Skip to main content

Fungal Endophytes: Potential Benefits of Their Future Use in Plant Stress Tolerance and Agriculture

  • Chapter
  • First Online:
Beneficial Microorganisms in Agriculture

Abstract

Global climate change, improper land use, overuse of chemical fertilizers and urban sprawl lead to radical impact on the agricultural production. It also increases abiotic and biotic stresses on crop plants which in turn causes decline in crop yield. This increased the concern of food security worldwide. To provide the food for increasing global population, there is need to increase crop production through sustainable route. The endophytes are group of microorganisms found in plant tissues. It may be beneficial, non-pathogenic, commensal and pathogenic. The beneficial endophytes are the living microorganisms mutually associated with a specific plant and help them to survive under adverse climate conditions. The plant diversity in different climatic zones also leads to endophyte diversity due to their host specificity and growing environment. Among the microorganisms some group of fungi also reside inside the plant body which is referred to as a fungal endophyte. The beneficial fungal endophytes help plant for their growth and development and protect them from adverse climate conditions for their successful survival. Moreover, it produces various metabolites which help plant to defence against abiotic and biotic stresses. The metabolites produced from fungal endophytes recently also gain popularity for their use in various biological fields. Therefore, this chapter provides information on the fungal endophytes, their characteristics, potential use to improve plant abiotic and biotic stress tolerance, weed control, avoiding post-harvest loss and utilization of their bioactive metabolites as prerequisite for crop improvement and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS (2015) Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 22(3):274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Latef AA, Chaoxing H (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant 33:1217–1225

    Article  CAS  Google Scholar 

  • Acuna-Rodriguez IS, Newsham KK, Gundel PE, Torres-Diaz C, Molina-Montenegro MA (2020) Functional roles of microbial symbionts in plant cold tolerance. Ecol Lett 23:1034–1048. https://doi.org/10.1111/ele.13502

    Article  PubMed  Google Scholar 

  • Agostinelli M, Cleary M, Martin JA, Albrectsen BR, Witzell J (2018) Pedunculate Oaks (Quercus robur L.) differing in vitality as reservoirs for fungal biodiversity. Front Microbiol 9:1758

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad Y, Ahmad MN, Zia A, Alam SS, Khan RAA, Riaz M (2020) Biocontrol of economically important weed species through endophytic fungi isolated from Parthenium hysterophorus (family: Asteraceae). Egypt J Biol Pest Control 30:138. https://doi.org/10.1186/s41938-020-00339-5

    Article  Google Scholar 

  • Ali AH, Radwan U, El-Zayat S, El-Sayed MA (2019) The role of the endophytic fungus, Thermomyces lanuginosus, on mitigation of heat stress to its host desert plant Cullen plicata. Biol Futura 70(1):1–7. https://doi.org/10.1556/019.70.2019.01

    Article  CAS  Google Scholar 

  • Alwadi HM, Baka ZAM (2001) Microorganisms associated with Withania somnifera leaves. Microbiol Res 156(4):303–309

    Article  CAS  PubMed  Google Scholar 

  • Amutharaj P, Sekar C, Natheer SE (2012) Intergeneric microbial coaggregates: bioinoculation effect of ACC deaminase positive wild type strains of Pseuodomonas and Paenibacillus, as coaggregates, on the maximization of ISR against Pyricularia oryzae in upland rice cv. ASD-19.CIBTech. J Microbiol 1:57–66

    Google Scholar 

  • Andreas T, Christophe C, Essaid AB (2012) Physiological and molecular changes in plants at low temperatures. Planta 235:1091–1105. https://doi.org/10.1007/s00425-012-1641-y

    Article  CAS  Google Scholar 

  • Arnold AE (2008) In endophytic fungi: hidden components of tropical community ecology. In: Schnitzer S, Carson W (eds) Tropical forest community ecology. Blackwell Publishing, Malden

    Google Scholar 

  • Asthir B, Spoor W, Duffus C (2004) Involvement of polyamines, diamine oxidase and polyamine oxidase in resistance of barley. Euphytica 136:307–312

    Article  CAS  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL et al (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295. https://doi.org/10.1093/jxb/erp165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  PubMed  Google Scholar 

  • Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L (2018) Fungal endophytes: beyond herbivore management. Front Microbiol 9:544. https://doi.org/10.3389/fmicb.2018.00544

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker DJ, Hume DE, Quigley PE (1997) Negligible physiological responses to water deficit in endophyte-infected and uninfected perennial ryegrass. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Plenum Press, New York, pp 137–139

    Chapter  Google Scholar 

  • Bebber DP, Gurr SJ (2015) Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet Biol 74:62–64

    Article  PubMed  Google Scholar 

  • Belesky DP, Stringer WC, Hill NS (1989) Influence of endophyte and water regime upon tall fescue accessions. I. Growth characteristics. Ann Bot 63:495–503

    Google Scholar 

  • Bhardwaj A, Agrawal P (2014) A review fungal endophytes: as a store house of bioactive compound. World J Pharm Pharm Sci 3(9):228–237

    Google Scholar 

  • Cao LX, You JL, Zhou SN (2002) Endophytic fungi from Musa acuminata leaves and roots in South China. World J Microbiol Biotechnol 18(2):169–171

    Article  Google Scholar 

  • Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformospora indica. Int J Pharm BioSci 6(1):333–343

    Google Scholar 

  • Chareprasert S, Piapukiew J, Thienhirun S, Whalley AJS, Sihanonth P (2006) Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. World J Microbiol Biotechnol 22(5):481–486

    Article  Google Scholar 

  • Chhipa H, Deshmukh SK (2019) Fungal endophytes: rising tools in sustainable agriculture production. In: Jha S (ed) Endophytes and secondary metabolites. Springer International Publishing, Cham, pp 1–24. https://doi.org/10.1007/978-3-319-76900-4_26-1

    Chapter  Google Scholar 

  • Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the Indian medicinal plant Ocimum sanctum Linn. PLoS One 10(11):e0141444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu XT, Fu JJ, Sun YF, Xu YM, Miao YJ, Xu YF et al (2016) Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. S Afr J Bot 104:21–29

    Article  CAS  Google Scholar 

  • Chutulo EC, Chalannavar KC (2018) Endophytic mycoflora and their bioactive compounds from Azadirachta indica: a comprehensive review. J Fungi 4(2):42. https://doi.org/10.3390/jof4020042

    Article  CAS  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  Google Scholar 

  • Dai CC, Yu BY, Li X (2008) Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. Afr J Biotechnol 7(19):3505–3509

    CAS  Google Scholar 

  • Dastogeer KMG, Wylie SJ (2017) Plant-microbe interactions. In: Singh DP, et al (eds) Agro-ecological perspectives. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-10-5813-4_8

  • de Battista JP, Bouton JH, Bacon CW, Siegel MR (1990) Rhizome and herbage production of endophyte-removed tall fescue clones and populations. Agron J 82:651–654

    Article  Google Scholar 

  • de Favaro LC, de Sebastianes FL, Araujo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. Liles MR (ed.). PLoS One 7

    Google Scholar 

  • Demain AL (2000) Microbial natural products: a past with a future. In: Wrigley SK, Hayes MA, Thomas R et al (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, pp 3–16

    Google Scholar 

  • Di Francesco A, Martini C, Mari M (2016) Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action? Eur J Plant Pathol 145:711–717

    Article  CAS  Google Scholar 

  • Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204. https://doi.org/10.1007/s00572-002-0215-4

    Article  CAS  PubMed  Google Scholar 

  • Domka A, Rozpadek P, Wazny R, Turnau K (2019) Mucor sp.—an endophyte of Brassicaceae capable of surviving in toxic metal-rich sites. J Basic Microbiol 59:24–37

    Article  CAS  PubMed  Google Scholar 

  • Dudeja SS, Giri R (2014) Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria (review). Afr J Microbiol Res 8(15):1562–1572

    Article  Google Scholar 

  • Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52(3):248–260

    Article  CAS  PubMed  Google Scholar 

  • Elmi AA, West CP, Robbins RT, Kirkpatrick TL (2000) Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci 55:166–172

    Article  Google Scholar 

  • El-Nagerabi SAF, Elshafie AE, Alkhanjari SS (2014) Endophytic fungi associated with endogenous Boswellia sacra. Biodiversitas 15(1):24–30

    Google Scholar 

  • El-Tarabily KA (2013) Biocontrol of damping-off and root and crown rots of cucumber caused by Pythium aphanidermatum by ACC-deaminase producing endophytic actinomycetes. Phytopathology 103:40

    Google Scholar 

  • Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, avolatile-antibiotic-producing fungus. Microbiology 150(Pt 12):40234031

    Google Scholar 

  • Fadiji AE, Babalola OO (2020) Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi J Biol Sci 27:3622–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felde ZA, Pocasangre LE, Carnizares Monteros CA, Sikora RA, Rosales FE, Riveros AS (2006) Effect of combined inoculations of endophytic fungi on the biocontrol of Radopholus similis. InfoMusa 15:12–18

    Google Scholar 

  • Fernandes EG, Pereira OL, da Silva CC, Bento CB, de Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92. https://doi.org/10.1016/j.micres.2015.05.010

    Article  PubMed  Google Scholar 

  • Fogarty RV, Tobin JM (1996) Fungal melanins and their interaction with metals. Enzyme Microb Technol 19:311–317. https://doi.org/10.1016/0141-0229(96)00002-6

    Article  CAS  PubMed  Google Scholar 

  • Fouda AH, Hassan SED, Eid AM, Ewais EED (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104

    Article  Google Scholar 

  • Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24(717):717–724

    Article  CAS  Google Scholar 

  • Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4(13):1346–1351

    Google Scholar 

  • Gashgari R, Gherbawy Y, Ameen F, Alsharari S (2016) Molecular characterization and analysis of antimicrobial activity of endophytic fungi from medicinal plants in Saudi Arabia. Jundishapur J Microbiol 9(1):e26157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gautam AK (2014) Diversity of fungal endophytes in some medicinal plants of Himachal Pradesh, India. Arch Phytopathol Plant Protect 47(5):537544

    Article  CAS  Google Scholar 

  • Gautam AK, Avasthi S (2019) Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. https://doi.org/10.1016/B978-0-12-817004-5.00014-2

  • Gautam AK, Kant M, Thakur Y (2013) Isolation of endophytic fungi from Cannabis sativa and study their antifungal potential. Arch Phytopathol Plant Protect 46(6):627–635

    Article  Google Scholar 

  • Geris dos Santos RM, Rodrigues-Fo E, Rocha WC, Teixeira MFS (2003) Endophytic fungi from Melia azedarach. World J Microbiol Biotechnol 19(8):767770

    Article  Google Scholar 

  • Ghaffari M, Mehdi K, Behnam H, Mohammad S, Patrick S, Ghasem H (2016) Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol Biol 90(10):1007

    Google Scholar 

  • Gherbawy YA, Gashgari RM (2013) Molecular characterization of fungal endophytes from Calotropis procera plants in Taif region (Saudi Arabia) and their antifungal activities. Plant Biosyst 148(6):10851092

    Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332. https://doi.org/10.3389/fmicb.2016.00332

    Article  PubMed  PubMed Central  Google Scholar 

  • Gokul Raj K, Sundaresan N, Ganeshan EJ, Rajapriya P, Muthumary J, Sridhar J et al (2014) Phylogenetic reconstruction of endophytic fungal isolates using internal transcribed spacer 2 (ITS2) region. Bioinformation 10(6):320–328

    Article  Google Scholar 

  • Gond SK, Verma VC, Mishra A, Kumar A, Kharwar RN (2010) Role of fungal endophytes in plant protection. In: Management of fungal plant pathogens, pp 183–197

    Google Scholar 

  • Halo BA, Maharachchikumbura S, Al-Yahyai R, Al-Sadi AM (2019) Cladosporium omanense, a new endophytic species from Zygophyllum coccineum in Oman. Phytotaxa 388(1):145

    Article  Google Scholar 

  • Hamayun M, Hussain A, Khan SA, Kim H-Y, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2011) An ACC deaminase containing A. tumefaciens strain D3 shows biocontrol activity to crown gall disease. Can J Microbiol 57:278–286

    Article  CAS  PubMed  Google Scholar 

  • Harding DP, Raizada MN (2015) Controlling weeds with fungi, bacteria, and viruses: a review. Front Plant Sci 6:659. https://doi.org/10.3389/fpls.2015.00659

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hipol RM (2012) Molecular identification and phylogenetic affinity of two growth promoting fungal endophytes of sweet potato (Ipomea batatas (L.) Lam.) from Baguio City, Philippines. Electron J Biol 8(3):5761

    Google Scholar 

  • Hipol RM, Tamang SMA, Gargabite BF, Bronola-Hipol RLC (2015) Diversity of fungal endophytes isolated from Marchantia polymorpha populations from Baguio City, Philippines. Bull Environ Pharmacol Life Sci 4(3):87–91

    Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Huang Y, Zimmerman NB, Arnold AE (2018) Observations on the early establishment of foliar endophytic fungi in leaf discs and living leaves of a model woody angiosperm, Populus trichocarpa (Salicaceae). J Fungi 4(2):E58. https://doi.org/10.3390/jof4020058

    Article  CAS  Google Scholar 

  • Huseynova I, Sultanova N, Mammadov A, Suleymanov S, Aliyev JA (2014) Biotic stress and crop improvement. In: Improvement of crops in the era of climatic changes, vol. 2. https://doi.org/10.1007/978-1-4614-8824-8_4, © Springer Science+Business Media New York

  • Hussain F, Usman F (2019) Fungal biotic stresses in plants and its control strategy. https://doi.org/10.5772/intechopen.83406

  • Hussain SS, Mehnaz S, Siddique KHM (2018) Harnessing the plant microbiome for improved abiotic stress tolerance. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response. Springer Nature, Singapore, pp 21–43. https://doi.org/10.1007/978-981-10-5514-0_2

    Chapter  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, p 104

    Google Scholar 

  • Ismail, Hamayun M, Hussain A, Iqbal A, Khan SA, Lee IJ (2018) Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. Biomed Res Int 2018:7696831. https://doi.org/10.1155/2018/7696831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan FG, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee IJ (2019) An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol 19:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Javaid A, Ali S (2011) Alternative management of a problematic weed of wheat Avena fatua L. by metabolites of Trichoderma. China J Agri Res 71:205

    Article  Google Scholar 

  • Kabiri R, Nasibi F, Farahbakhsh H (2014) Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Protect Sci 50:43–51

    Article  Google Scholar 

  • Kannojia P, Sharma PK, Kashyap AK, Manzar N, Singh UB, Chaudhary K, Malviya D, Singh S, Sharma SK (2017) Microbe-mediated biotic stress management in plants. In: Singh DP et al (eds) Plant-microbe interactions in agro-ecological perspectives. https://doi.org/10.1007/978-981-10-6593-4_26

  • Kapoor D, Bhardwaj S, Landi M, Sharma A, Ramakrishnan M, Sharma A (2020) The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl Sci 10:5692. https://doi.org/10.3390/app10165692

    Article  CAS  Google Scholar 

  • Kaur T (2020) Fungal endophyte-host plant interactions: role in sustainable agriculture. https://doi.org/10.5772/intechopen.92367

  • Khan AL, Hamayun M, Hussain J, Kang SM, Lee IJ (2012a) The newly isolated endophytic fungus Paraconiothyrium sp. LK1 produces ascotoxin. Molecules 17:1103–1112. https://doi.org/10.3390/molecules17011103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Shinwari ZK, Kim Y, Waqas M, Hamayun M, Kamran M et al (2012b) Role of endophyte Chaetomium globosum lk4 in growth of Capsicum annuum by production of gibberellins and indole acetic acid. Pak J Bot 44:1601–1607

    Google Scholar 

  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee IJ (2014a) Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils 50:75–85. https://doi.org/10.1007/s11274-013-1378-1

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Lee IJ (2014b) Resilience of Penicillium resedanum LK6and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. J Plant Res 128:259–268. https://doi.org/10.1007/s10265-014-0688-1

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74

    Article  CAS  PubMed  Google Scholar 

  • Khiralla A, Spina R, Yagi S, Mohamed I, Laurain-Mattar D (2017) Endophytic fungi: occurrence, classification, function and natural products. In: Hughes E (ed) Endophytic fungi diversity, characterization and biocontrol. Nova Publishers, New York, pp 1–38

    Google Scholar 

  • Kim HY, Choi GJ, Lee HB, Lee SW, Kim HK, Jang KS et al (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44(3):332–337

    Article  PubMed  Google Scholar 

  • Kumar KK, Dara SK (2021) Fungal and bacterial endophytes as microbial control agents for plant-parasitic nematodes. Int J Environ Res Public Health 18:4269. https://doi.org/10.3390/ijerph18084269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latch GCM, Hunt WF, Musgrave DR (1985) Endophytic fungi affect growth of perennial ryegrass. N Z J Agric Res 28:165–168

    Article  Google Scholar 

  • Li H, Zhang S, Lu J, Liu L, Uluko H, Pang X, Sun Y, Xue H, Zhao L, Kong F et al (2014) Antifungal activities and effect of Lactobacillus casei AST18 on the mycelia morphology and ultrastructure of Penicillium chrysogenum. Food Control 43:57–64

    Article  Google Scholar 

  • Likar M (2011) Dark septate endophytes and mycorrhizal fungi of trees affected by pollution. In: Pirttila AM, Frank AC (eds) Endophytes of forest trees. Springer Science+Business Media, Dordrecht, pp 189–201. https://doi.org/10.1007/978-94-007-1599-8

    Chapter  Google Scholar 

  • Liu Z, Ma L, He X, Tian C (2014) Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Appl Soil Ecol 84:185–191

    Article  Google Scholar 

  • Liu SS, Wang WQ, Li M, Wan SB, Sui N (2017) Antioxidants and unsaturated fatty acids are involved in salt tolerance in peanut. Acta Physiol Plant 39:207. https://doi.org/10.1007/s11738-017-2501-y

    Article  CAS  Google Scholar 

  • Lugtenberg B, Caradus J, Johnson L (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92(12):fiw194

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Janouskova M, Li Y, Yu X, Yan Y, Zou Z et al (2015) Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Funct Plant Biol 42:1158–1167

    Article  CAS  PubMed  Google Scholar 

  • Malinowski D (1995) Rhizomatous ecotypes and symbiosis with endophytes as new possibilities of improvement in competitive ability of meadow fescue (Festuca pratensis). Ph.D., thesis. Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940. https://doi.org/10.2135/cropsci2000.404923x

    Article  CAS  Google Scholar 

  • Malinowski D, Leuchtmann A, Schmidt D, Nsberger J (1997) Growth and water status in meadow fescue (Festuca pratensis) is differently affected by its two natural endophytes. Agron J 89:673–678

    Article  Google Scholar 

  • Mane RS, Vedamurthy AB (2018) The fungal endophytes: sources and future prospects. J Med Plants Stud 6(2):121–126

    Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124. https://doi.org/10.1007/s00344-009-9079-6

    Article  CAS  Google Scholar 

  • Meenatchi A, Ramesh V, Bagyalakshmi, Kuralarasi R, Shanmugaiah V, Rajendran A (2016) Diversity of endophytic fungi from the ornamental plant—Adenium obesum. Stud Fungi 1(1):34–42

    Article  Google Scholar 

  • Menjivar RD, Hagemann MH, Kranz J, Cabrera JA, Dababat AA, Sikora RA (2011) Biological control of Meloidogyne incognita on cucurbitaceous crops by the non-pathogenic endophytic fungus Fusarium oxysporum strain 162. Int J Pest Manag 57:249–253

    Article  Google Scholar 

  • Mirjalili MH, Farzaneh M, Bonfill M, Rezadoost H, Ghassempour A (2012) Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiol Lett 328(2):122–129

    Article  CAS  PubMed  Google Scholar 

  • Mishra M, Prasad R, Varma A (2015) Endophytic fungi: biodiversity and functions. Int J Pharm BioSci 6(1):18–46

    Google Scholar 

  • Mochizuki T, Ohki ST (2012) Cucumber mosaic virus: viral genes as virulence determinants. Mol Plant Pathol 13:217–225

    Article  CAS  PubMed  Google Scholar 

  • Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268

    Article  Google Scholar 

  • Morsy M, Cleckler B, Armuelles-Millican H (2020) Fungal endophytes promote tomato growth and enhance drought and salt tolerance. Plants 9:877. https://doi.org/10.3390/plants9070877

    Article  CAS  PubMed Central  Google Scholar 

  • Murphy BR, Doohan FM, Hodkinson TR (2013) Fungal endophytes of barley roots. J Agric Sci 152:602–615. https://doi.org/10.1017/S0021859613000348

    Article  Google Scholar 

  • Murphy BR, Doohan FM, Hodkinson TR (2014) Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis 62:29–39

    Article  Google Scholar 

  • Murphy BR, Doohan FM, Hodkinson TR (2018) From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. J Fungi 4(1):E24

    Article  Google Scholar 

  • Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:250693

    Article  Google Scholar 

  • Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl 55(1):113–128

    Article  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradis R, Dalpe Y, Charest C (1995) The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat. New Phytol 129:637–642

    Article  Google Scholar 

  • Patle PN, Navnage NP, Ramteke PR (2018) Endophytes in plant system: roles in growth promotion, mechanism and their potentiality in achieving agriculture sustainability. Int J Chem Stud 6(1):270–274

    Google Scholar 

  • Paul NC, Lee HB, Lee JH, Shin KS, Ryu TH, Kwon HR et al (2014) Endophytic fungi from Lycium chinense Mill and characterization of two new Korean records of Colletotrichum. Int J Mol Sci 15(9):15272–15286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedranzani H, Tavecchio N, Gutierrez M, Garbero M, Porcel R, Ruiz-Lozano JM (2015) Differential effects of cold stress on the antioxidant response of mycorrhizal and non-mycorrhizal Jatropha curcas (L.) plants. J Agric Sci 7:35–43

    Google Scholar 

  • Pedranzani H, Rodrıguez-Rivera M, Gutierrez M, Porcel R, Hause B, Ruiz-Lozano JM (2016) Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza 26:141–152

    Article  CAS  PubMed  Google Scholar 

  • Pelaez F (2005) Biological activities of fungal metabolites. In: An Z (ed) Handbook of industrial mycology. Marcel Dekker, New York

    Google Scholar 

  • Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change on weeds in agriculture: a review. Agric Sustain Dev 34:707–721. https://doi.org/10.1007/s13593-014-0245-2

    Article  Google Scholar 

  • Pimentel IC, Glienke-Blanco C, Gabardo J, Stuart RM, Azevedo JL (2006) Identification and colonization of endophytic fungi from soybean (Glycine max (L.)Merril) under different environmental conditions. Braz Arch Biol Technol 49(5):705–711

    Article  Google Scholar 

  • Piyasena KGNP, Wickramarachchi WART, Kumar NS, Jayasinghe L, Fujimoto Y (2015) Two phytotoxic azaphilone derivatives from Chaetomium globosum, a fungal endophyte isolated from Amaranthus viridis leaves. Mycology 6(3–4):158–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM (2006) Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding fora 14-3-3 protein that is upregulated by drought stress during the AM symbiosis. Microb Ecol 52:575–582. https://doi.org/10.1007/s00248-006-9015-2

    Article  PubMed  Google Scholar 

  • Porras-Sorianoa A, Soriano-Martin M, Porras-Piedraa A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  Google Scholar 

  • Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol 8:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Powthong P, Jantrapanukorn B, Thongmee A, Suntornthiticharoen P (2013) Screening of antimicrobial activities of the endophytic fungi isolated from Sesbania grandiflora (L.) Pers. J Agric Sci Technol 15:1513–1522

    Google Scholar 

  • Prasad R, Kamal S, Sharma P, Oelmuller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing (ISBN: 978-3-319-68423-9). https://www.springer.com/gb/book/9783319684239

  • Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 253–269

    Chapter  Google Scholar 

  • Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  • Rajamani T, Suryanarayanan TS, Murali TS, Thirunavukkarasu N (2018) Distribution and diversity of foliar endophytic fungi in the mangroves of Andaman Islands, India. Fungal Ecol 36:109–116

    Article  Google Scholar 

  • Rajamanikyam M, Vadlapudi V, Amanchy R, Upadhyayula SM (2017) Endophytic fungi as novel resources of natural therapeutics. Braz Arch Biol Technol 60:e17160542

    Article  CAS  Google Scholar 

  • Ravel C, Courty C, Coudret A, Charmet G (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173–181

    Article  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis: from mutualism to parasitism, who controls the outcome, host or invader? New Phytol 151:705–716

    Article  PubMed  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermo-tolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Kim YO, Woodward CJ, Greer C, Espino L, Doty SL et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823. https://doi.org/10.1371/journal.pone.0014823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman K, Fatima F, Waheed I, Akash MSH (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114. https://doi.org/10.1093/jxb/erm342

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rouissi W, Ugolini L, Martini C, Lazzeri L, Mari M (2013) Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum. J Food Prot 76:1879–1886

    Article  PubMed  Google Scholar 

  • Ruotsalainen AL, Kytcoviita MM (2004) Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum. Oecologia 140:226–233

    Article  PubMed  Google Scholar 

  • Saikkonen K, Ion D, Gyllenberg M (2002) The persistence of vertically transmitted fungi in grass metapopulations. Proc Biol Sci 2669(1498):1397–1403

    Article  Google Scholar 

  • Saithong P, Panthavee W, Stonsaovapak S, Congfa L (2010) Isolation and primary identification of endophytic fungi from Cephalotaxus mannii trees. Maejo Int J Sci Technol 4(3):446453

    Google Scholar 

  • Salas ML, Mounier J, Valence F, Coton M, Thierry A, Coton E (2017) Antifungal microbial agents for food biopreservation—A review. Microorganisms 5:37. https://doi.org/10.3390/microorganisms5030037

    Article  CAS  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439. https://doi.org/10.1038/s41559-018-0793-y

    Article  PubMed  Google Scholar 

  • Sharma N, Gautam AK (2018) Pathogenicity events in plant pathogenic bacteria: a brief note. J New Biol Rep 7(3):141147

    Google Scholar 

  • Sharma P, Kharkwal A, Abdin M, Varma A (2016) Piriformospora indica-mediated salinity tolerance in Aloe vera plantlets. Symbiosis 72(10):1007

    Google Scholar 

  • Sharma IP, Chandra S, Kumar N, Chandra D (2017) PGPR: heart of soil and their role in soil fertility. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5589-8_3

    Chapter  Google Scholar 

  • Shelke DB, Pandey M, Nikalje GC, Zaware BN, Suprasanna P, Nikam TD (2017) Salt responsive physiological, photosynthetic and biochemical attributes at early seedling stage for screening soybean genotypes. Plant Physiol Biochem 118:519–528

    Article  CAS  PubMed  Google Scholar 

  • Shelke DB, Nikalje GC, Chambhare MR, Zaware BN, Suprasanna P, Nikam TD (2019a) Na+ and Cl induce differential physiological, biochemical responses and metabolite modulations in vitro in contrasting salt-tolerant soybean genotypes. 3 Biotech 9:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Shelke DB, Nikalje GC, Nikam TD, Maheshwari P, Punita DL, Rao KRSS, Kavi Kishor PB, Suprasanna P (2019b) Chloride (Cl−) uptake, transport, and regulation in plant salt tolerance. In: Roychoudhury A, Tripathi D (eds) Molecular plant abiotic stress: biology and biotechnology, 1st edn., pp 241–268. https://doi.org/10.1002/9781119463665.ch13

  • Sherameti I, Tripathi S, Varma A, Oelmuller R (2008) The root-colonizing endophyte Piriformospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact 21:799–807

    Article  CAS  PubMed  Google Scholar 

  • Sibanda EP, Mabandla M, Chisango T, Nhidza AF, Mduluza T (2018) Endophytic fungi from Vitex payos: identification and bioactivity. Acta Mycol 53(2):1111

    Article  Google Scholar 

  • Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleator RD, Hill C (2001) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Article  Google Scholar 

  • Sonaimuthu V, Krishnamoorthy S, Johnpaul M (2010) Taxol producing endophytic fungus Fusarium culmorum SVJM072 from medicinal plant of Tinospora cordifolia—a first report. J Biotechnol 150:S425

    Article  Google Scholar 

  • Sonawane H, Borde M, Nikalje G, Terkar A, Math S (2020) HR-LC-MS based metabolic profiling of Fusarium solani a fungal endophyte associated with Avicennia officinalis. Curr Res Environ Appl Mycol 10(1):262–273

    Article  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216. https://doi.org/10.1126/science.8097061

    Article  CAS  PubMed  Google Scholar 

  • Stone J, White J, Polishook J (2004) Endophytic fungi. In: Mueller G, Foster M, Bills G (eds) Measuring and monitoring biodiversity of fungi. Inventory and monitoring methods. Elsevier Academic Press, Boston, pp 241–270

    Google Scholar 

  • Strobel G (2003) Endophytes as sources of bioactive products. Microb Infect 5(6):535–544

    Article  CAS  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145(8):1919–1926. https://doi.org/10.1099/13500872-145-8-1919

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15(2):183–190

    Article  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017. https://doi.org/10.1016/j.jplph.2010.02.013

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Hawksworth DL (2005) Fungi from little explored and extreme habitats. In: Deshmukh SK, Rai MK (eds) Biodiversity of fungi: their role in human life. Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp 33–48

    Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Tayung K, Barik BP, Jha DK, Deka DC (2011) Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere 2(3):203–213

    Google Scholar 

  • Terhonen E, Blumenstein K, Kovalchuk A, Asiegbu FO (2019) Forest tree microbiomes and associated fungal endophytes: functional roles and impact on forest health. Forests 10(1):42. https://doi.org/10.3390/f10010042

    Article  Google Scholar 

  • Thirumalai E, Dastjerdi R, Doll K, Venkatachalam A, Karlovsky P, Suryanarayanan TS (2013) Mycotoxins of endophytic Fusarium mangiferae and F. pallidoroseum from betel leaves (Piper betle L.). In: 35th Mycotoxin workshop, Ghent, Belgium

    Google Scholar 

  • Trognitz F, Hackl E, Widhalm S, Sessitsch A (2016) The role of plant–microbiome interactions in weed establishment and control. FEMS Microbiol Ecol 92:138. https://doi.org/10.1093/femsec/fiw138

    Article  CAS  Google Scholar 

  • van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  CAS  Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Extensive fungal diversity in plant roots. Science 295(5562):2051. https://doi.org/10.1126/science.295.5562.2051

    Article  PubMed  Google Scholar 

  • Varma A, Prasad R, Tuteja N (2017) Mycorrhiza: nutrient uptake, biocontrol, ecorestoration. Springer International Publishing (ISBN: 978-3-319-68867-1). http://www.springer.com/us/book/9783319688664

  • Varma A, Swati T, Prasad R (2020) Plant microbe symbiosis. Springer International Publishing (ISBN: 978-3-030-36247-8). https://www.springer.com/gp/book/9783030362478

  • Vaz ABM, Fonseca PLC, Badotti F, Skaltsas D, Tome LMR, Silva AC et al (2018) A multiscale study of fungal endophyte communities of the foliar endosphere of native rubber trees in Eastern Amazon. Sci Rep 8:16151. https://doi.org/10.1038/s41598-018-34619-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Verma S, Nizam S, Verma PK (2013) Biotic and abiotic stress signalling in plants. In: Stress signaling in plants: genomics and proteomics perspective, vol. 1, pp 25–49

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JL, Li T, Liu GY, Smith JM, Zhao ZW (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028. https://doi.org/10.1038/srep22028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Khan AL, Kang SM, Kim YH, Lee IJ (2014) Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol Fertil Soils 50:1155–1167

    Article  CAS  Google Scholar 

  • Waqas MA, Kaya C, Riaz A, Farooq M, Nawaz I, Wilkes A, Li Y (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by Thiourea. Front Plant Sci 10:1336. https://doi.org/10.3389/fpls.2019.01336

    Article  PubMed  PubMed Central  Google Scholar 

  • White RH, Engelke MC, Morton SJ, Johnson-Cicalese JM, Ruemmele BA (1992) Acremonium endophyte effects on tall fescue drought tolerance. Crop Sci 32:1392–1396

    Article  Google Scholar 

  • Wu QS, Zou YN (2010) Beneficial roles of arbuscular mycorrhizas in Citrus seedlings at temperature stress. Sci Hortic 125:289–293

    Article  CAS  Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165(6):437–449

    Article  CAS  PubMed  Google Scholar 

  • Zafar SA, Noor MA, Waqas MA, Wang X, Shaheen T, Raza M (2018) Temperature extremes in cotton production and mitigation strategies. In: In past, present and future trends in cotton breeding. IntechOpen, London. https://doi.org/10.5772/intechopen.74648

    Chapter  Google Scholar 

  • Zakaria L, Jamil MIM, Anuar ISM (2016) Molecular characterisation of endophytic fungi from roots of wild banana (Musa acuminata). Trop Life Sci Res 27(1):153–162

    PubMed  PubMed Central  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753771

    Article  CAS  Google Scholar 

  • Zhao J, Fu Y, Luo M, Zu Y, Wang W, Zhao C et al (2012) Endophytic fungi from pigeon pea [Cajanus cajan (L.) Millsp.] produce antioxidant cajaninstilbene acid. J Agric Food Chem 60:4314–4319

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Li C, Zhang X, Johnson R, Bao G, Yao X et al (2015) Effects of cold shocked Epichloe infected Festuca sinensis on ergot alkaloid accumulation. Fungal Ecol 14:99–104

    Article  Google Scholar 

  • Zhou W, Starr JL, Krumm JL, Sword GA (2016) The fungal endophyte Chaetomium globosum negatively affects both above-and belowground herbivores in cotton. FEMS Microbiol Ecol 92:fiw158

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010a) Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20:325–332

    Article  CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010b) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Liu TD, Liu SQ (2010c) Arbuscular mycorrhizae reducing water loss in maize plants under low temperature stress. Plant Signal Behav 5:591–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziska LH, Tomecek MB, Gealy DR (2010) Evaluation of competitive ability between cultivated and red weedy rice as a function of recent and projected increases in atmospheric CO2. Agron J 102:118–123. https://doi.org/10.2134/agronj2009.0205

    Article  CAS  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shelke, D.B., Chambhare, M.R., Sonawane, H. (2022). Fungal Endophytes: Potential Benefits of Their Future Use in Plant Stress Tolerance and Agriculture. In: Prasad, R., Zhang, SH. (eds) Beneficial Microorganisms in Agriculture. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0733-3_7

Download citation

Publish with us

Policies and ethics