Skip to main content

Microbial Enzymes for Sustainable Development: Future Guidelines

  • Chapter
  • First Online:
Ecological Interplays in Microbial Enzymology

Abstract

Pollution of the environment is a significant threat to the health of humans and other living things. Traditional pollutant removal methods are ineffective at reducing pollution levels to acceptable levels. For pollutant remediation, biological methods are preferred due to their greater efficiency and biocompatibility. Bioremediation is the term for these low-cost, environmentally friendly methods of reducing pollution. Enzymes play the most important role in bioremediation methods. PAHs, azo dyes, polymers, organocyanides, lead, chromium, and mercury are among the organic and inorganic pollutants that enzymes can help to eliminate. Various enzymes from various species have been isolated. Recently, various enzymes isolated from various species have been used for pollutant bioremediation. Cytochrome P450s, laccases, hydrolases, dehalogenases, dehydrogenases, proteases, and lipases are some of the most common enzymes involved in bioremediation, and they have shown promise in the degradation of polymers, aromatic hydrocarbons, halogenated compounds, dyes, detergents, agrochemical compounds, and others. Mechanisms like oxidation, reduction, elimination, and ring-opening have aided recent advancements in the use of microbial enzymes for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo, F., Pizzul, L., Castillo, M. D., González, M. E., Cea, M., Stenström, J., Gianfreda, L., & Diez, M. C. (2010). Degradation of polycyclic aromatic hydrocarbons by free and nanoclay-immobilized manganese peroxidase from Anthracophyllum discolor. Chemosphere, 80, 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, M. Y., Dec, J., Kim, E. Y., & Bollag, J.-M. (2002). Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. Journal of Environmental Quality, 31, 1509–1515.

    Article  CAS  PubMed  Google Scholar 

  • Arnosti, C., Bell, C., Moorhead, D. L., Sinsabaugh, R. L., Steen, A. D., Stromberger, M., Wallestein, M., & Weintraub, M. N. (2014). Extracellular enzymes in terrestrial, freshwater, and marine environments: Perspectives on system variability and common research needs. Biogeochemistry, 117(1), 5–21.

    Article  CAS  Google Scholar 

  • Awad, G., & Mohamed, E. F. (2019). Immobilization of P450 BM3 monooxygenase on hollow nanosphere composite: Application for degradation of organic gases pollutants under solar radiation lamp. Applied Catalysis B: Environmental, 253, 88–95.

    Article  CAS  Google Scholar 

  • Beier, S., & Bertilsson, S. (2011). Uncopling of chitosan activity and uptake of hydrolysis products in freshwater bacterioplankton. Limnology and Oceanography, 54(4), 1179–1188. https://doi.org/10.4319/lo.2011.56.4.1179

    Article  CAS  Google Scholar 

  • Bhandari, S., Darbin, K. P., Rishab, M., Sonika, D., Karan, K., Sitaram, P., Shreesti, S., Santosh, G., Kusum, B., Uddhav, K., & Niranjan, P. (2021). Microbial enzymes used in bioremediation. Journal of Chemistry, 2021, 8849512. https://doi.org/10.1155/2021/8849512

    Article  CAS  Google Scholar 

  • Bilal, M., & Asgher, M. (2015). Dye decolorization and detoxification potential of Ca-alginate beads immobilized manganese peroxidase. BMC Biotechnology, 15(1), 111–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilal, M., Asgher, M., Iqbal, M., Hu, H., & Zhang, X. (2016). Chitosan beads immobilized manganese peroxidese catalytic potential for detoxification and decolorization of textile effluent. International Journal of Biological Macromolecules, 89, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty, J., & Das, S. (2016). Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. Environmental Science and Pollution Research, 23(17), 16883–16903.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan, P. S., Goradia, B., & Saxena, A. (2017). Bacterial laccase: Recent update on production, properties and industrial applications. 3 Biotech, 7(5), 323.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eibes, G., Arca-Ramos, A., Feijoo, G., Lema, J. M., & Moreira, M. T. (2015). Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Applied Microbiology and Biotechnology, 99(21), 8815–8829.

    Article  CAS  PubMed  Google Scholar 

  • Falade, A. O., Nwodo, U. U., Iweriebor, B. C., Green, E., Mabinya, L. V., & Okoh, A. I. (2017). Lignin peroxidase functionalities and prospective applications. Microbiology Open, 6, 394–400.

    Article  Google Scholar 

  • Festa, G., Autore, F., Fraternali, F., Giardina, P., & Sannia, G. (2008). Development of new laccases by directed evolution: Functional and computational analyses. Proteins: Structure, Function, and Bioinformatics, 72(1), 25–34.

    Article  CAS  Google Scholar 

  • Garcia, J., Zhang, Y., Taylor, H., Cespedes, O., Webb, M. E., & Zhou, D. (2011). Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Nanoscale, 3, 3721–3730.

    Article  CAS  PubMed  Google Scholar 

  • Gassara, F., Brar, S. K., Verma, M., & Tyagi, R. D. (2013). Bisphenol A degradation in water by ligninolytic enzymes. Chemosphere, 92, 1356–1360.

    Article  CAS  PubMed  Google Scholar 

  • Gianfreda, L., Rao, M. A., Scelza, R., & De la Luz Mora, M. (2016). Role of enzymes in environment cleanup/remediation. In Agro-industrial wastes as feedstock for enzyme production (pp. 133–155). Academic Press.

    Chapter  Google Scholar 

  • Hu, X., Zhao, X., & Hwang, H. (2007). Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere, 66, 1618–1626.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Y., Eltoukhy, A., Wang, J., Li, X., Hlaing, T. S., Aung, M. M., Nwe, M. T., Lamraoui, I., & Yan, Y. (2020). Biodegradation of bisphenol A by Sphingobium sp. YC-JY1 and the essential role of cytochrome P450 monooxygenase. International Journal of Molecular Sciences, 21(10), 3588.

    Article  CAS  PubMed Central  Google Scholar 

  • Kan, J., Peng, T., Huang, T., Xiong, G., & Hu, Z. (2020). NarL, a novel repressor for CYP108j1 expression during PAHsdegradation in Rhodococcus sp. P14. International Journal of Molecular Sciences, 21(3), 983–989.

    Article  CAS  PubMed Central  Google Scholar 

  • Kaur, H., Kapoor, S., & Kaur, G. (2016). Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environmental Monitoring and Assessment, 88(10), 88.

    Google Scholar 

  • Kim, J., Grate, J., & Wang, P. (2006). Nanostructures for enzyme stabilization. Chemical Engineering Science, 61, 1017–1026.

    Article  CAS  Google Scholar 

  • Kim, J., Grate, J., & Wang, P. (2008). Nanobiocatalysis and its potential applications. Trends in Biotechnology, 26, 639–646.

    Article  CAS  PubMed  Google Scholar 

  • Knop, D., Levinson, D., Makovitzki, A., et al. (2016). Limits of versatility of versatile peroxidase. Applied and Environmental Microbiology, 82(14), 4070–4080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Jin, M., & James, L. (2012). Cytochrome P450-mediated phytoremediation using transgenic plants: A need for engineered cytochrome P450 enzymes. Journal of Petroleum & Environmental Biotechnology, 3(5), 10–21.

    Article  Google Scholar 

  • Li, Z., Jiang, Y., Guengerich, F. P., Ma, L., Li, S., & Zhang, W. (2020). Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. The Journal of Biological Chemistry, 295(3), 833–849.

    Article  PubMed  Google Scholar 

  • Lu, L., Wang, T. N., Xu, T. F., Wang, J. Y., Wang, C. L., & Zhao, M. (2013). Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresource Technology, 134, 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Maddela, N. R., Sheng, B., Yuan, S., Zhou, Z., Villamar-Torres, R., & Meng, F. (2019). Roles of quorum sensing in biological wastewater treatment: A critical review. Chemosphere, 221, 616–629.

    Article  CAS  PubMed  Google Scholar 

  • Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30(2), 261–278.

    Article  CAS  PubMed  Google Scholar 

  • Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  • Nannipieri, P., & Bollag, J.-M. (1991). Use of enzymes to detoxify pesticide-contaminated soils and waters. Journal of Environmental Quality, 20, 510–517.

    Article  CAS  Google Scholar 

  • Ó’Fágáin, C. (2003). Enzyme stabilization – Recent experimental progress. Enzyme and Microbial Technology, 33, 137–149.

    Article  Google Scholar 

  • Qin, X., Zhang, J., Zhang, X., & Yang, Y. (2014). Induction, purification and characterization of a novel manganese peroxidase from Irpex lacteus CD2 and its application in the decolorization of different types of dye. PLoS One, 9(11), 1–7.

    Article  Google Scholar 

  • Rayu, S., Karpouzas, D. G., & Singh, B. K. (2012). Emerging technologies in bioremediation: Constraints and opportunities. Biodegradation, 23(6), 917–926.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, S., & Demain, A. L. (2017). Useful microbial enzymes—An introduction. In Biotechnology of microbial enzymes (pp. 1–11). Academic Press.

    Google Scholar 

  • Seyyed, M. M., Seyyed, A. H., Seyed, M. I., Navid, R., Ahmad, G., Chin, W. L., Wei-Hung, C., Navid, O., Khadije, Y., & Gity, B. (2021). Recent advances in enzymes for the bioremediation of pollutants. Biochemistry Research International, 2021, 1–12. https://doi.org/10.1155/2021/5599204

    Article  CAS  Google Scholar 

  • Sun, J., Zheng, M., Lu, Z., Lu, F., & Zhang, C. (2017). Heterologous production of a temperature and PH-stable laccase from Bacillus vallismortis fmb-103 in Escherichia coli and its application. Process Biochemistry, 55, 77–84.

    Article  CAS  Google Scholar 

  • Theerachat, M., Emond, S., & Cambon, E. (2012). Engineering and production of laccase from Trametes versicolor in the yeast Yarrowia lipolytica. Bioresource Technology, 125, 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Ufarte, L., Laville, E., Duquesne, S., & Potocki-Veronese, G. (2015). Metagenomics for the discovery of pollutant degrading enzymes. Biotechnology Advances, 33(8), 1845–1854.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T. N., & Zhao, M. (2017). A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase. Applied Microbiology and Biotechnology, 101(2), 685–696.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Yao, B., & Su, X. (2018). Linking enzymatic oxidative degradation of lignin to organics detoxification. International Journal of Molecular Sciences, 19(11), 3373.

    Article  PubMed Central  Google Scholar 

  • Xu, H., Guo, M. Y., Gao, Y. H., Bai, X. H., & Zhou, X. W. (2017). Expression and characteristics of manganese peroxidase from Ganoderma lucidum in Pichia pastoris and its applicationin the degradation of four dyes and phenol. BMC Biotechnology, 17(1), 19–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Li, J., Du, G., & Liu, L. (2017). Microbial production and molecular engineering of industrial enzymes: Challenges and strategies. In Biotechnology of microbial enzymes (pp. 151–165). Academic Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naga Raju Maddela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aransiola, S.A., Victor-Ekwebelem, M.O., Maddela, N.R. (2022). Microbial Enzymes for Sustainable Development: Future Guidelines. In: Maddela, N.R., Abiodun, A.S., Prasad, R. (eds) Ecological Interplays in Microbial Enzymology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0155-3_19

Download citation

Publish with us

Policies and ethics