Skip to main content

Biopolymers from Fungi and Their Applications

  • Chapter
  • First Online:
Fungal Biopolymers and Biocomposites

Abstract

The cell wall polysaccharides of fungi viz. β-glucan, chitin, chitosan, and mannan and different fungal exopolysaccharides find wide-ranging applications in various industries. The fungal exopolysaccharides (EPSs) such as pullulan (Aureobasidium), scleroglucan (Sclerotium), and botryosphaeran (Botryosphaeria) are recognized as high value bio-macromolecules for pharmaceuticals, medicine, foods and other industries. The fungal waste is generated in mushroom industry, wineries (Saccharomyces and non-Saccharomyces yeasts), enzyme (Aspergillus, Trichoderma), and antibiotic (Penicillium) industries, to name a few. Whereas, the genera like Absidia, Benjaminiella, Gongronella, Rhizopu, Saccharomyces and others have been studied extensively for chitin and/or chitosan, glucan, mannan production. Usually the fungal strains, solid or submerged fermentation, nutritional parameters decide the quality of the biopolymers produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Araújo TR, De Oliveira PCL, Cardoso VL, Filho UC, Vieira PA (2016) Biopolymer production using fungus Mucor racemosus Fresenius and glycerol as substrate. Polímeros 26:144–151

    Article  Google Scholar 

  • Barbosa AM, Steluti RM, Dekker RFH, Cardoso MS, Corradi da Silva ML (2003) Structural characterization of botryosphaeran: a (1→3;1→6)-β-d-glucan produced by the ascomyceteous fungus, Botryosphaeria sp. Carbohydr Res 338:1691–1698

    Article  CAS  Google Scholar 

  • Bartnicki-Garcia S (2006) Chitosomes: past, present and future. FEMS Yeast Res 6:957–965

    Article  CAS  Google Scholar 

  • Bauer R (1938) Physiology of Dematium Pullulans de Bary. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg Abt2 98:133–167

    Google Scholar 

  • Castillo NA, Valdez AL, Farina JI (2015) Microbial production of scleroglucan and downstream processing. Front Microbiol 6:1106. https://doi.org/10.3389/fmicb.2015.01106

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary PM, Tupe SG, Deshpande MV (2013) Chitin synthase inhibitors as antifungal agents. Mini-Rev Med Chem 13:222–236

    CAS  PubMed  Google Scholar 

  • Chavan SB, Deshpande MV (2013) Chitinolytic enzymes: an appraisal as a product of commercial potential. Biotechnol Progress 29:833–846. https://doi.org/10.1002/btpr.1732

    Article  CAS  Google Scholar 

  • Chitnis M, Deshpande MV (2002) Isolation and regeneration of protoplasts from the yeast and mycelial form of a dimorphic fungus Benjaminiella poitrasii: role of chitin metabolism for morphogenesis during regeneration. Microbiol Res 157:29–37

    Article  CAS  Google Scholar 

  • Chitnis M, Munro CA, Brown AJP, Gooday GW, Gow NAR, Deshpande MV (2002) The zygomycetous fungus, Benjaminiella poitrasii contains a large family of differentially regulated chitin synthase genes. Fungal Genetics Biol 36:215–223

    Article  CAS  Google Scholar 

  • Dekker RFH, Barbosa A (2019) Botryosphaeran – A fungal exopolysaccharide of the (1→3) (1→6)-β-D-glucan kind: structure and biological functions. In: Extracellular Sugar-Based Biopolymers Matrices, Biologically Inspired Systems, vol 12. Springer Nature, Cham, pp 433–484. https://doi.org/10.1007/978-3-030-12919-4_11

    Chapter  Google Scholar 

  • Deshpande MV (1986) Enzymatic degradation of chitin and its biological applications. J Sci Ind Res 45:273–281

    CAS  Google Scholar 

  • Deshpande MV (1992) Proteinases in fungal morphogenesis. World J Microbiol Biotechnol 8:242–250

    Article  CAS  Google Scholar 

  • Deshpande MV, O'Donnell R, Gooday GW (1997) Regulation of chitin synthase activity in the dimorphic fungus Benjaminiella poitrasii by external osmotic pressure. FEMS Microbiol Lett 152:327–332

    Article  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics, and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Erjavec J, Kos J, Ravnikar M, Dreo T, Sabotič J (2012) Proteins of higher fungi – from forest to application. Trends Biotechnol 30:259–273

    Article  CAS  Google Scholar 

  • Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N (2020) The fungal cell wall: Candida, Cryptococcus, and aspergillus species. Front Microbiol 10:2993. https://doi.org/10.3389/fmicb.2019.02993

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghormade V, Kulkarni S, Doiphode N, Rajamohanan PR, Deshpande MV (2010) Chitin deacetylase: A comprehensive account on its role in nature and its biotechnological applications. In: Mendez-Vilas A (ed) Technology and education topics in applied microbiology and microbial biotechnology. Current Research, Formatex Research Center, Badajoz, pp 1054–1066

    Google Scholar 

  • Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromolec 104(B):1415–1421. https://doi.org/10.1016/j.ijbiomac.2017.01.112

    Article  CAS  Google Scholar 

  • Giese EC, Covizzi LG, Dekker RFH, Monteiro NK, Da Silva CM d L, Barbosa AM (2006) Enzymatic hydrolysis of botryosphaeran and laminarin by β-1,3-glucanases produced by Botryosphaeria rhodina and Trichoderma harzianum Rifai. Process Biochem 41:1265–1271. https://doi.org/10.1016/j.procbio.2005.12.023

    Article  CAS  Google Scholar 

  • Gooday GW (1990) Inhibition of chitin metabolism. In: Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Copping LG (eds) Biochemistry of cell walls and membranes in fungi. Springer, Berlin, pp 60–79

    Google Scholar 

  • Gow NAR, Latge J-P, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectrum 5(3) FUNK-0035-2016. https://doi.org/10.1128/microbiolspec

  • Henry C, Fontaine T, Heddergott C, Robinet P, Aimanianda V, Beau R, Beauvais A, Mouyna I, Prevost M-C, Fekkar A, Zhao Y, Perlin D, Latge J-P (2016) Biosynthesis of cell wall mannan in the conidium and the mycelium of aspergillus fumigatus. Cell Microbiol 18:1881–1891

    Article  CAS  Google Scholar 

  • Ibe C, Munro CA (2021) Fungal cell wall: an underexploited target for antifungal therapies. PLoS Pathog 17:e1009470. https://doi.org/10.1371/journal.ppat.1009470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L (2010) Optimization of fermentation conditions for pullulan production by Aureobasidium pullulan using response surface methodology. Carbohydr Polym 79:414–417

    Article  CAS  Google Scholar 

  • Kelkar HS (1991) Studies on pullulan hydrolysing activity from Sclerotium rolfsii. A PhD thesis submitted to Pune University, Pune

    Google Scholar 

  • Kelkar HS, Deshpande MV (1993) Purification and characterization of a pullulan-hydrolysing glucoamylase from Sclerotium rolfsii. Stӓrke/Starch 45:361–368

    Article  CAS  Google Scholar 

  • Kershaw MJ, Wakley G, Talbot NJ (1998) Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J 17:3838–3849

    Article  CAS  Google Scholar 

  • Kéry V, Kogan G, Zajacová K, Slámová K, Masler L, Alföldi J (1991) Hydrolysis of yeast cell-wall glucan by extracellular (1→3)-β-glucanases from aspergillus Niger. Enz Microb Technol 13:87–90

    Article  Google Scholar 

  • Khale A, Deshpande MV (1992) Dimorphism in Benjaminiella poitrasii: cell wall chemistry of parent and two stable yeast mutants. Anton van Leeuwenhoek 62:299–307

    Article  CAS  Google Scholar 

  • LeDuy A, Choplin L, Zajic J, Luong J (2014) Pullulan: properties, synthesis, and applications. In: Encyclopedia of polymer science and technology. https://doi.org/10.1002/0471440264.pst620

    Chapter  Google Scholar 

  • Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16. https://doi.org/10.4137/MBI.S10957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin K, McDougall BM, Mcllroy S, Chen JJ, Seviour RJ (2007) Biochemistry and molecular biology of exocellular fungal β-(1,3)- and β-(1,6)-glucanases. FEMS Microbiol Rev 31:168–192

    Article  CAS  Google Scholar 

  • Mishra B, Zamare D, Manikanta A (2018) Selection and utilization of agro-industrial waste for biosynthesis and hyper-production of pullulan: A review. In: Varjani S, Parameswaran B, Kumar S, Khare S (eds) Biosynthetic technology and environmental challenges. Springer Nature, Singapore, pp 89–103. https://doi.org/10.1007/978-981-10-7434-9_6

    Chapter  Google Scholar 

  • Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  Google Scholar 

  • Osemwegie OO, Adetunji CO, Ayeni EA, Adeiobi OI, Arise RO, Nwonuma CO, Oghenekaro AO (2020) Exopolysaccharides from bacteria and fungi: current status and perspectives in Africa. Heliyon 6:e04205. https://doi.org/10.1016/j.heliyon.2020.e04205

    Article  PubMed  PubMed Central  Google Scholar 

  • Phadatare S, Srinivasan MC, Deshpande MV (1989) Evidence for the involvement of serine protease in the conidial discharge of Conidiobolus coronatus. Arch Microbiol 153:47–49

    Article  CAS  Google Scholar 

  • Pitarch A, Nombela C, Gil C (2008) Collection of proteins secreted from yeast protoplasts in active cell wall regeneration. Meth Mol Biol 425:241–263

    Article  CAS  Google Scholar 

  • Ruiz-Herrera J, Ortiz-Castellanos L (2019) Cell wall glucans of fungi. A review. Cell Surface 5:100022. https://doi.org/10.1016/j.tcsw.2019.100022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid J, Meyer V, Volker S (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91:937–947. https://doi.org/10.1007/s00253-011-3438-5

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Bouchet B, Bremond K, Gallant DJ, Bouchonneau M (1998) Studies on pullulan extracellular production and glycogen intracellular content in Aureobasidium pullulan. Can J Microbiol 44:1193–1199

    Article  CAS  Google Scholar 

  • Tang YJ, Zhong JJ (2002) Exopolysaccharide biosynthesis and related enzyme activities of the medicinal fungus, Ganoderma lucidum, grown on lactose in a bioreactor. Biotechnol Lett 24:1023–1026

    Article  CAS  Google Scholar 

  • Utama GL, Dio C, Lembong E, Cahyana Y, Balia RL (2020) Microorganism-based β-glucan production and their potential as antioxidant. Sys Rev Pharm 11:868–873

    CAS  Google Scholar 

  • Wösten H, Wessels J (1997) Hydrophobins, from molecular structure to multiple functions in fungal development. Mycoscience 38:363–374

    Article  Google Scholar 

  • Wӧsten HAB (2001) Hydrophobins: multipurpose proteins. Ann Rev Microbiol 55:625–646

    Article  Google Scholar 

  • Wu S, Jin Z, Tong Q, Chen H (2009) Sweet potato: a novel substrate for pullulan production by Aureobasidium pullulans. Carbohydr Polym 76:645–649

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukund V. Deshpande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tupe, S.G., Deshmukh, S.K., Zambare, R.B., Tripathi, A.A., Deshpande, M.V. (2022). Biopolymers from Fungi and Their Applications. In: Deshmukh, S.K., Deshpande, M.V., Sridhar, K.R. (eds) Fungal Biopolymers and Biocomposites. Springer, Singapore. https://doi.org/10.1007/978-981-19-1000-5_1

Download citation

Publish with us

Policies and ethics