 3D rollforming in automotive industry. In: SCT2017 5th international conference on steels for cars and trucks, steel institute. www.sct2017.com

  9. Ai Z, Liu J, Han F, Jing Z (2010) Research improvement of variable section flexible roll forming technology at home and abroad. Automob Parts (19):34–36

    Google Scholar 

  10. Larrañaga J, Galdos L, Uncilla L, Etxaleku A (2010) Development and validation of a numerical model for sheet metal roll forming. IntJ Mater Form 3(1):151–154

    Article  Google Scholar 

  11. Sheu J-J, Liang C-F, Yu C-H, Hsu W-C, Lee P-K (2018) Flexible roll forming of U-section product with curved bending profile using advanced high strength steel. Procedia Manuf 15:782–787

    Article  Google Scholar 

  12. Dr & Prof (2018) Key technology and development of roll forming in automobile lightweight—North China University of Technology. In: Proceedings of the first automobile internal high pressure forming and high strength steel and aluminum forming technology forum, pp 35–44

    Google Scholar 

  13. Park HS, Dang DV, Nguyen TT (2019) Development of a flexible roll forming machine for cutting cured parts with virtual prototyping technology

    Google Scholar 

  14. Buddhika Abeyrathna DMW, A/Prof Bernard Rolfe (2018) WISCO interim report_27_08_2018_Final

    Google Scholar 

  15. Jiao J, Rolfe B, Mendiguren J, Weiss M (2015) An analytical approach to predict web-warping and longitudinal strain in flexible roll formed sections of variable width. Int J Mech Sci 90:228–238

    Article  Google Scholar 

  16. Sedlmaier A, Dietl T (2018) 3D roll forming center for automotive applications. Elsevier B.V. Procedia Manuf 15:767–774

    Article  Google Scholar 

  17. Yan Y, Wang H, Li Q, Qian B, Mpofu K (2014) Simulation and experimental verification of flexible roll forming of steel sheets. Int J Adv Manuf Technol 72(1–4):209–220

    Article  Google Scholar 

  18. Weiss M (2019) Confirmation of candidature report

    Google Scholar 

  19. Sreenivas AA (2020) Confirmation of candidature report

    Google Scholar 

  20. Yong Sun DBA, Weiss M, Peirra M (2017) Deakin University and Wuhan Iron and Steel (Group) Corp.

    Google Scholar 

  21. Weibiao C, Shuanhu W, Binbin P, Yu S (2013) Aided design of P form tube by COPRA. Mach Tool Hydraul 41(05):85–88

    Google Scholar 

  22. Zhenxi L, Tingyu Z, Jianpin L, Yu Q (2019) Roll forming process design and FEM analysis of automobile anti-collision beam based on COPRA. Paper presented at the The 15th China CAE engineering analysis technology annual conference, Shanghai, China

    Google Scholar 

  23. Qing-dong S, Chuan-hong W, You-liang R, Liang G, Peng J (2016) T-tube forming process optimization and the rolling die design based on COPRA. Die Mould Ind 42(09):59–63

    Google Scholar 

  24. Deole AD, Design ME (2019) Thesis_Final_weiss

    Google Scholar 

  25. Bao Z, Wuxue D, Binbin P (2014) Application of downhill method in roll forming. Forging Stamping Technol 39(01):52–57

    Google Scholar 

  26. Abeyrathna B, Abvabi A, Rolfe B, Taube R, Weiss M (2016) Numerical analysis of the flexible roll forming of an automotive component from high strength steel. IOP Conf Ser Mater Sci Eng 159(1):012005 (012009pp)

    Google Scholar 

  27. BAJC&Fund (2019) Baosteel 2019_Weiss_160719_Final (2)

    Google Scholar 

  28. Abeyrathna B, Rolfe B, Harrasser J, Sedlmaier A, Ge R, Pan L, Weiss M (2017) Prototyping of automotive components with variable width and depth. J Phys Conf Ser 896

    Google Scholar 

  29. Eggertsen PA, Mattiasson K (2009) On the modelling of the bending–unbending behaviour for accurate springback predictions. Int J Mech Sci 51(7):547–563

    Article  Google Scholar 

  30. Kim D, Lee M-G, Kim C, Wenner ML, Wagoner RH, Barlat F, Kang TJ (2003) Measurements of anisotropic yielding, bauschinger and transient behavior of automotive dual-phase steel sheets. Met Mater Int 9(6):561

    Article  Google Scholar 

  31. Li Y, Sun Y (2018) A numerical study on chain-die forming of the AHSS U-channel and contrast with roll forming. Int J Mech Sci

    Google Scholar 

  32. Morestin F, Boivin M (1996) On the necessity of taking into account the variation in the Young modulus with plastic strain in elastic-plastic software. Nucl Eng Des 162(1):107–116

    Article  Google Scholar 

  33. PÉRez R, Benito J, Prado J (2005) Study of the inelastic response of TRIP steels after plastic deformation. Isij International—ISIJ INT 45:1925–1933

    Google Scholar 

  34. Yu HY (2009) Variation of elastic modulus during plastic deformation and its influence on springback. Mater Des 30(3):846–850

    Article  Google Scholar 

  35. Weiss M, Wolfkamp H, Rolfe BF, Hodgson PD, Hemmerich E (2009) Measurement of bending properties in strip for roll forming

    Google Scholar 

  36. Woo YY, Han SW, Hwang TW, Park JY, Moon YH (2018) Characterization of the longitudinal bow during flexible roll forming of steel sheets. J Mater Process Technol 252:782–794

    Article  Google Scholar 

  37. Abeyrathna B, Ghanei S, Rolfe B, Taube R, Weiss M (2021) Optimising part quality in the flexible roll forming of an automotive component. Int J Adv Manuf Technol, 1–13

    Google Scholar 

  38. Kang PG, Woo YY, Moon YH (2018) Effects of circular holes on the web warping of perforated blanks in flexible roll forming. Proc Inst Mech Eng Part B J Eng Manuf 233(9):1980–1992

    Article  Google Scholar 

  39. Larrañaga J, Berner S, Galdos L, Groche P, Chinesta F, Chastel Y, El Mansori M (2011) Geometrical accuracy improvement in flexible roll forming lines

    Google Scholar 

  40. Park J-C, Yang D-Y, Cha M, Kim D, Nam J-B (2014) Investigation of a new incremental counter forming in flexible roll forming to manufacture accurate profiles with variable cross-sections. Int J Mach Tools Manuf 86:68–80

    Article  Google Scholar 

  41. Weiss M (2020) Combined_CoC_Report-2_Weiss 3(1)

    Google Scholar 

  42. Kasaei MM, Naeini HM, Liaghat GH, Silva CMA, Silva MB, Martins PAF (2015) Revisiting the wrinkling limits in flexible roll forming. J Strain Anal Eng Des 50(7):528–541

    Article  Google Scholar 

  43. Groche P, Zettler A, Berner S, Schneider G (2011) Development and verification of a one-step-model for the design of flexible roll formed parts. IntJ Mater Form 4(4):371–377

    Article  Google Scholar 

  44. Abee A, Berner S, Sedlmaier A (2008) Accuracy improvement of roll formed profiles with variable cross sections. 기타자료, 249–250

    Google Scholar 

  45. Abeyrathna B, Rolfe B, Pan L, Ge R, Weiss M (2016) Flexible roll forming of an automotive component with variable depth. Adv Mater Process Technol 2(4):527–538

    Google Scholar 

  46. Abeyrathna B, Ghanei S, Rolfe B, Taube R, Weiss M .(2020) Springback and end flare compensation in flexible roll forming

    Google Scholar 

  47. Yan Y, Nie H, Wang H, Li Q, Liu Y (2017) A novel roll-die forming technology and its FEM simulation

    Google Scholar 

  48. Weiss M, Buddhika A, Sadegh G, Bernard R, Richard T (2021) Optimising part quality in the flexible roll forming of an automotive component

    Google Scholar 

  49. Yu Y, Wang H, Li Q, Guan Y (2015) Finite element simulation of flexible roll forming with supplemented material data and the experimental verification

    Google Scholar 

  50. Kasaei MM, Naeini HM, Abbaszadeh B, Mohammadi M, Ghodsi M, Kiuchi M, Zolghadr R, Liaghat G, Tafti RA, Tehrani MS (2014) Flange wrinkling in flexible roll forming process

    Google Scholar 

  51. Dietl T, Sedlmaier A (2017) Neue Konzepte für konventionelles und 3D Walzprofilieren. Steuerung Umformverfahren Anwendungen

    Google Scholar 

  52. https://youtu.be/7I1EMPflBAw video 2017: Flexible roll forming of Truck Chassis Long Members

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Y. et al. (2022). Flexible 3D Profile Roll Forming Technology. In: Guo, X. (eds) Flexible Metal Forming Technologies. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-1348-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1348-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1347-1

  • Online ISBN: 978-981-19-1348-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics