Skip to main content

Antimicrobial and Immunomodulatory Role of Fish Lectins

  • Chapter
  • First Online:
Aquatic Lectins

Abstract

Lectins are proteins that can bind to carbohydrates selectively and reversibly without changing the ligand’s covalent structure. Lectins are divided into several families based on their structure, binding specificities, and calcium dependence, such as C-type lectins, I-type lectins, F-type lectins, intelectins, rhamnose binding lectins, galectins, Lily-type lectins, and so on. Innate immunity and disease resistance are known to be aided by lectins such as ficolins, calnexin, galectins, F-type lectins, intelectins, and mannose-binding proteins (MBPs). In fish, skin serves as an essential immunological structure, and lectins have been found in the stomach, eggs, gut, liver, gills, serum, skin, and plasma of several fish species. The capacity of lectins to promote agglutination, suppression of planktonic development, biofilm inhibition or eradication, and/or death of bacteria has been shown to have direct antibacterial action. The interaction of lectins with bacterial cell wall components [such as N-acetylglucosamine (NAG), N-acetylmuramic acid (NAM), tetrapeptides related to NAM, and lipopolysaccharides] as well as membrane receptors has been credited with growth suppression and death induction. This might cause permeabilisation and the development of holes in the bacterial cell wall and membrane, allowing intracellular material to seep out. Lectins are part of the innate immune system’s humoral component and are engaged in the detection of PAMPs that cause agglutination and neutralisation of potentially microbial pathogens or the activation of complement components. Various research findings show that fish lectins play an important role in immunological identification of microbial infections and phagocytosis clearance. The significance of lectins in antimicrobial and immunomodulatory activity in fish is discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRD:

Carbohydrate-binding lectin

CTL:

C-type lectin

CTLD:

C-type lectin-like domain

EPN:

Glu-Pro-Asn

Es-Lec:

Etroplus suratensis lectin

FTL:

F-type lectin

GlcNAc:

N-acetylglucosamine

MBL:

Mannose-binding lectin

NAM:

N-acetylmuramic acid

QPD:

Gln-Pro-Asp

RBL:

l-rhamnose-binding lectin

STL:

S-type lectin

SUEL:

Sea urchin egg lectin

XTL:

X-type lectin

References

  • Ahmed H, Du S-J, O’Leary N, Vasta GR (2004) Biochemical and molecular characterization of galectins from zebrafish (Danio rerio): notochord-specific expression of a prototype galectin during early embryogenesis. Glycobiology 14:219–232

    Article  CAS  PubMed  Google Scholar 

  • Argayosa AM, Lee YC (2009) Identification of (L)-fucose-binding proteins from the Nile tilapia (Oreochromis niloticus L.) serum. Fish Shellfish Immunol 27:478–485

    Article  CAS  PubMed  Google Scholar 

  • Arnold JN, Dwek RA, Rudd PM, Sim RB (2006) Mannan binding lectin and its interaction with immunoglobulins in health and in disease. Immunol Lett 106:103–110

    Article  CAS  PubMed  Google Scholar 

  • Ashwell G, Morell AG (1974) The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol 41:99–128. https://doi.org/10.1002/9780470122860.ch3

    Article  CAS  PubMed  Google Scholar 

  • Bah CSF, Fang EF, Ng TB et al (2011) Purification and characterization of a Rhamnose-binding Chinook Salmon roe lectin with antiproliferative activity toward tumor cells and nitric oxide-inducing activity toward murine macrophages. J Agric Food Chem 59:5720–5728

    Article  CAS  PubMed  Google Scholar 

  • Ballarin L, Cammarata M, Franchi N, Parrinello N (2013) Routes in innate immunity evolution: galectins and Rhamnose-binding lectins in ascidians. In: Kim S-K (ed) Marine proteins and peptides: biological activities and applications. Wiley, Chichester, pp 185–205

    Chapter  Google Scholar 

  • Barondes SH, Castronovo V, Cooper DNW et al (1994) Galectins: a family of animal β-galactoside-binding lectins. Cell 76:597–598

    Article  CAS  PubMed  Google Scholar 

  • Baum LG, Pang M, Perillo NL et al (1995) Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med 181:877–887

    Article  CAS  PubMed  Google Scholar 

  • Bianchet MA, Odom EW, Vasta GR, Amzel LM (2002) A novel fucose recognition fold involved in innate immunity. Nat Struct Biol 9:628–634

    CAS  PubMed  Google Scholar 

  • Bianchet MA, Odom EW, Vasta GR, Amzel LM (2010) Structure and specificity of a binary tandem domain F-lectin from striped bass (Morone saxatilis). J Mol Biol 401:239–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd WC (1970) Lectins. Ann N Y Acad Sci 169:168–190

    Article  CAS  PubMed  Google Scholar 

  • Cammarata M, Parisi MG, Benenati G et al (2014) A rhamnose-binding lectin from sea bass (Dicentrarchus labrax) plasma agglutinates and opsonizes pathogenic bacteria. Dev Comp Immunol 44:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Mao D, Wang C et al (2009) A D-galactose-binding lectin with mitogenic activity from Musca domestica pupae. Zoolog Sci 26:249–253

    Article  CAS  PubMed  Google Scholar 

  • Cartwright J (2004) Isolation and characterisation of pentraxin-like serum proteins from the common carp Cyprinus carpio. Dev Comp Immunol 28:113–125

    Article  CAS  PubMed  Google Scholar 

  • Cook MT, Hayball PJ, Nowak BF, Hayball JD (2005) The opsonising activity of a pentraxin-like protein isolated from snapper (Pagrus auratus, Sparidae) serum. Dev Comp Immunol 29:703–712

    Article  CAS  PubMed  Google Scholar 

  • Coriolano MC, da Silva CDC, de Melo CML et al (2012a) Immunomodulatory response of mice Splenocytes induced by RcaL, a lectin isolated from cobia fish (Rachycentron canadum) serum. Appl Biochem Biotechnol 168:1335–1348

    Article  CAS  PubMed  Google Scholar 

  • Coriolano MC, de Melo CML, Santos AJG et al (2012b) Rachycentron canadum (cobia) lectin promoted mitogenic response in mice BALB/c splenocytes. Scand J Immunol 76:567–572

    Article  CAS  PubMed  Google Scholar 

  • Costa RMPB, Vaz AFM, Oliva MLV et al (2010) A new mistletoe Phthirusa pyrifolia leaf lectin with antimicrobial properties. Process Biochem 45:526–533

    Article  CAS  Google Scholar 

  • Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342

    Article  CAS  PubMed  Google Scholar 

  • Cummings RD, McEver RP (2009) C-type lectins. In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • da Silva CDC, Coriolano MC, da Silva Lino MA et al (2012) Purification and characterization of a mannose recognition lectin from Oreochromis niloticus (tilapia fish): cytokine production in mice splenocytes. Appl Biochem Biotechnol 166:424–435

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Sinha B, Bhattacharya B et al (2005) Characterization of a galactose binding serum lectin from the Indian catfish, Clarias batrachus: possible involvement of fish lectins in differential recognition of pathogens. Comp Biochem Physiol C Toxicol Pharmacol 141:76–84

    Article  PubMed  CAS  Google Scholar 

  • Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839. https://doi.org/10.1016/S0145-305X(01)00038-6

    Article  CAS  PubMed  Google Scholar 

  • Elumalai P, Rubeena AS, Arockiaraj J et al (2019) The role of lectins in finfish: a review. Rev Fish Sci Aquacult 27:152–169

    Article  Google Scholar 

  • Ewart KV, Johnson SC, Ross NW (1999) Identification of a pathogen-binding lectin in salmon serum. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123:9–15

    Article  CAS  PubMed  Google Scholar 

  • Farnworth SL, Henderson NC, Mackinnon AC et al (2008) Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am J Pathol 172:395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fock WL, Chen CL, Lam TJ, Sin YM (2001) Roles of an endogenous serum lectin in the immune protection of blue gourami, Trichogaster trichopterus (Pallus) against Aeromonas hydrophila. Fish Shellfish Immunol 11:101–113

    Article  CAS  PubMed  Google Scholar 

  • Fukumori T, Kanayama H-O, Raz A (2007) The role of galectin-3 in cancer drug resistance. Drug Resist Updat 10:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabius HJ (1997) Animal lectins. Eur J Biochem 243:543–576

    Article  CAS  PubMed  Google Scholar 

  • Guardiola FA, Dioguardi M, Parisi MG et al (2015) Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). Fish Shellfish Immunol 45:112–123

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Gupta GS (2012) Novel groups of Fuco-lectins and Intlectins. In: Animal lectins: form, function and clinical applications. Springer, Vienna, pp 439–453

    Chapter  Google Scholar 

  • Holmskov U, Malhotra R, Sim RB, Jensenius JC (1994) Collectins: collagenous C-type lectins of the innate immune defense system. Immunol Today 15:67–74

    Article  CAS  PubMed  Google Scholar 

  • Honda S, Kashiwagi M, Miyamoto K et al (2000) Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. J Biol Chem 275:33151–33157

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Bai L, Chen Y et al (2019) Identification, expression profile and analysis of the antimicrobial activity of collectin 11 (CL-11, CL-K1), a novel complement-associated pattern recognition molecule, in half-smooth tongue sole (Cynoglossus semilaevis). Fish Shellfish Immunol 95:679–687

    Article  CAS  PubMed  Google Scholar 

  • Hudgin RL, Pricer WE, Ashwell G et al (1974) The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem 249:5536–5543

    Article  CAS  PubMed  Google Scholar 

  • Ip WKE, Takahashi K, Ezekowitz RA, Stuart LM (2009) Mannose-binding lectin and innate immunity. Immunol Rev 230:9–21

    Article  PubMed  Google Scholar 

  • Jensen LE, Petersen TE, Thiel S, Jensenius JC (1995) Isolation of a pentraxin-like protein from rainbow trout serum. Dev Comp Immunol 19:305–314

    Article  CAS  PubMed  Google Scholar 

  • Jensen LE, Thiel S, Petersen TE, Jensenius JC (1997) A rainbow trout lectin with multimeric structure. Comp Biochem Physiol B Biochem Mol Biol 116:385–390

    Article  CAS  PubMed  Google Scholar 

  • Jung W-K, Park P-J, Kim S-K (2003) Purification and characterization of a new lectin from the hard roe of skipjack tuna, Katsuwonus pelamis. Int J Biochem Cell Biol 35:255–265

    Article  CAS  PubMed  Google Scholar 

  • Kamiya H, Shimizu Y (1980) Marine biopolymers with cell specificity. Biochim Biophys Acta (BBA) Prot Struct 622:171–178

    Article  CAS  Google Scholar 

  • Karnchanatat A (2012) Antimicrobial activity of lectins from plants. In: Antimicrobial agents. Intech, London, pp 145–178

    Google Scholar 

  • Kasai K, Hirabayashi J (1996) Galectins: a family of animal lectins that decipher glycocodes. J Biochem 119:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kerrigan AM, Brown GD (2009) C-type lectins and phagocytosis. Immunobiology 214:562–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilpatrick D (2002) Animal lectins: a historical introduction and overview. Biochim Biophys Acta Gen Subj 1572:187–197

    Article  CAS  Google Scholar 

  • Kim B-S, Nam B-H, Kim J-W et al (2011) Molecular characterisation and expression analysis of a fish-egg lectin in rock bream, and its response to bacterial or viral infection. Fish Shellfish Immunol 31:1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Lam YW, Ng TB (2002) Purification and characterization of a rhamnose-binding lectin with immunoenhancing activity from grass carp (Ctenopharyngodon idellus) ovaries. Protein Expr Purif 26:378–385

    Article  CAS  PubMed  Google Scholar 

  • Lee YM, Yang IJ, Noh JK et al (2016) Expression analysis of lily type lectin isotypes in the rock bream, Oplegnathus fasciatus: in the tissue, developmental stage and viral infection. Balsaenggwa Saengsig 20:297–304

    Google Scholar 

  • Lemme K (2013) Thermodynamic evaluation of carbohydrate-lectin interactions. Undergraduate thesis

    Google Scholar 

  • Liu L, Dang Y (2020) Antimicrobial activity of mannose binding lectin in grass carp (Ctenopharyngodon idella) in vivo and in vitro. Fish Shellfish Immunol 98:25–33

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hu G, Sun C, Zhang S (2013) Anti-viral activity of galectin-1 from flounder Paralichthys olivaceus. Fish Shellfish Immunol 34:1463–1469

    Article  CAS  PubMed  Google Scholar 

  • Lobsanov YD, Rini JM (1997) Galectin structure. Trends Glycosci Glycotechnol 9:145–154

    Article  CAS  Google Scholar 

  • Lund V, Olafsen JA (1998) A comparative study of pentraxin-like proteins in different fish species. Dev Comp Immunol 22:185–194

    Article  CAS  PubMed  Google Scholar 

  • Lund V, Olafsen JA (1999) Changes in serum concentration of a serum amyloid P-like pentraxin in Atlantic salmon, Salmo salar L., during infection and inflammation. Dev Comp Immunol 23:61–70

    Article  CAS  PubMed  Google Scholar 

  • Lv C, Zhang D, Wang Z (2016) A novel C-type lectin, Nattectin-like protein, with a wide range of bacterial agglutination activity in large yellow croaker Larimichthys crocea. Fish Shellfish Immunol 50:231–241

    Article  CAS  PubMed  Google Scholar 

  • Magnadottir B (2010) Immunological control of fish diseases. Marine Biotechnol 12:361–379

    Article  CAS  Google Scholar 

  • Magnadóttir B, Bragason BT, Bricknell IR et al (2019) Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny—complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). Dev Comp Immunol 92:1–19

    Article  PubMed  CAS  Google Scholar 

  • Manihar SR, Das HR (1990) Isolation and characterization of a new lectin from plasma of fish Channa punctatus. Biochim Biophys Acta Gen Subj 1036:162–165

    Article  CAS  Google Scholar 

  • Manihar SR, Varma KL, Das HR (1990) Studies on hemagglutinins (lectins) from plasma of murrel fish, family Channidae. Indian J Biochem Biophys 27:464–470

    CAS  PubMed  Google Scholar 

  • Mantovani A, Garlanda C, Doni A, Bottazzi B (2008) Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX3. J Clin Immunol 28:1–13

    Article  CAS  PubMed  Google Scholar 

  • Marques DSC, Ferreira DA, Paiva PMG et al (2016) Impact of stress on Aeromonas diversity in tambaqui (Colossoma macropomum) and lectin level change towards a bacterial challenge. Environ Technol 37:3030–3035

    Article  CAS  PubMed  Google Scholar 

  • Mistry AC, Honda S, Hirose S (2001) Structure, properties and enhanced expression of galactose-binding C-type lectins in mucous cells of gills from freshwater Japanese eels (Anguilla japonica). Biochem J 360:107–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura O, Watanabe M, Ogawa T et al (2012) Galectins in the abdominal cavity of the conger eel Conger myriaster participate in the cellular encapsulation of parasitic nematodes by host cells. Fish Shellfish Immunol 33:780–787

    Article  CAS  PubMed  Google Scholar 

  • Ng TB, Fai Cheung RC, Wing Ng CC et al (2015) A review of fish lectins. Curr Protein Pept Sci 16:337–351

    Article  CAS  PubMed  Google Scholar 

  • Ngai PHK, Ng TB (2007) A mannose-specific tetrameric lectin with mitogenic and antibacterial activities from the ovary of a teleost, the cobia (Rachycentron canadum). Appl Microbiol Biotechnol 74:433–438

    Article  CAS  PubMed  Google Scholar 

  • Novelli F, Allione A, Wells V et al (1999) Negative cell cycle control of human T cells by beta-galactoside binding protein (beta GBP): induction of programmed cell death in leukaemic cells. J Cell Physiol 178:102–108

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Ichida S, Mimura T et al (1984) Purification and characterization of a fish lectin from the external mucous of Ophidiidae, Genypterus blacodes. J Pharmacobiodyn 7:614–623

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Watanabe M, Naganuma T, Muramoto K (2011) Diversified carbohydrate-binding lectins from marine resources. J Amino Acids 2011:838914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamoto M, Tsutsui S, Tasumi S et al (2005) Tandem repeat L-rhamnose-binding lectin from the skin mucus of ponyfish, Leiognathus nuchalis. Biochem Biophys Res Commun 333:463–469

    Article  CAS  PubMed  Google Scholar 

  • Olayemi OO, Adenike K, David Ayin A (2015) Evaluation of antimicrobial potential of a galactose-specific lectin in the skin mucus of African catfish (Clarias gariepinus, Burchell, 1822) against some aquatic microorganisms. Res J Microbiol 10:132–144

    Article  Google Scholar 

  • Ourth DD, Rose WM, Siefkes MJ (2008) Isolation of mannose-binding C-type lectin from sea lamprey (Petromyzon marinus) plasma and binding to Aeromonas salmonicida. Vet Immunol Immunopathol 126:407–412

    Article  CAS  PubMed  Google Scholar 

  • Paiva PM, Pontual EV, Napoleão TH, Coelho LC (2012) Effects of plant lectins and trypsin inhibitors on development, morphology and biochemistry of insect larvae. Larvae: morphology. Biol Life Cycle 3:37–55

    Google Scholar 

  • Pan S, Tang J, Gu X (2010) Isolation and characterization of a novel fucose-binding lectin from the gill of bighead carp (Aristichthys nobilis). Vet Immunol Immunopathol 133:154–164

    Article  CAS  PubMed  Google Scholar 

  • Parisi MG, Benenati G, Cammarata M (2015) Sea bass Dicentrarchus labrax (L.) bacterial infection and confinement stress acts on F-type lectin (DlFBL) serum modulation. J Fish Dis 38:967–976

    Article  CAS  PubMed  Google Scholar 

  • Parisien A, Allain B, Zhang J et al (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104:1–13

    CAS  PubMed  Google Scholar 

  • Perillo NL, Uittenbogaart CH, Nguyen JT, Baum LG (1997) Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J Exp Med 185:1851–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Lin L, Yang K et al (2011) Molecular cloning and expression analysis of a F-type lectin gene from Japanese sea perch (Lateolabrax japonicus). Mol Biol Rep 38:3751–3756

    Article  CAS  PubMed  Google Scholar 

  • Rubeena AS, Divya M, Vaseeharan B et al (2019) Antimicrobial and biochemical characterization of a C-type lectin isolated from pearl spot (Etroplus suratensis). Fish Shellfish Immunol 87:202–211

    Article  CAS  PubMed  Google Scholar 

  • Runsaeng P, Puengyam P, Utarabhand P (2017) A mannose-specific C-type lectin from Fenneropenaeus merguiensis exhibited antimicrobial activity to mediate shrimp innate immunity. Mol Immunol 92:87–98

    Article  CAS  PubMed  Google Scholar 

  • Salerno G, Parisi MG, Parrinello D et al (2009) F-type lectin from the sea bass (Dicentrarchus labrax): purification, cDNA cloning, tissue expression and localization, and opsonic activity. Fish Shellfish Immunol 27:143–153

    Article  CAS  PubMed  Google Scholar 

  • Savan R, Endo M, Sakai M (2004) Characterization of a new C-type lectin from common carp Cyprinus carpio. Mol Immunol 41:891–899

    Article  CAS  PubMed  Google Scholar 

  • Sharon N, Lis H (1972) Lectins: cell-agglutinating and sugar-specific proteins. Science 177:949–959

    Article  CAS  PubMed  Google Scholar 

  • Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62R

    Article  CAS  PubMed  Google Scholar 

  • Shiomi K, Uematsu H, Yamanaka H, Kikuchi T (1989) Purification and characterization of a galactose-binding lectin from the skin mucus of the conger eel Conger myriaster. Comp Biochem Physiol B 92:255–261

    Article  CAS  PubMed  Google Scholar 

  • Singha B, Adhya M, Chatterjee BP (2008) Catfish (Clarias batrachus) serum lectin recognizes polyvalent Tn [α-d-GalpNAc1-Ser/Thr], Tα [β-d-galp-(1→3)-α-d-GalpNAc1-Ser/Thr], and II [β-d-galp(1→4)-β-d-GlcpNAc1-] mammalian glycotopes. Carbohydr Res 343:2384–2392

    Article  CAS  PubMed  Google Scholar 

  • Smithson G, Rogers CE, Smith PL et al (2001) Fuc-TVII is required for T helper 1 and T cytotoxic 1 lymphocyte selectin ligand expression and recruitment in inflammation, and together with Fuc-TIV regulates naive T cell trafficking to lymph nodes. J Exp Med 194:601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soanes KH, Figuereido K, Richards RC et al (2004) Sequence and expression of C-type lectin receptors in Atlantic salmon (Salmo salar). Immunogenetics 56:572–584

    Article  CAS  PubMed  Google Scholar 

  • Stockert RJ, Morell AG, Scheinberg IH (1974) Mammalian hepatic lectin. Science 186:365–366. https://doi.org/10.1126/science.186.4161.365

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Liu L, Li J, Sun L (2016) Three novel B-type mannose-specific lectins of Cynoglossus semilaevis possess varied antibacterial activities against gram-negative and gram-positive bacteria. Dev Comp Immunol 55:194–202

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki J, Kadota J, Takizawa H (2004) Clinical implications of the immunomodulatory effects of macrolides. Am J Med Suppl 117:5–11

    Google Scholar 

  • Tasumi S, Ohira T, Kawazoe I et al (2002) Primary structure and characteristics of a lectin from skin mucus of the Japanese eel, Anguilla japonica. J Biol Chem 277:27305–27311

    Article  CAS  PubMed  Google Scholar 

  • Tasumi S, Yang W-J, Usami T et al (2004) Characteristics and primary structure of a galectin in the skin mucus of the Japanese eel, Anguilla japonica. Dev Comp Immunol 28:325–335

    Article  CAS  PubMed  Google Scholar 

  • Tateno H (2010) SUEL-related lectins, a lectin family widely distributed throughout organisms. Biosci Biotechnol Biochem 74:1141–1144

    Article  CAS  PubMed  Google Scholar 

  • Tateno H, Ogawa T, Muramoto K et al (2002) Rhamnose-binding lectins from steelhead trout (Oncorhynchus mykiss) eggs recognize bacterial lipopolysaccharides and lipoteichoic acid. Biosci Biotechnol Biochem 66:604–612

    Article  CAS  PubMed  Google Scholar 

  • Teichberg VI, Silman I, Beitsch DD, Resheff G (1975) A beta-D-galactoside binding protein from electric organ tissue of Electrophorus electricus. Proc Natl Acad Sci U S A 72:1383–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada T, Watanabe Y, Tateno H et al (2007) Structural characterization of a rhamnose-binding glycoprotein (lectin) from Spanish mackerel (Scomberomorous niphonius) eggs. Biochim Biophys Acta 1770:617–629

    Article  CAS  PubMed  Google Scholar 

  • Thongda W, Li C, Luo Y et al (2014) L-Rhamnose-binding lectins (RBLs) in channel catfish, Ictalurus punctatus: characterization and expression profiling in mucosal tissues. Dev Comp Immunol 44:320–331

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Komatsu Y, Sugiura T et al (2011a) A unique epidermal mucus lectin identified from catfish (Silurus asotus): first evidence of intelectin in fish skin slime. J Biochem 150:501–514

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Okamoto M, Ono M et al (2011b) A new type of lectin discovered in a fish, flathead (Platycephalus indicus), suggests an alternative functional role for mammalian plasma kallikrein. Glycobiology 21:1580–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui S, Dotsuta Y, Ono A et al (2015a) A C-type lectin isolated from the skin of Japanese bullhead shark (Heterodontus japonicus) binds a remarkably broad range of sugars and induces blood coagulation. J Biochem 157:345–356

    Article  CAS  PubMed  Google Scholar 

  • Tsutsui S, Yamamura N, Yoshida T, Nakamura O (2015b) Fugu (Takifugu rubripes) serum GlcNAc-binding lectin is a kalliklectin but has different properties from those of a reported homologue. J Biochem 158:189–195

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Angata T (2006) Siglecs—the major subfamily of I-type lectins. Glycobiology 16:1R–27R

    Article  CAS  PubMed  Google Scholar 

  • Vasta GR, Ahmed H, Du S-J, Henrikson D (2004) Galectins in teleost fish: zebrafish (Danio rerio) as a model species to address their biological roles in development and innate immunity. Glycoconj J 21:503–521

    Article  CAS  PubMed  Google Scholar 

  • Vasta GR, Nita-Lazar M, Giomarelli B et al (2011) Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. Dev Comp Immunol 35:1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer W, Blanot D, de Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhang J (2016) CsPTX1, a pentraxin of Cynoglossus semilaevis, is an innate immunity factor with antibacterial effects. Fish Shellfish Immunol 56:12–20

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Bu L, Yang L et al (2016) Identification and functional characterization of fish-egg lectin in zebrafish. Fish Shellfish Immunol 52:23–30

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Tateno H, Nakamura-Tsuruta S et al (2009) The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. Dev Comp Immunol 33:187–197

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Xu D, Zhou J et al (2010) Molecular cloning, characterization and expression analysis of a C-type lectin (Ec-CTL) in orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 28:178–186

    Article  CAS  PubMed  Google Scholar 

  • Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119:615–623

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Pang Y, Liu X et al (2013) First evidence of protein G-binding protein in the most primitive vertebrate: serum lectin from lamprey (Lampetra japonica). Dev Comp Immunol 41:618–630

    Article  CAS  PubMed  Google Scholar 

  • Yabe R, Saijo S (2016) Dectin-2 in antimicrobial immunity and homeostasis. In: Yamasaki S (ed) C-type lectin receptors in immunity. Springer, Tokyo, pp 3–13

    Chapter  Google Scholar 

  • Yang RY, Hsu DK, Liu FT (1996) Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A 93:6737–6742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Wang L, Zhang H et al (2011) C-type lectin in Chlamys farreri (CfLec-1) mediating immune recognition and opsonization. PLoS One 6:e17089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousif AN, Albright LJ, Evelyn TPT (1995) Interaction of coho salmon Oncorhynchus kisutch egg lectin with the fish pathogen Aeromonas salmonicida. Dis Aquat Organ 21:193–199

    Article  Google Scholar 

  • Zelensky AN, Gready JE (2004) C-type lectin-like domains in Fugu rubripes. BMC Genomics 5:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Peatman E, Liu H et al (2012) Characterization of a mannose-binding lectin from channel catfish (Ictalurus punctatus). Res Vet Sci 92:408–413

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wang X-Q, Jiang H-S et al (2014) Calnexin functions in antibacterial immunity of Marsupenaeus japonicus. Dev Comp Immunol 46:356–363

    Article  CAS  PubMed  Google Scholar 

  • Zhang DL, Lv CH, Yu DH, Wang ZY (2016) Characterization and functional analysis of a tandem-repeat galectin-9 in large yellow croaker Larimichthys crocea. Fish Shellfish Immunol 52:167–178

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vibhute, P., Radhakrishnan, A., Sivakamavalli, J., Chellapandian, H., Selvin, J. (2022). Antimicrobial and Immunomodulatory Role of Fish Lectins. In: Elumalai, P., Vaseeharan, B., Lakshmi, S. (eds) Aquatic Lectins. Springer, Singapore. https://doi.org/10.1007/978-981-19-0432-5_12

Download citation

Publish with us

Policies and ethics