Skip to main content

Management of Pests Using Genetic Tools in Africa

  • Chapter
  • First Online:
Genetic Methods and Tools for Managing Crop Pests

Abstract

African farmers are facing numerous natural disasters, such as flooding, fires and extended droughts. In addition, crop pests have had major impacts on yields for several decades. At the same time, farmers continue to explore pest management strategies that are not only affordable but safe and sustainable. Here we review the knowledge from genomics, molecular plant biology and molecular genetics and how these can complement traditional agricultural practices to enhance productivity by offering protection against insect pests. Elsewhere, modern genetic tools and technologies have been utilized to reduce agricultural pest impacts and improve yield. In Africa, this uptake is more recent, with a significant increase in integrated pest management (IPM) or IPM-related research conducted by various national programs and international agricultural research centres over the past few years. Research in Africa has mainly emphasized host plant resistance breeding techniques, classical biological control, chemical control and cultural control measures. There is thus an urgent need for African governments to consider investing in biotechnology and genetic advancements tools—in the field of agriculture—to ensure protection off crops from pests and in doing so ensure food security on the African continent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah NA (2010) GM crops in Africa: challenges in Egypt. GM Crops 1(3):116–119

    Article  PubMed  Google Scholar 

  • Abraham A (2014) Genetic engineering technologies for Ethiopian agriculture: prospects and challenges. J Commer Biotechnol 20(4)

    Google Scholar 

  • Adenle AA (2011) Response to issues on GM agriculture in Africa: are transgenic crops safe? BMC Res Notes 4(1):388

    Article  PubMed  PubMed Central  Google Scholar 

  • Agaba J (2019) Why South Africa and Sudan lead the continent in GMO crops. Cornell Alliance for Science. https://allianceforscience.cornell.edu

  • Agapito-Tenfen SZ, Vilperte V, Benevenuto RF, Rover CM, Traavik TI, Nodari RO (2014) Effect of stacking insecticidal cry and herbicide tolerance epsps transgenes on transgenic maize proteome. BMC Plant Biol 14(1):346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alliance for a Green Revolution in Africa (AGRA) (2014) Africa agriculture status report 2014: climate change and smallholder agriculture in sub Saharan Africa, http://hdl.handle.net/10568/42343

  • Agunbiade TA, Sun W, Coates BS, Djouaka R, Tamò M, Ba MN, Binso-Dabire C, Baoua I, Olds BP, Pittendrigh BR (2013) Development of reference transcriptomes for the major field insect pests of cowpea: a toolbox for insect pest management approaches in West Africa. PLoS One 8(11)

    Google Scholar 

  • Ahmed MM, Elhassan AM, Kannan HO (2002) Use of combined economic threshold level to control insect pests on cotton. J Agric Rural Dev Trop Subtrop 103(2):147–156

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Aboodi A, Ffrench-Constant RH (2017) RAPD PCR confirms absence of genetic variation between insecticide resistant variants of the green peach aphid, Myzuspersicae (Homoptera: Aphididae). Great Lakes Entomol 28(2):2

    Google Scholar 

  • Alexandrova N, Georgieva K, Atanassov A (2005) Biosafety regulations of GMOs: national and international aspects and regional cooperation. Biotechnol Biotechnol Equip 19(sup3):153–172

    Article  Google Scholar 

  • Alimentarius C (2003). Alinorm 03/34: Joint FAO/WHO Food Standard Programme, Codex Alimentarius Commission, Twenty-Fifth Session, Rome, 30 June–5 July, 2003. Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants and Appendix IV, Annex on the assessment of possible allergenicity, pp 47–60

    Google Scholar 

  • Anderson J, Ellsworth PC, Faria JC, Head GP, Owen MD, Pilcher CD, Shelton AM, Meissle M, Meissle M (2019) Genetically engineered crops: importance of diversified integrated pest management for agricultural sustainability. Front Bioeng Biotechnol 7:24

    Article  PubMed  PubMed Central  Google Scholar 

  • ASSAF (2010) Workshop proceedings report GMOs for African agriculture: challenges and opportunities. Published by the Academy of Science of South Africa. ISBN 978-0-9814159-7-0. pp 75. https://www.assaf.org.za/files/2010/08/ASSAf-GMO-African-Agriculture-2010-Part-1.pdf

  • Barnes BN (2016) Sterile insect technique (SIT) for fruit fly control—the South African experience. In: Fruit fly research and development in Africa-towards a sustainable management strategy to improve horticulture. Springer, Cham, pp 435–464

    Google Scholar 

  • Barnes BN, Eyles DK, Franz G (2004) South Africa’s fruit fly SIT programme—the HexRiver Valley pilot project and beyond. In: Barnes BN (ed) Proceedings of the 6th international symposium on fruit flies of economic importance, Stellenbosch, South Africa 2002. Isteg Scientific Publications, Irene, pp 131–141

    Google Scholar 

  • Baum JA, Roberts JK (2014) Progress towards RNAi-mediated insect pest management. Adv Insect Physiol 47:249–295

    Article  Google Scholar 

  • Beas-Catena A, Sánchez-Mirón A, García-Camacho F, Contreras-Gómez A, Molina-Grima E (2014) Baculovirus biopesticides: an overview. J Anim Plant Sci 24(2):362–373

    Google Scholar 

  • Bellés X (2010) Beyond drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol 55:111–128

    Article  PubMed  CAS  Google Scholar 

  • Breitenbach JE, Shelby KS, Popham HJ (2011) Baculovirus induced transcripts in hemocytes from the larvae of Heliothis virescens. Viruses 3(11):2047–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CABI. (2016). Ceratitis capitate (Mediterranean fruit fly). Invasive species compendium. CAB International [WWW document]. www.cabi.org/isc

  • Carrière Y, Tabashnik B (2001) Reversing insect adaptation to transgenic insecticidal plants. Proc R Soc London Ser B 268:1475–1480

    Article  Google Scholar 

  • Christiaens O, Prentice K, Pertry I, Ghislain M, Bailey A, Niblett C, Gheysen G, Smagghe G (2016) RNA interference: a promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus. Sci Rep 6:38,836

    Article  CAS  Google Scholar 

  • Conlong DE, Rutherford SR (2009) Conventional and new biological and habitat interventions for integrated pest management systems: review and case studies using Eldana saccharina Walker (Lepidoptera: Pyralidae). In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht, pp 241–226

    Chapter  Google Scholar 

  • CPA (2008) Consumer Protection Act No. 68 of 2008, 526 Government Gazette [GG], No. 467, http://www.info.gov.za/view/DownloadFileAction?id=99961

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17(4):193–199

    Article  PubMed  Google Scholar 

  • Dirk E (2019) South Africa—republic of agricultural biotechnology annual biotechnology in South Africa. GAIN Report, pp 35

    Google Scholar 

  • Encyclopedia of Nations: Sudan-Agriculture (2008). web.archive.org. www.nationsencyclopedia.com/Africa/Sudan-AGRICULTURE.html

  • Esterhuizen D, Kreamer R (2012) South Africa agricultural biotechnology annual. Curr Biotechnol 3:14

    Google Scholar 

  • Esvelt KM, Smidler AL, Catteruccia F, Church GM (2014) Emerging technology: concerning RNA-guided gene drives for the alteration of wild populations. elife 3:e03401

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezezika OC, Daar AS (2012) Building trust in biotechnology crops in light of the Arab spring: a case study of Bt maize in Egypt. Agriculture and food. Security 1(Suppl 1 (s4)):1–7

    Google Scholar 

  • FCD (1972). Foodstuffs, Cosmetics and Disinfectants Act No. 54 of 1972 (May 19, 1972). http://www.doh.gov.za/docs/legislation/acts/2011/Act-541972.pdf

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  • Furlong MJ, Wright DJ, Dosdall LM (2013) Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol 58:517–541

    Article  CAS  PubMed  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6(7):e22629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42(6):1780–1790

    Article  Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39(1):103–110

    Article  PubMed  Google Scholar 

  • GMO (2006) Genetically Modified Organisms Amendment Act No. 23 of 2006, Preamble; Country Profile – South Africa, Biosafety Clearing House, Convention on Biological Diversity. http://bch.cbd.int/about/countryprofile.shtml?country=za

  • Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS One 11(10):e0165632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gouse M, Pray CE, Kirsten J, Schimmelpfennig D (2005) A GM subsistence crop in Africa: the case of Bt white maize in South Africa. Int J Biotechnol 7(1/2/3):84–94

    Article  Google Scholar 

  • Gramkow AW, Perecmanis S, Sousa RLB, Noronha EF, Felix CR, Nagata T, Ribeiro BM (2010) Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Virol J 7(1):143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackland AF, Coetzer CT, Rybicki EP, Thomson JA (2000) Genetically engineered resistance in tobacco against south African strains of tobacco necrosis and cucumber mosaic viruses. S Afr J Sci 96(1):33–38

    CAS  Google Scholar 

  • Haslberger AG (2003) Codex guidelines for GM foods include the analysis of unintended effects. Nat Biotechnol 21(7):739–741

    Article  CAS  PubMed  Google Scholar 

  • Hillocks R (2009) Bt cotton and maize: associated benefits and problems in the developing world. Arabian J Plant Protec 27:221–225

    Google Scholar 

  • International Monetary Fund (IMF) (2012) International jobs report. Economist Intelligence Unit, Washington, DC

    Google Scholar 

  • ISAAA (2018) Global status of commercialized biotech/GM crops in 2018. ISAAA brief No. 54. ISAAA, Ithaca, NY

    Google Scholar 

  • International Service for the Acquisition of Agric-biotech Applications (ISAAA) (2012) Global of commercialized biotech/GM crops: 2012. ISAAA Brief 44-2012: Executive summary. http://www.isaaa.org

  • International Service for the Acquisition of Agric-biotech Applications (ISAAA) (2011) Global of commercialized biotech/GM crops: 2011. ISAAA Brief 43-2011: Executive summary. http://www.isaaa.org

  • Ismail Y, Bennett R, Morse S (2002) Benefits from Bt cotton use by smallholder farmers in South Africa. AgBioforum 5(1):1–5

    Google Scholar 

  • Itaya M (2013) Tools for genome synthesis. In: Synthetic biology. Academic Press, pp 225–242

    Chapter  Google Scholar 

  • Ivashuta S, Zhang Y, Wiggins BE, Ramaseshadri P, Segers GC, Johnson S, Meyer SE, Kerstetter RA, McNulty BC, Bolognesi R, Heck GR (2015) Environmental RNAi in herbivorous insects. Rna 21(5):840–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James C (2008) Global status of commercialized biotech/GM crops: 2008. ISAAA Brief No. 39. ISAAA, Ithaca, NY

    Google Scholar 

  • Kalaitzandonakes N, Alston JM, Bradford KJ (2007) Compliance costs for regulatory approval of new biotech crops. Nat Biotechnol 25(5):509–511

    Article  CAS  PubMed  Google Scholar 

  • Karembu M, Nguthi F, Ismail H (2009) Biotech crops in Africa: the final frontier. ISAAA AfriCenter, Nairobi, Kenya

    Google Scholar 

  • Keetch DP, Webster JW, Ngqaka A, Akanbi R, Mahlangu P (2005) Bt maize for small scale farmers: a case study. Afr J Biotechnol 4(13):1505–1509

    Google Scholar 

  • Klassen W (2005) Area-wide integrated pest management and the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique. Principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 39–68

    Google Scholar 

  • Klee HJ, Rogers SG (1989) Plant genetic vectors and transformation: plant transformation systems based on the use of Agrobacterium tumefaciens. Cell Culture Somatic Cell Genet Plants 6:2–25

    Google Scholar 

  • Klein TM, Goff SA, Roth BA, Fromm ME (1990) Applications of the particle gun in plant biology. In: Progress in plant cellular and molecular biology. Springer, Dordrecht, pp 56–66

    Chapter  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418(6894):244–251

    Article  CAS  PubMed  Google Scholar 

  • Kolliopoulou A, Taning CN, Smagghe G, Swevers L (2017) Viral delivery of dsRNA for control of insect agricultural pests and vectors of human disease: prospects and challenges. Front Physiol 8:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Komen J, Wafula D (2013) Trade and tribulations: an evaluation of trade barriers to the adoption of genetically modified crops in the east African community. Center for Strategic & International Studies

    Google Scholar 

  • Ladics GS (2008) Current codex guidelines for assessment of potential protein allergenicity. Food Chem Toxicol 46(10):S20–S23

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wang X, Dai Y, Wei X, Ni M, Zhang L, Zhu Z (2019) Expressing double-stranded RNAs of insect hormone-related genes enhances baculovirus insecticidal activity. Int J Mol Sci 20(2):419

    Article  PubMed Central  CAS  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie AA (2000) The process of developing labeling standards for GM foods in the Codex Alimentarius. AgBioForum 3(4):203–208

    Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Margam VM, Coates BS, Ba MN, Sun W, Binso-Dabire CL, Baoua I, Ramasamy S (2011) Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Mol Biol Rep 38(2):893–903

    Article  CAS  PubMed  Google Scholar 

  • Massoud MA (2010) Effect of Bt corn on infestations of corn borers in Egypt. Chapter 17. In: Serageldin I, Masood E, El-Faham M, El-Wakil M (eds) From promises to practice: applications of science and technology in food, health care, energy and environment. BioVision Alexandria, pp 203–211

    Google Scholar 

  • Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431:338–342

    Article  CAS  PubMed  Google Scholar 

  • Meyer GM, Snyman SJ (2013) Progress in research on genetically modified sugarcane in South Africa and associated regulatory requirements. In: II Genetically Modified Organisms in Horticulture Symposium 974, pp 43–50

    Google Scholar 

  • Morse S, Bennett R (2008) Impact of Bt cotton on farmer livelihood in South Africa. Int J Biotechnol 10(2/3):224–239

    Article  Google Scholar 

  • Muzhinji N, Ntuli V (2020) Genetically modified organisms and food security in southern Africa: conundrum and discourse. GM Crops Food 1:11

    Google Scholar 

  • Mwadzingeni L, Shimelis H, Dube E, Laing MD, Tsilo TJ (2016) Breeding wheat for drought tolerance: progress and technologies. J Integr Agric 15(5):935–943

    Article  Google Scholar 

  • Naranjo SE, Butler GD, Henneberry TJ (2002) A bibliography of the pink bollworm, Pectinophoragossypiella (Saunders). Bibliographies and Literature of Agriculture, 136, USDA, Agricultural Research Service, Phoenix AZ

    Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7(1):1–6

    Article  CAS  Google Scholar 

  • NEMBA (2004) National environmental management: biodiversity act no. 10 of 2004 (NEMBA), 20 BSRSA

    Google Scholar 

  • OECD/FAO (2016) Agriculture in sub-Saharan Africa: prospects and challenges for the next decade. In: OECD-FAO agricultural outlook 2016–2025. OECD Publishing, Paris

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Ogaugwu C, Wilson D, Cobblah M, Annoh C (2012) Gamma radiation sterilization of Bactrocera invadens (Diptera: Tephritidae) from southern Ghana. Afr J Biotechnol 11(51):11315–11320

    Google Scholar 

  • Permalloo S, Seewooruthun SI, Sookar P, Alleck F, Gungah B (2005) Area-wide fruit fly control in Mauritius (No. IAEA-CN--131)

    Google Scholar 

  • Potgieter L, Van Vuuren JH, Conlong DE (2013) A reaction–diffusion model for the control of Eldana saccharina Walker in sugarcane using the sterile insect technique. Ecol Model 250:319–328

    Article  Google Scholar 

  • Pratt CF, Constantine KL, Murphy ST (2017) Economic impacts of invasive alien species on African smallholder livelihoods. Glob Food Sec 14:31–37

    Article  Google Scholar 

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China–the benefits continue. Plant J 31(4):423–430

    Article  CAS  PubMed  Google Scholar 

  • Pretty J, Bharucha ZP (2015) Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 6(1):152–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Protocol C (2000) Cartagena protocol on biosafety to the convention on biological diversity: text and annexes. In Montreal: Secretariat of the Convention on Biological Diversity

    Google Scholar 

  • Ribaut JM, De Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13(2):213–218

    Article  PubMed  Google Scholar 

  • Romeis J, Widmer F (2020) Assessing the risks of topically applied dsRNA-based products to non-target arthropods. Front Plant Sci 11:679

    Article  PubMed  PubMed Central  Google Scholar 

  • Rybicki EP, Williamson AL, Meyers A, Hitzeroth II (2011) Vaccine farming in Cape Town. Hum Vaccin 7(3):339–348

    Article  CAS  PubMed  Google Scholar 

  • Satishchandra NK, Geerts S (2020) Modeling the distribution of the invasive alien cycad Aulacaspis Scale in Africa under current and future climate scenarios. J Econ Entomol toaa156

    Google Scholar 

  • Sawahel W (2004) Egyptian scientists produce drought-tolerant GM wheat. http://www.scidev.net

  • Schinasi L, Leon ME (2014) Non-Hodgkin lymphoma and occupational exposure to agricultural pesticide chemical groups and active ingredients: a systematic review and meta-analysis. Int J Environ Res Public Health 11(4):4449–4527

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnippenkoetter WH, Martin DP, Hughes FL, Fyvie M, Willment JA, James D, Von Wechmar MB, Rybicki EP (2001) The relative infectivities and genomic characterisation of three distinct mastreviruses from South Africa. Arch Virol 146(6):1075–1088

    Article  CAS  PubMed  Google Scholar 

  • Seewooruthun SI, Shradanand P, Soonnoo AR, Malini A (2000) Eradication of an exotic fruit fly from Mauritius. In Area-wide control of fruit flies and other insect pests. Joint proceedings of the international conference on area-wide control of insect pests, 28 May–2 June, 1998 and the fifth international symposium on fruit flies of economic importance, Penang, Malaysia, 1–5 June, 1998 (pp. 389–394). PenerbitUniversitiSains Malaysia

    Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22(1):5–34

    Article  CAS  Google Scholar 

  • Sithole-Niang I, Maxwell D, Allison R, Bressan R, Higgins TJ, Huesing J (2001) Cowpea transformation and useful genes. In The Dakar Symposium/Workshop on the Genetic Improvement of Cowpea

    Google Scholar 

  • Soucy SM, Huang J, Gogarten JP (2015) Horizontal gene transfer: building the web of life. Nat Rev Genet 16(8):472–482

    Article  CAS  PubMed  Google Scholar 

  • Srivastava DK, Kumar P, Sharma S, Gaur A, Gambhir G (2016) Genetic engineering for insect resistance in economically important vegetable crops. In: Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 343–378

    Chapter  Google Scholar 

  • Stewart LM, Hirst M, Ferber ML, Merryweather AT, Cayley PJ, Possee RD (1991) Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature 352(6330):85–88

    Article  CAS  PubMed  Google Scholar 

  • Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57(2):231–245

    Article  CAS  PubMed  Google Scholar 

  • Transgenic Market Research (TMR) (2014) Glyphosate market for genetically modified and conventional crops—global industry analysis, size, share, growth, trends and forecast 2013–2019

    Google Scholar 

  • Tomalski MD, Miller LK (1991) Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature (London) 352:82–85

    Article  CAS  Google Scholar 

  • Van Ittersum MK, Van Bussel LG, Wolf J, Grassini P, Van Wart J, Guilpart N, Claessens L, de Groot H, Wiebe K, Mason-D’Croz D, Yang H (2016) Can sub-Saharan Africa feed itself? Proc Natl Acad Sci 113(52):14,964–14,969

    Article  CAS  Google Scholar 

  • Vander Walt WJ (2008) Final report on the area of planted to GM maize in South Africa for 2007/2008 season. www.grainmilling.org.za

  • Vitale J, Glick H, Greenplate J, Abdennadher M, Traoré O (2008) Second-generation Bt cotton field trials in Burkina Faso: analyzing the potential benefits to West African farmers. Crop Sci 48:1958–1966

    Article  Google Scholar 

  • Vitale J, Outtarra M, Vognan G (2011) Enhancing sustainability of cotton production systems in West Africa: a summary of empirical evidence from Burkina Faso. Sustainability 3:1136–1169

    Article  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11(4):e0154027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitten MJ, Hoy MA (1999) Genetic improvement and other genetic considerations for improving the efficacy and success rate of biological control. In: Handbook of biological control. Academic Press, pp 271–296

    Chapter  Google Scholar 

  • Wolson RA (2007) Assessing the prospects for the adoption of biofortified crops in South Africa. AgBioForum 10(3):184. https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/57/Biofortified%20Crops%20in%20South%20Africa.pdf?sequence=1

    Google Scholar 

  • Wondafrash M, Getu E, Terefe G (2012) Life-cycle parameters of African bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) affected by neem, Azadirachta indica (A. Juss) extracts. Agric Sci Res J 2(6):335–345

    Google Scholar 

  • Yaninek JS (1988) Continental dispersal of the cassava green mite, an exotic pest in Africa, and implications for biological control. Exp Appl Acarol 4(3):211–224

    Article  Google Scholar 

  • Zethner O (1995) Practice of integrated pest management in tropical and subtropical Africa: an overview of two decades (1970–1990). In: Mengech AN, Saxena KN, Gopalan HNB (eds) Integrated pest management in the tropics: current status and future prospects. Wiley, Chichester, pp 1–67

    Google Scholar 

  • Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125

    CAS  Google Scholar 

Further Reading

  • Alemu M (2020) Trend of biotechnology applications in pest management: a review. Int J Appl Sci Biotechnol 8(2):108–131

    Article  Google Scholar 

  • Muzhinji N, Ntuli V (2021) Genetically modified organisms and food security in southern Africa: conundrum and discourse. GM Crops Food 12(1):25–35

    Article  PubMed  Google Scholar 

  • Saeed F, Hashmi MH, Hossain MJ, Ali MA, Bakhsh A (2020) Transgenic technologies for efficient insect pest management in crop plants. Transgenic technology based value addition in plant biotechnology, p 123

    Google Scholar 

  • Venter JH, Baard CWL, Barnes BN (2021) Area-wide management of Mediterranean fruit fly with the sterile insect technique in South Africa: new production and management techniques pay dividends. In: Area-wide integrated Pest management. CRC Press, pp 129–141

    Chapter  Google Scholar 

Download references

Acknowledgement

The South African Department of Environment, Forestry and Fisheries (DEFF) are thanked for funding noting that this publication does not necessarily represent the views or opinions of DEFF or its employees.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nitin, K.S., Masehela, T.S., Chakravarthy, A.K., Geerts, S. (2022). Management of Pests Using Genetic Tools in Africa. In: Chakravarthy, A.K. (eds) Genetic Methods and Tools for Managing Crop Pests. Springer, Singapore. https://doi.org/10.1007/978-981-19-0264-2_10

Download citation

Publish with us

Policies and ethics