Skip to main content

Polyhydroxyalkanoate Production in Transgenic Plants: Green Plastics for Better Future and Environmental Sustainability

  • Chapter
  • First Online:
Agro-biodiversity and Agri-ecosystem Management
  • 300 Accesses

Abstract

In the present time, polyhydroxyalkanoates have established itself as the alternatives of petroleum-based synthetic polymers due to their biodegradability and eco-friendly nature. Several efforts have been done toward this direction by using microorganisms. Since the last two decades, several scientists have engaged in search of cost-effective alternatives of producing polyhydroxyalkanoates at larger scales. Therefore, many plant species have been genetically engineered for this purpose. The major obstacles in producing PHA polymers in transgenic plants are the regulation of the appropriate monomer’s composition and ratio synthesized in their cells. Efforts are on the way to encounter these difficulties as soon as possible. Among the targeted cell organelles, plastids have been considered as the best sites for higher production of polyhydroxyalkanoates because of its maternal inheritance and it is unaffected by gene silencing. The research is also going on for enhancing the production and accumulation of these biopolymers in transgenic plants. Polyhydroxyalkanoate production technologies are still costly, but these could be cost-effective in the near future. The present chapter describes about the current status of transgenic plants developed for the production of polyhydroxyalkanoates at cheaper costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson D, Gnanasambandam A, Mills E, O’Shea M, Nielsen L, Brumbley S (2011) Synthesis of short-chain length/medium chain length polyhydroxyalkanoate (PHA) copolymers in peroxisomes of transgenic sugarcane plants. Trop Plant Biol 4(3):170–184

    Article  CAS  Google Scholar 

  • Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Nakashita H, Doi Y, Yamaguchi I (2001) Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. Plant Biotechnol 18:289–293

    Article  CAS  Google Scholar 

  • Arai Y, Nakashita H, Suzuki Y, Kobayashi Y, Shimizu T, Yasuda M, Doi Y, Yamaguchi I (2002) Synthesis of a novel class of polyhydroxyalkanoates in Arabidopsis peroxisomes and their use in monitoring short-chain-length intermediates of β-oxidation. Plant Cell Physiol 43(5):555–562

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H (2004) Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol 45(9):1176–1184

    Article  CAS  PubMed  Google Scholar 

  • Ariffin N, Abdullah R, Muad MR, Lourdes J, Emran NA, Ismail MR, Ismail I, Fadzil MFM, Ling KL, Siddiqui Y, Amir AA, Berahim Z, Omar MH (2011) Constructions of expression vectors of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) and transient expression of transgenes in immature oil palm embryos. Plasmid 66:136–143

    Article  CAS  PubMed  Google Scholar 

  • Baikar V, Rane A, Deopurkar R (2017) Characterization of polyhydroxyalkanoate produced by Bacillus megaterium VB89 isolated from Nisargruna biogas plant. Appl Biochem Biotechnol 183:241–253

    Article  CAS  PubMed  Google Scholar 

  • Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211:841–845

    Article  CAS  PubMed  Google Scholar 

  • Bohmert K, Balbo I, Steinbuchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the beta-ketothiolase gene in transgenic plants: a major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128:1282–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155(4):1690–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brumbley SM, Petrasovits LA, Bonaventura PA, Oshea MJ, Purnell MP, Nielsen LK (2003) Production of polyhydroxyalkanoates in sugarcane. In: Proc. of Int. Soc. of Sugarcane Tech., Molecular Biology Workshop, Montpellier, France, vol 4, p 31

    Google Scholar 

  • Dalton DA, Ma C, Shrestha S, Kitin P, Strauss SH (2011) Trade-offs between biomass growth and inducible biosynthesis of polyhydroxybutyrate in transgenic poplar. Plant Biotechnol J 9(7):759–767

    Article  CAS  PubMed  Google Scholar 

  • De Koning G (1995) Physical properties of bacterial poly((R)-3-hydroxyalkanoates). Can J Microbiol 41:303–309

    Article  Google Scholar 

  • Din MF, Mohanadoss P, Ujang Z, Van Loosdrecht M, Yunus SM, Chelliapan S, Zambare V, Olsson G (2012) Development of Bio-PORec® system for polyhydroxyalkanoates (PHA) production and its storage in mixed cultures of palm oil mill effluent (POME). Bioresour Technol 124:208–216

    Article  PubMed  CAS  Google Scholar 

  • Dobrogojski J, Spychalski M, Lucinski R, Borek S (2018) Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiol Plant 40:162–178

    Article  CAS  Google Scholar 

  • Endo N, Yoshida K, Akiyoshi M, Manji S (2006) Hybrid fiber production: a wood and plastic combination in transgenic rice and Tamarix made by accumulating poly-3-hydroxybutyrate. Plant Biotechnol 23:99–109

    Article  CAS  Google Scholar 

  • Fuad FAA, Ismail I, Sidik N, Zain CRCM, Abdullah R (2008) Super binary vector system enhanced transformation frequency and expression level of polyhydroxyvalerate gene in oil palm immature embryo. Asian J Plant Sci 7(6):526–535

    Article  CAS  Google Scholar 

  • Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21:580–605

    Article  CAS  Google Scholar 

  • Hahn JJ, Eschenlauer AC, Sleytr UB, Somers DA, Srienc F (1999) Peroxisomes as sites for synthesis of polyhydroxyalkanoates in transgenic plants. Biotechnol Prog 15:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Houmiel KL, Slater S, Broyles D (1999) Poly (β-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta 209:547–550

    Article  CAS  PubMed  Google Scholar 

  • Ismail I, Iskandar NF, Chee GM, Abdullah R (2010) Genetic transformation and molecular analysis of polyhydroxybutyrate biosynthetic gene expression in oil palm (Elaeis guineensis Jacq. var Tenera) tissues. Plant Omics 3:18–27

    CAS  Google Scholar 

  • John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci U S A 93:12768–12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YB, Lenz RW (2001) Polysters from microorganisms. Adv Biochem Eng Biotechnol 71:51–79

    CAS  PubMed  Google Scholar 

  • Kosseva MR, Rusbandi R (2018) Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromol 107:762–778

    Article  CAS  PubMed  Google Scholar 

  • Kourtz L, Dillon K, Daughtry S, Madison LL, Peoples O, Snell KD (2005) A novel thiolase-reductase gene fusion promotes the production of polyhydroxybutyrate in Arabidopsis. Plant Biotechnol J 3:435–447

    Article  CAS  PubMed  Google Scholar 

  • Kourtz L, Dillon K, Daughtry S, Madison LL, Peoples O, Snell KD (2007) Chemically inducible expression of the PHB biosynthetic pathway in Arabidopsis. Transgenic Res 16:759–769

    Article  CAS  PubMed  Google Scholar 

  • Kulma A, Skorkowska-Telichowska K, Kostyna K, Szatkowskia M, SkaÅ‚a J, Drulis-Kawa Z, Preisnera M, Zuk M, Szperlika J, Wang YF, Szopaa J (2015) New flax producing bioplastic fibers for medical purposes. Ind Crop Prod 68:80–90

    Article  CAS  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lossl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    Article  CAS  PubMed  Google Scholar 

  • Lossl A, Bohmert K, Harloff H, Eibl C, Muhlbauer S, Koop H (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46(9):1462–1471

    Article  PubMed  CAS  Google Scholar 

  • Malik MR, Yang W, Patterson N, Tang J, Wellinghoff RL, Preuss ML, Burkitt C, Sharma N, Ji Y, Jez JM, Peoples OP, Jaworski JG, Cahoon EB, Snell KD (2015) Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds. Plant Biotechnol J 13(5):675–688

    Article  CAS  PubMed  Google Scholar 

  • Masood F, Yasin T, Hameed A (2014) Polyhydroxyalkanoates—what are the uses? Current challenges and perspectives. Crit Rev Biotechnol 35:514–521

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Nagao R, Murata T, Arai Y, Kichise T, Nakashita H, Taguchi S, Shimada H, Doi Y (2005) Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production in the transgenic Arabidopsis thaliana by the in vitro evolved highly active mutants of polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae. Biomacromolecules 69(4):2126–2130

    Article  CAS  Google Scholar 

  • Matsumoto K, Arai Y, Nagao R, Murata T, Takase K, Nakashita H, Taguchi S, Shimada H, Doi Y (2006) Synthesis of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymers in peroxisome of the transgenic Arabidopsis thaliana harboring the PHA synthase gene from Pseudomonas sp. 61-3. J Polym Environ 14:369–374

    Article  CAS  Google Scholar 

  • Matsumoto K, Murata T, Nagao R, Nomura CT, Arai S, Arai Y, Takase K, Nakashita H, Taguchi S, Shimada H (2009) Production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymer in the plastid of Arabidopsis thaliana using an engineered 3-ketoacyl-acyl carrier protein synthase III. Biomacromolecules 10(4):686–690

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Morimoto K, Gohda A, Shimada H, Taguchi S (2011) Improved polyhydroxybutyrate (PHB) production in transgenic tobacco by enhancing translation efficiency of bacterial PHB biosynthetic genes. J Biosci Bioeng 111(4):485–488

    Article  CAS  PubMed  Google Scholar 

  • McQualter RB, Fong Chong B, O’Shea M, Meyer K, van Dyk DE, Viitanen PV, Brumbley SM (2005) Initial evaluation of sugarcane as a production platform for a p-hydroxybenzoic acid. Plant Biotechnol J 3(1):29–41

    Article  CAS  PubMed  Google Scholar 

  • McQualter RB, Petrasovits LA, Gebbie LK, Schweitzer D, Blackman DM, Chrysanthopoulos P, Hodson MP, Plan MR, Riches JD, Snell KD, Brumbley SM, Nielsen LK (2015) The use of an acetoacetyl-CoA synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnol J 13(5):700–707

    Article  CAS  PubMed  Google Scholar 

  • Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly (3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Appl Microbiol Biotechnol 60:571–576

    Article  CAS  PubMed  Google Scholar 

  • Mitsky TA, Slater S, Reiser SE, Hao M, Houmiel KL (2003) Multigene expression vectors for the biosynthesis of products via multienzyme biological pathways. US Patent Application, 2003/0182678

    Google Scholar 

  • Mittendorf V, Robertson EJ, Leech RM, Kruger N, Steinbuchel A, Poirier Y (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proc Natl Acad Sci U S A 95:13397–13402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282

    Article  CAS  PubMed  Google Scholar 

  • Mozes-Koch R, Tanne E, Brodezki A, Yehuda R, Gover O, Rabinowitch HD, Sela I (2017) Expression of the entire polyhydroxybutyrate operon of Ralstonia eutropha in plants. J Biol Eng 11(1):44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I (1999) Production of biodegradable polyester by a transgenic tobacco. Biosci Biotechnol Biochem 63:870–874

    Article  CAS  PubMed  Google Scholar 

  • Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001a) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691

    Article  CAS  PubMed  Google Scholar 

  • Nakashita H, Arai Y, Suzuki Y, Yamaguchi I (2001b) Molecular breeding of transgenic tobacco plants which accumulate polyhydroxyalkanoates. RIKEN Rev 42:67–70

    CAS  Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic-pathway to the plastids of Arabidopsis thaliana results in high-levels of polymer accumulation. Proc Natl Acad Sci U S A 91:12760–12764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omar WSW, Willis LB, Rha C, Sinskey AJ, Ramli US, Matyunus AM, Parveez GKA, Sambanthamurthi RD (2008) Isolation and utilization of acetyl-coa carboxylase from oil palm (Elaeis guineensis) mesocarp. J Oil Palm Res 2:97–107

    Google Scholar 

  • Omidvar V, Akmar ASN, Marziah M, Maheran AA (2008) A transient assay to evaluate the expression of polyhydroxybutyrate genes regulated by oil palm mesocarp-specific promoter. Plant Cell Rep 27(9):1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Parveez GKA, Bahariah B, Nur Hanin A, Masani AMY, Tarmizi AH, Zamzuri I (2008) Transformation of PHB and PHBV genes driven by maize ubiquitin promoter into oil palm for the production of biodegradable plastics. J Oil Palm Res 2:76–86

    Google Scholar 

  • Parveez GKA, Bahariah B, Ayub NH, Masani MYA, Rasid OA, Tarmizi AH, Ishak Z (2015) Production of polyhydroxybutyrate in oil palm (Elaeis guineensis Jacq.) mediated by microprojectile bombardment of PHB biosynthesis genes into embryogenic calli. Front Plant Sci 6:598

    Article  PubMed  PubMed Central  Google Scholar 

  • Patterson N, Tang J, Cahoon EB, Jaworski JG, Wang W, Peoples OP, Snell KD (2011) Generation of high polyhydroxybutyrate producing oilseeds. Int Patent Appl, WO/2011/034945

    Google Scholar 

  • Petrasovits LA, Purnell MP, Nielsen LK, Brumbley SM (2007) Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol J 5(1):162–172

    Article  CAS  PubMed  Google Scholar 

  • Petrasovits LA, Zhao L, McQualter RB, Snell KD, Somleva MN, Patterson NA, Nielsen LK, Brumbley SM (2012) Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnol J 10(5):569–578

    Article  CAS  PubMed  Google Scholar 

  • Petrasovits LA, McQualter RB, Gebbie LK, Blackman DM, Nielsen LK, Brumbley SM (2013) Chemical inhibition of acetyl coenzyme a carboxylase as a strategy to increase polyhydroxybutyrate yields in transgenic sugarcane. Plant Biotechnol J 11(9):1146–1151

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Gruys KJ (2001) Production of PHAs in transgenic plants. In: Babel W, Steinbuchel A (eds) Biopolyesters. Springer, New York, NY, pp 209–240

    Chapter  Google Scholar 

  • Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Somerville C, Schechtman LA, Satkowski MM, Noda I (1995) Synthesis of high-molecular-weight poly ([R]-(-)-3-hydroxybutyrate) in transgenic Arabidopsis thaliana plant cells. Int J Biol Macromol 17:7–12

    Article  CAS  PubMed  Google Scholar 

  • Purnell MP, Petrasovits LA, Nielsen LK, Brumbley DW (2007) Spatiotemporal characterisation of polyhydroxybutyrate accumulation in sugarcane. Plant Biotechnol J 5:173–184

    Article  CAS  PubMed  Google Scholar 

  • Romano A, Vreugdenhil D, Jamar D, Vander Plas LHW, De Roo G, Witholt B, Eggink G, Mooibroek H (2003) Evidence of medium-chain-length polyhydroxyoctanoate accumulation in transgenic potato lines expressing the Pseudomonas oleovorans Pha-C1 polymerase in the cytoplasm. Biochem Eng J 16(2):135–143

    Article  CAS  Google Scholar 

  • Romano A, Van der Plas LHW, Witholt B, Eggink G, Mooibroek H (2005) Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 3(220):455–464

    Article  CAS  Google Scholar 

  • Sabbagh F, Muhamad I (2017) Production of polyhydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew Sust Energ Rev 72:95–104

    Article  CAS  Google Scholar 

  • Saruul P, Srienc F, Somers DA, Samac DA (2002) Production of a biodegradable plastic polymer, poly-beta-hydroxybutyrate in transgenic alfalfa. Crop Sci 42:919–927

    CAS  Google Scholar 

  • Schnell JA, Treyvaud-Amiguet V, Arnason JT, Johnson DA (2012) Expression of polyhydroxybutyric acid as a model for metabolic engineering of soybean seed coats. Transgenic Res 4(21):895–899

    Article  CAS  Google Scholar 

  • Senior PJ, Dawes EA (1973) The regulation of poly ß-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma L, Srivastava JK, Singh AK (2016) Biodegradable polyhydroxyalkanoate thermoplastics substituting xenobiotic plastics: a way forward for sustainable environment. In: Singh A, Prasad S, Singh R (eds) Plant responses to xenobiotics. Springer, Singapore, pp 317–346

    Chapter  Google Scholar 

  • Slater S, Mitsky TA, Houmiel KL (1999) Metabolic engineering of Arabidopsis and Brassica for poly (3-hydroxybutyrateco-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • SomlevaM, Ali A (2010) Propagation of transgenic plants. Int Patent Appl WO/2010/102220

    Google Scholar 

  • Somleva MN, Snell KD, Beaulieu JJ, Peoples OP, Garrison BR, Patterson NA (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnol J 6(7):663–678

    Article  CAS  PubMed  Google Scholar 

  • Somleva M, Chinnapen H, Ali A, Snell KD, Peoples OP, Patterson N, Tang J, Bohmert-Tatarev K (2012) Increasing carbon flow for polyhydroxybutyrate production in biomass crops. US Patent Appl 2012/0060413

    Google Scholar 

  • Steinbuchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25:148–175

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Kurano M, Arai Y, Nakashita H, Doi Y, Usami R, Horikoshi K, Yamaguchi I (2002) Enzyme inhibitors to increase poly-3-hydroxybutyrate production by transgenic tobacco. Biosci Biotechnol Biochem 66:2537–2542

    Article  CAS  PubMed  Google Scholar 

  • Szopa J, Wrobel-Kwiatkowska M, Kulma A, Zuk M, Skorkowska-Telichowska K, Dyminska L, Maczka M, Hanuza J, Zebrowski J, Preisner M (2009) Chemical composition and molecular structure of fibers from transgenic flax producing polyhydroxybutyrate, and mechanical properties and platelet aggregation of composite materials containing these fibers. Compos Sci Technol 69(14):2438–2446

    Article  CAS  Google Scholar 

  • Tilbrook K, Gebbie L, Schenk PM, Poirier Y, Brumbley SM (2011) Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnol J 9(9):958–969

    Article  CAS  PubMed  Google Scholar 

  • Tilbrook K, Poirier Y, Gebbie L, Schenk PM, McQualter RB, Brumbley SM (2014) Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoates biosynthesis in plant peroxisomes. Plant Biotechnol J 12(8):1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Valentin HE, Broyles DL, Casagrande LA (1999) PHA production, from bacteria to plants. Int J Biol Macromol 25:303–306

    Article  CAS  PubMed  Google Scholar 

  • Van der Walle GAM, De Koning GJM, Weusthuis RA, Eggink G (2001) Properties, modifications and applications of biopolyesters. Adv Bioch Eng/Biotechnol 71:263–291

    Google Scholar 

  • Wang YH, Wu ZY, Zhang XH, Chen GQ, Wu Q, Huang CL, Yang Q (2005) Synthesis of medium-chain-length-polyhydroxyalkanoates in tobacco via chloroplast genetic engineering. Chin Sci Bull 50(11):1113–1120

    Article  CAS  Google Scholar 

  • Wrobel-Kwiatkowska M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107(1):41–54

    Article  CAS  Google Scholar 

  • Wrobel-Kwiatkowska M, Zebrowski J, Starzycki M, Oszmianski J, Szopa J (2007) Engineering of PHB synthesis causes improved elastic properties of flax fibers. Biotechnol Prog 23:269–277

    Article  CAS  PubMed  Google Scholar 

  • Wrobel-Kwiatkowska M, Skorkowska-Telichowska K, Dyminska L, MÄ…czka M, Hanuza J, Szopa J (2009) Biochemical, mechanical, and spectroscopic analyses of genetically engineered flax fibers producing bioplastic (poly-β-hydroxybutyrate). Biotechnol Prog 25:1489–1498

    Article  CAS  PubMed  Google Scholar 

  • Wrobel-Kwiatkowska M, Kropiwnicki M, Zebrowski J, Beopoulos A, Dyminska L, Hanuza J, Rymowicz W (2019) Effect of mcl-PHA synthesis in flax on plant mechanical properties and cell wall composition. Transgenic Res 28(1):77–90

    Article  CAS  PubMed  Google Scholar 

  • Yokoo T, Matsumoto K, Ooba T, Morimoto K, Taguchi S (2015) Enhanced poly (3-hydroxybutyrate) production in transgenic tobacco BY-2 cells using engineered acetoacetyl-CoA reductase. Biosci Biotechnol Biochem 79(6):986–988

    Article  CAS  PubMed  Google Scholar 

  • Yunus AMM, Parveez GKA, Ho CL (2008) Transgenic plants producing polyhydroxyalkanoates. Asia Pac J Mol Biol Biotechnol 16(1):1–10

    Google Scholar 

  • Zhang J, Su N, Zhang Z, Zhao H, Zhu S, Song Y (2002) Expressing PHB synthetic genes through chloroplast genetic engineering. Chin Sci Bull 47(16):1373–1376

    Article  CAS  Google Scholar 

  • Zhong H, Teymouri F, Chapman B, Maqbool SB, Sabzikar R, El-Maghraby Y, Dale B, Sticklen MB (2003) The pea (Pisum sativum L.) rbcS transit peptide directs the Alcaligenes eutrophus polyhydroxybutyrate enzymes into the maize (Zea mays L.) chloroplasts. Plant Sci 165(3):455–462

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, M.K., Singh, S., Kapoor, N., Tomar, R.S. (2022). Polyhydroxyalkanoate Production in Transgenic Plants: Green Plastics for Better Future and Environmental Sustainability. In: Kumar, P., Tomar, R.S., Bhat, J.A., Dobriyal, M., Rani, M. (eds) Agro-biodiversity and Agri-ecosystem Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-0928-3_15

Download citation

Publish with us

Policies and ethics