Skip to main content

Effects of Aquatic (Freshwater and Marine) Pollution on Microbial Enzyme Activities

  • Chapter
  • First Online:
Ecological Interplays in Microbial Enzymology

Abstract

Water pollution has a dual impact on nature, as it is harmful to both humans and the environment. Contamination from distributed sources is difficult to control, and despite significant advances in the construction of modern sewage-treatment plants, dispersed sources continue to be a significant source of water pollution. Bacterial activity is the most important process in the hydrolysis of organic contaminants. The study recognized the location, type, and size of the water body to which it habituates, either natural water body like lake, sea, or artificial water body like the wetlands, so as to give a holistic enumeration effectiveness of the preferred solution. Physical remediation and bioremediation techniques are the methods that can be used for the mitigation and improvement of water quality. Study revealed that microbial agents or photosynthetic bacteria and microalgae-bacteria medium degrades organic matter in water significantly and also reduces the level of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and nutrients aeration, precipitation and ion-exchange or addition of nutrients and activators to the water is an eco-friendly solution to improve the water quality aids during the activities of microbial enzymes. The effective remediation is the best practice to weighing both pros and cons toward the effect of pollution on microbial enzymes activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu, E. A., Onyenekwe, P. C., Ameh, D. A., Agbaji, A. S., & Ado, S. A. (2000). Cellulase production from sorghum bran by Aspergillusniger SL:1: An assessment of pretreatment methods. In Proceedings of the International Conference on Biotechnology: Commercialization and Food Security (ICBCFS ‘00), Abuja, Nigeria (pp. 153–159).

    Google Scholar 

  • Ali, S., Hall, J., & Soole, K. L. (1995). Targeted expression of microbial cellulases in transgenic animals. Progress in Biotechnology, 10, 279–293.

    CAS  Google Scholar 

  • Allam, A., Tawfik, A., El-Saadi, A., & Negm, A. M. (2016). Potentials of using duckweed (Lemna gibba) for treatment of drainage water for reuse in irrigation purposes. Desalination and Water Treatment, 57, 459–467.

    CAS  Google Scholar 

  • Allen, D. C., & Wesner, J. S. (2016). Synthesis: Comparing effects of resource and consumer fluxes into recipient food webs using meta-analysis. Ecology, 97, 594–604.

    PubMed  Google Scholar 

  • Amoatey, P., & Baawain, M. S. (2019). Effects of pollution on freshwater aquatic organisms. Water Environment Research, 91(10), 1272–1287. https://doi.org/10.1002/wer.1221

    Article  CAS  PubMed  Google Scholar 

  • Anjana, K., Hinduja, M., Sujitha, K., & Dharani, G. (2020). Review on plastic wastes in marine environment–Biodegradation and biotechnological solutions. Marine Pollution Bulletin, 150, 110733.

    Article  Google Scholar 

  • Anupama, S. (2020). Microbial degradation of Chitin (enzymes, steps, mechanisms). Microbenotes.com.

    Google Scholar 

  • Banerjee, A., Sharma, R., & Banerjee, U. (2002). RETRACTION: The nitrile-degrading enzymes: Current status and future prospects. Applied Microbiology and Biotechnology, 100, 7359.

    Article  Google Scholar 

  • Bayer, E. A., Belaich, J. P., Shoham, Y., & Lamed, R. (2004). Thecellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiology, 58, 521–554.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5), 355–383.

    Article  CAS  PubMed  Google Scholar 

  • Buchert, J., Oksanen, T., Pere, J., Siika-aho, M., Suurnakki, A., & Viikari, L. (1998). Applications of Trichoderma reesei enzymes in the pulp and paper industry. In G. F. Harman & C. P. Kubicek (Eds.), Biological control and commercial applications: Trichoderma & Gliocladium—Enzymes (Vol. 2, pp. 343–363).

    Google Scholar 

  • Carvalho, L. M. J., Deliza, R. C., Silva, C. A. B., Miranda, R. M., & Maia, M. C. A. (2003). Identifying the adequate process conditions by consumers for pineapple juice using membrane technology. Journal of Food Technology, 1, 150–156.

    Google Scholar 

  • de Carvalho, L. M. J., de Castro, I. M., & da Silva, C. A. B. (2008). A study of retention of sugars in the process of clarification of pineapple juice (Ananascomosus, L. Merril) by micro- and ultra-filtration. Journal of Food Engineering, 87(4), 447–454.

    Article  Google Scholar 

  • Cavallaro, M. C., Morrissey, C. A., Headley, J. V., Peru, K. M., & Liber, L. (2017). Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Environmental Toxicology and Chemistry, 36, 372–382.

    Article  CAS  PubMed  Google Scholar 

  • Chander Kuhad, R., Mehta, G., Gupta, R., & Sharma, K. K. (2010). Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass and Bioenergy, 34(8), 1189–1194.

    Article  Google Scholar 

  • Chandra, P., Enespa, Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: A comprehensive review. Microbial Cell Factories, 19, 169. https://doi.org/10.1186/s12934-020-01428-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrakant, S. K., & Shwetha, S. R. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, 805187. https://doi.org/10.4061/2011/805187. 11 pages.

    Article  CAS  Google Scholar 

  • Chen, H. M., Yan, X. J., Zhu, P., & Lin, J. (2006). Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutrition Journal, 5, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, J. (2014). Bioremediation of contaminated water-based on various technologies. Open Access Library Journal, 1, e056. https://doi.org/10.4236/oalib.preprints.1200056

    Article  Google Scholar 

  • Chi, Z., Chi, Z., Zhang, T., Liu, G., Li, J., & Wang, X. (2009). Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnology Advances, 27, 236–255.

    Article  CAS  PubMed  Google Scholar 

  • da Costa Waite, C. C., da Silva, G. O. A., Bitencourt, J. A. P., Sabadini-Santos, E., & Crapez, M. A. C. (2016). Copper and lead removal from aqueous solutions by bacterial consortia acting as biosorbents. Marine Pollution Bulletin, 109(1), 386–392.

    Article  Google Scholar 

  • Cottrell, M. T., Moore, J. A., & Kirchman, D. L. (1999). Chitinases from uncultured marine microorganisms. Applied and Environmental Microbiology, 65(6), 2553–2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, N. X., Chen, G. F., Liu, Y. Q., Zhou, L., Cai, M., Song, X. F., & Zou, G. Y. (2018). Comparison of two different ecological floating bio-reactors for pollution control in hyper-eutrophic freshwater. Scientific Reports, 8, 14306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahiya, N., Tewari, R., Tiwari, R. P., & Hoondal, G. S. (2005). Chitinase from Enterobacter sp. NRG4: Itspurification, characterization and reaction pattern. Electronic Journal of Biotechnology, 8, 134–145. https://doi.org/10.2225/vol8-issue2-fulltext-6

    Article  CAS  Google Scholar 

  • Das, M. P., Devi, P. V., & Yasmine, Y. (2015). A study on antagonistic potential of bacteria against phytopathogenic fungi. International Journal of Pharmaceutical Sciences Review and Research, 34, 191–193. Retrieved from https://pdfs.semanticscholar.org/44c6/f66e45b2d38fef4f80f3b3b847bbc9e818cc.pdf

    Google Scholar 

  • David, K. (1935). Lipase production by Penicillium oxalicum and Aspergillus flavus. Botanical Gazette, 97, 321.

    Article  Google Scholar 

  • Dhiman, T. R., Zaman, M. S., Gimenez, R. R., Walters, J. L., & Treacher, R. (2002). Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Animal Feed Science and Technology, 101(1–4), 115–125.

    Article  CAS  Google Scholar 

  • Dienes, D., Egyházi, A., & Réczey, K. (2004). Treatment of recycled fiber with Trichoderma cellulases. Industrial Crops and Products, 20(1), 11–21.

    Article  CAS  Google Scholar 

  • Dipakkore, S., Reddy, C. R. K., & Jha, B. (2005). Production and seeding of protoplasts of Porphyraokhaensis (Bangiales, Rhodophyta) in laboratory culture. Journal of Applied Phycology, 17, 331–337.

    Article  CAS  Google Scholar 

  • Ekowati, C., Dewi, S. Z., & Agustinus, R. U. (2009). Screening and characterization of bacterial chitosanase from marine environment. The Journal of Coastal Development, 12(2), 64–72.

    Google Scholar 

  • Escobar, M. O., & Hue, N. V. (2008). Temporal changes of selected chemical properties in three manure–amended soils of Hawaii. Bioresource Technology, 99(18), 8649–8654.

    Article  Google Scholar 

  • Fadhil, L., Kadim, A., & Mahdi, A. (2014). Production of chitinase by Serratiamarcescens from soil and its antifungal activity. Journal of Natural Science Research, 4, 80–86. https://doi.org/10.7176/JNSR/2014.8.12635.4

    Article  Google Scholar 

  • Galante, Y. M., De Conti, A., & Monteverdi, R. (1998). Application of Trichoderma enzymes in food and feed industries. In Biological control and commercial applications: Trichoderma and Gliocladium—Enzymes (Vol. 2, pp. 311–326). Taylor & Francis.

    Google Scholar 

  • Gianfreda, L., & Rao, M. A. (2004). Potential of extra cellular enzymes in remediation of polluted soils: A review. Enzyme and Microbial Technology, 35, 339–354.

    Article  CAS  Google Scholar 

  • Gopinath, S. C. B., Periasamy, A., Md Arshad, M. K., Thangavel, L., Chun, H. V., Uda, H., & Suresh, V. C. (2017). Biotechnological processes in microbial amylase production. BioMed Research International, 2017, 1272193. https://doi.org/10.1155/2017/1272193. 9 pages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory, M. R., & Ryan, P. G. (1997). Pelagic plastics and other seaborne persistent synthetic debris: A review of southern hemisphere perspectives. Marine Debris, 49–66.

    Google Scholar 

  • Gu, D. G., Xu, H., He, Y., Zhao, F., & Huang, M. S. (2015). Remediation of urban river water by Pontederia Cordata combined with artificial aeration: Organic matter and nutrients removal and root-adhered bacterial communities. International Journal of Phytoremediation, 17, 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: A biotechnological perspective. Process Biochemistry, 38(11), 1599–1616.

    Article  CAS  Google Scholar 

  • Gupta, R., Sharma, K. K., & Kuhad, R. C. (2009). Separate hydrolysis and fermentation (SHF) of Prosopisjuliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichiastipitis-NCIM 3498. Bioresource Technology, 100(3), 1214–1220.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, R., Khasa, Y. P., & Kuhad, R. C. (2011a). Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydrate Polymers, 84, 1103–1109.

    Article  CAS  Google Scholar 

  • Gupta, R., Mehta, G., Khasa, Y. P., & Kuhad, R. C. (2011b). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4), 797–804.

    Article  CAS  PubMed  Google Scholar 

  • Guzmàn-Maldonado, H., Paredes-Lòpez, O., & Biliaderis, C. G. (1995). Amylolytic enzymes and products derived from starch: A review. Critical Reviews in Food Science and Nutrition, 35(5), 373–403.

    Article  PubMed  Google Scholar 

  • Hallmann, C. A., Foppen, R. P., van Turnhout, C. A., de Kroon, H., & Jongejans, E. (2014). Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature, 511, 341.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M. A., & Rezaul, C. (2020). Remediation of polluted water by biological, chemical and engineering processes. Sustainability, 12, 7017. https://doi.org/10.3390/su12177017

    Article  CAS  Google Scholar 

  • Hsu, J. C., & Lakhani, N. N. (2002). Method of making absorbed tissue from recycled waste paper. US patent 6413363.

    Google Scholar 

  • Hussain, S. F., Mahmood, M. S., & Ahmed, S. I. (2013). A review of the microbiological aspect of α-amylase production. International Journal of Agriculture and Biology, 15(5), 1029–1034.

    CAS  Google Scholar 

  • Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., … Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771.

    Article  CAS  PubMed  Google Scholar 

  • Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, 1–11. https://doi.org/10.4061/2011/805187

    Article  CAS  Google Scholar 

  • Karmakar, M., & Ray, R. R. (2011). Current trends in research and application of microbial cellulases. Research Journal of Microbiology, 6(1), 41–53.

    Article  CAS  Google Scholar 

  • Karunya, S. K., Reetha, D., Saranraj, P., & Milton, D. J. (2011). Optimization and purification of chitinase produced by Bacillus subtilis and its antifungal activity against plant pathogens. International Journal of Pharmaceutical & Biological Archive, 2, 1680–1685.

    Google Scholar 

  • Khatri, D. K., Tiwari, D. N., & Bariya, H. S. (2017). Chitinolytic efficacy and secretion of cell wall-degrading enzymes from Trichoderma spp. in response to phytopathological fungi. Journal of Applied Biology and Biotechnology, 5, 1–8. https://doi.org/10.7324/JABB.2017.50601

    Article  CAS  Google Scholar 

  • Kobayashi, R., Takisada, M., Suzuki, T., Kirimura, K., & Usami, S. (1997). Neoagarobiose as a novel moisturizer with whitening effect. Bioscience, Biotechnology, and Biochemistry, 61, 62–63.

    Article  Google Scholar 

  • Kobayashi, T., Koide, O., Mori, K., Shimamura, S., Matsuura, T., Miura, T., Takaki, Y., Morono, Y., Nunoura, T., Imachi, H., Inagaki, F., Takai, K., & Horikoshi, K. (2008). Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles, 12, 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, J. M. (2019). Contaminants in linked aquatic–terrestrial ecosystems: Predicting effects of aquatic pollution on adult aquatic insects and terrestrial insectivores. Freshwater Science, 38(4), 919–927.

    Article  Google Scholar 

  • Kraus, J. M., Schmidt, T. S., Walters, D. M., Wanty, R. B., Zuellig, R. E., & Wolf, R. E. (2014). Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs. Ecological Applications, 24, 235–243.

    Article  PubMed  Google Scholar 

  • Kraus, J. M., Gibson, P. P., Walters, D. M., & Mills, M. A. (2017). Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems. Environmental Toxicology and Chemistry, 36, 1278–1286.

    Article  CAS  PubMed  Google Scholar 

  • Krueger, M. C., Harms, H., & Schlosser, D. (2015). Prospects for microbiological solutions to environmental pollution with plastics. Applied Microbiology and Biotechnology, 99(21), 8857–8874.

    Article  CAS  PubMed  Google Scholar 

  • Kubicek, C. P. (1993). From cellulose to cellulase inducers: Facts and fiction. In P. Suominen & T. Reinikainen (Eds.), Proceedings of the 2nd Symposium Trichoderma reesei Cellulases and Other Hydrolases (TRICEL ‘93) (Vol. 8, pp. 181–188). Foundation for Biotechnical and Industrial Fermentation Research.

    Google Scholar 

  • Kuhad, R. C., Gupta, R., & Khasa, Y. P. (2010). Bioethanol production from lignocellulosic biomass: An overview. Wealth from waste.

    Google Scholar 

  • Kumarevel, T., Nakano, N., & Ponnuraj, K. (2008a). Crystal structure of glutamine receptor protein from Sulfolobustokodaii strain 7 in complex with its effector l-glutamine: Implications of effector binding in molecular association and DNA binding. Nucleic Acids Research, 36(14), 4808–4820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarevel, T., Sakamoto, K., Gopinath, S. C. B., Shinkai, A., Kumar, P. K. R., & Yokoyama, S. (2008b). Crystal structure of an archaeal specific DNA-binding protein (Ape10b2) from Aeropyrumpernix K1. Proteins, 71(3), 1156–1162.

    Article  CAS  PubMed  Google Scholar 

  • Kumarevel, T., Tanaka, T., & Nishio, M. (2008c). Crystal structure of the MarR family regulatory protein, ST1710, from Sulfolobus tokodaii strain 7. Journal of Structural Biology, 161(1), 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. M., & Koo, Y. M. (2001). Pilot-scale production of cellulase using Trichoderma Reesei rut C-30 fed-batch mode. Journal of Microbiology and Biotechnology, 11(2), 229–233.

    CAS  Google Scholar 

  • Leung, M. (2004). Bioremediation: Techniques for cleaning up a mess. BioTeach Journal, 2, 18–22.

    Google Scholar 

  • Li, D. L., Pi, J., Zhang, T., Tan, X., & Fraser, D. J. (2018). Evaluating a 5-year metal contamination remediation and the biomonitoring potential of a freshwater gastropod along the Xiangjiang River, China. Environmental Science and Pollution Research, 25, 21127–21137.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. Z., Wu, Y. H., Wu, C. X., Muylaert, K., Vyverman, W., Yu, H. Q., Muñoz, R., & Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 241, 1127–1137.

    Article  CAS  PubMed  Google Scholar 

  • Lokhande, S., & Dixit, S. (2017). Natural and effective ways of purifying lake water. Annals of Civil and Environmental Engineering, 1, 49–54. https://doi.org/10.29328/journal.acee.1001006

    Article  Google Scholar 

  • Ma, C. P., Lu, X. Z., Shi, C., Li, J. B., Gu, Y. C., Ma, Y. M., Chu, Y., & Han, F. (2007). Molecular cloning and characterization of a novel β-Agarase, AgaB, from marine Pseudoalteromonas sp. CY24. The Journal of Biological Chemistry, 282, 3747–3754.

    Article  CAS  PubMed  Google Scholar 

  • Milala, M. A., Shugaba, A., Gidado, A., Ene, A. C., & Wafar, J. A. (2005). Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillusniger. Research Journal of Agriculture and Biological Sciences, 1, 325–328.

    Google Scholar 

  • Mojsov, K. (2012). Microbial α-amylases and their industrial applications: A review. International Journal of Management, IT and Engineering, 2, 583–609.

    Google Scholar 

  • Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 74, 291–303.

    Article  CAS  PubMed  Google Scholar 

  • Moy, N. J., Dodson, J., Tassone, S. J., Bukaveckas, P. A., & Bulluck, L. P. (2016). Biotransport of algal toxins to riparian food webs. Environmental Science and Technology, 50, 10007–10014.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Tomita, T., Abe, N., & Kamio, Y. (2001). Purification and characterization of an extra cellular poly(L-lactic acid) depolymerase from a soil isolate, Amycoatopsis sp. Strain K104-1. Applied and Environmental Microbiology, 67, 345–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, T. H., & Nguyen, V. D. (2017). Characterization and applications of marine microbial enzymes in biotechnology and probiotics for animal health. In Advances in Food and Nutrition Research (Vol. 80, pp. 37–74). Academic Press.

    Google Scholar 

  • Ohta, Y., Hatada, Y., Nogi, Y., Miyazaki, M., Li, Z., Akita, M., Hidaka, Y., & Goda, S. (2004). Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Applied Microbiology and Biotechnology, 64, 505–514.

    Article  CAS  PubMed  Google Scholar 

  • Owa, F. D. (2013). Water pollution: Sources, effects, control and management. Mediterranean Journal of Social Sciences, 4(8), 65–65.

    Google Scholar 

  • Owa, F. W. (2014). Water pollution: Sources, effects, control and management. International Letters of Natural Sciences, 3.

    Google Scholar 

  • Percival Zhang, Y. H., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24(5), 452–481.

    Article  CAS  PubMed  Google Scholar 

  • Pere, J., Puolakka, A., Nousiainen, P., & Buchert, J. (2001). Action of purified Trichodermareesei cellulases on cotton fibers and yarn. Journal of Biotechnology, 89(2–3), 247–255.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, M. P., & Manjunath, K. (2011). Comparative study on biodegradation of lipid-rich wastewater using lipase producing bacterial species. Indian Journal of Biotechnology, 10(1), 121–124.

    CAS  Google Scholar 

  • Puente, M. E., Bashan, Y., Li, C. Y., & Lebsky, V. K. (2004). Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biology, 6(05), 629–642.

    Article  CAS  PubMed  Google Scholar 

  • Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3), 597–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, M. A., Scelza, R., Scotti, R., & Gianfreda, L. (2010). Role of enzymes in the remediation of polluted environments. Journal of Soil Science and Plant Nutrition, 10(3), 333–353.

    Article  Google Scholar 

  • Rathore, A. S., & Gupta, R. D. (2015). Chitinases from bacteria to human: Properties, applications, and future perspectives. Enzyme Research, 2015, 91907. https://doi.org/10.1155/2015/791907

    Article  Google Scholar 

  • Reddy, P. B., & Rawat, S. S. (2013). Assessment of aquatic pollution using histopathology in fish as a protocol. International Research Journal of Environment Sciences, 2(8), 79–82.

    Google Scholar 

  • Renicke, C., & Taxis, C. (2016). Biophotography: Concepts, applications and perspectives. Applied Microbiology and Biotechnology, 100(8), 3415–3420.

    Article  CAS  PubMed  Google Scholar 

  • Richmond, E. K., Rosi-Marshall, E. J., Walters, D. M., Fick, J., Brodin, T., Sundelin, A., & Grace, M. R. (2018). A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nature Communications, 9, 1–9.

    Article  CAS  Google Scholar 

  • Riffaldi, R., Levi-Minzi, R., Cardelli, R., Palumbo, S., & Saviozzi, A. (2006). Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, Air, and Soil Pollution, 170(1–4), 3–15.

    Article  CAS  Google Scholar 

  • Rodriguez, R., & Redman, R. (2008). More than 400 million years of evolution and some plants still can’t make it on their own: Plant stress tolerance via fungal symbiosis. Journal of Experimental Botany, 59(5), 1109–1114.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, G. R. (2000). Water quality management at Santa Cruz Harbor. Aire-O2 News, 7, 4–5.

    Google Scholar 

  • Ruohonen, L., Koivula, A., Reinikainen, T., Valkeajärvi, A., Teleman, A., Claeyssens, M., & Teeri, T. (1993). Active site of T. reesei cellobiohydrolase II. In 2nd Tricel symposium on Trichoderma reesei cellulases and other hydrolases (TRICEL93) (pp. 87–96).

    Google Scholar 

  • Ryu, S. K., Cho, S. J., Park, S. R., Lim, W. J., Kim, M. K., Hong, S. Y., Bae, D. W., & Park, Y. W. (2001). Cloning of the cel9A gene and characterization of its gene product from marine bacterium. Pseudomonas sp. SK38. Applied Microbiology and Biotechnology, 57, 138–145.

    Article  CAS  PubMed  Google Scholar 

  • Saima, K., Roohi, M., & Ahmad, I. Z. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal, Genetic Engineering & Biotechnology, 11, 39–46. https://doi.org/10.1016/j.jgeb.2013.03.001

    Article  Google Scholar 

  • Salonen, S. M. (1990). Method for manufacturing paper or cardboard and product containing cellulase. US patent 4980023.

    Google Scholar 

  • Sato, K., Sakui, H., Sakai, Y., & Tanaka, S. (2008). Long-term experimental study of the aquatic plant system for polluted river water. Water Science and Technology, 46, 217–224.

    Article  Google Scholar 

  • Schroeder, D. C., Jaffer, M. A., & Coyne, V. E. (2003). Investigation of the role of a beta(1–4) agarase produced by Pseudoalteromonasgracilis B9 in eliciting disease symptoms in the red alga Gracilariagracilis. Microbiology, 149, 2919–2929.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, D., Sharma, B., & Shukla, A. K. (2011). Biotechnological approach of microbial lipase: A review. Biotechnology, 10(1), 23–40.

    Article  CAS  Google Scholar 

  • Singh, C. J. (2003). Optimization of an extracellular protease of Chrysosporium keratinophilum and its potential in bioremediation of keratinic wastes. Mycopathologia, 156(3), 151–156.

    Article  CAS  Google Scholar 

  • Singh, H. P., Batish, D. R., Kaur, S., Arora, K., & Kohli, R. K. (2006). α-Pinene inhibits growth and induces oxidative stress in roots. Annals of Botany, 98(6), 1261–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, R. J., Chung, G. H., & Nelson, R. L. (2007). Landmark research in legumes. Genome, 50(6), 525–537.

    Article  CAS  PubMed  Google Scholar 

  • de Souza, M. P. (2010). de Oliveira e and Magalhães. Application of microbial-amylase in industry-a review. Brazilian Journal of Microbiology, 41, 850–861.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanish, I., & Monbouquette, H. G. (2001). Engineering A23187/EDTA-containing metal-sorbing vesicles for selective extraction of divalent heavy metal ions. Journal of Membrane Science, 192(1–2), 99–113.

    Article  CAS  Google Scholar 

  • Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases—Production, applications and challenges. Journal of Scientific and Industrial Research, 64(11), 832–844.

    CAS  Google Scholar 

  • Sundarram, A., & Murthy, T. P. K. (2014). α-amylase production and applications: A review. Journal of Applied & Environmental Microbiology, 2(4), 166–175.

    Google Scholar 

  • Tejada, M., Gonzalez, J. L., García-Martínez, A. M., & Parrado, J. (2008). Application of a green manure and green manure composted with beet vinasse on soil restoration: Effects on soil properties. Bioresource Technology, 99(11), 4949–4957.

    Article  CAS  PubMed  Google Scholar 

  • Thakur, N., Nath, K., Chauhan, A., Parmar, S. C., & Pandey, H. (2019). Chitinases from microbial sources, their role as biocontrol agents and other potential applications. Journal of Entomology and Zoology Studies, 7, 837–843.

    Google Scholar 

  • Thompson, A. R., Doelling, J. H., Suttangkakul, A., & Vierstra, R. D. (2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant physiology, 138(4), 2097–2110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tweedy, B. N., Drenner, R. W., Chumchal, M. M., & Kennedy, J. H. (2013). Effects of fish on emergent insect-mediated flux of methyl mercury across a gradient of contamination. Environmental Science & Technology, 47, 1614–1619.

    Article  CAS  Google Scholar 

  • Van Wyk, J. P. H. (1999). Saccharification of paper products by cellulase from Penicillium funiculosum and Trichoderma reesei. Biomass and Bioenergy, 16(3), 239–242.

    Article  Google Scholar 

  • Vega, K., & Kalkum, M. (2011). Chitin, Chitinase responses, and invasive fungal infections. International Journal of Microbiology, 2011, 1–10. https://doi.org/10.1155/2012/920459

    Article  CAS  Google Scholar 

  • Veliz, E. A., Hidalgo, P. M., & Hirsch, A. M. (2017). Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology, 3, 689–705. https://doi.org/10.3934/microbiol.2017.3.689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali, M. (2001). Bioremediation. an overview. Pure and Applied Chemistry, 73(7), 1163–1172.

    Article  CAS  Google Scholar 

  • Walters, D. M., Fritz, K. M., & Otter, R. R. (2008). The dark side of subsidies: Adult stream insects export organic contaminants to riparian predators. Ecological Applications, 18, 1835–1841.

    Article  PubMed  Google Scholar 

  • Wang, C. X., Ling, H., & Shi, K. H. (1999). Oxygen restoration of polluted water with pure oxygen aeration. Shanghai Academy of Environmental Sciences, 18, 411–413. (In Chinese). Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-SHHJ199909012.htm. Accessed on 26 Aug 2020.

  • Wang, J. X., Jiang, X. L., Mou, H. J., & Guan, H. S. (2004). Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. Journal of Applied Phycology, 16, 333–340.

    Article  CAS  Google Scholar 

  • Wang, J. X., Mou, H. J., Jiang, X. L., & Guan, H. S. (2006). Characterization of a novel β-agarase from marine Alteromonas sp. SY37–12 and its degrading products. Applied Microbiology and Biotechnology, 71, 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, L. J., Ouyang, H., Li, H. M., Chen, M. R., Lin, Q. Q., & Han, B. P. (2010). Enclosure study on phytoplankton response to stocking of silver carp (Hypophthalmichthys molitrix) in a eutrophic tropical reservoir in South China. International Review of Hydrobiology, 95, 428–439.

    Article  CAS  Google Scholar 

  • Yuriy, M. S., Atanas, I. P., & Albert, I. K. (2015). Chitinase biotechnology: Production, purification, and application. Engineering in Life Sciences, 15, 30–38.

    Article  Google Scholar 

  • Zhang, W. W., & Sun, L. (2007). Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Applied and Environmental Microbiology, 73(9), 2825–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Gao, B., Lu, L., Yue, Q., Wang, Q., & Jia, Y. (2010). Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification-dynamic membrane bioreactor–coagulation process. Journal of Petroleum Science and Engineering, 74(1–2), 14–19.

    Article  CAS  Google Scholar 

  • Zhao, G., Huang, X., Tang, Z., Huang, Q., Niu, F., & Wang, X. (2018). Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: A review. Polymer Chemistry, 9(26), 3562–3582.

    Article  CAS  Google Scholar 

  • Zhao, Y., Yang, Z. F., Xia, X. H., & Wang, F. A. (2012). shallow lake remediation regime with Phragmites australis: Incorporating nutrient removal and water evapotranspiration. Water Research, 46, 5635–5644.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, L. G., & Wang, H. P. (2017). Effect of combined ecological floating bed for eutrophic lake remediation. AIP Conference Proceedings, 1839, 020058. Retrieved May 8, 2017, from https://aip.scitation.org/doi/pdf/10.1063/1.4982423

    Article  Google Scholar 

  • Zimmels, Y., Kirzhner, F., & Malkovskaja, A. (2008). Application and features of cascade aquatic plants system for sewage treatment. Ecological Engineering, 34, 147–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babaniyi, G.G., Oyemade, B., Orija, D. (2022). Effects of Aquatic (Freshwater and Marine) Pollution on Microbial Enzyme Activities. In: Maddela, N.R., Abiodun, A.S., Prasad, R. (eds) Ecological Interplays in Microbial Enzymology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-0155-3_17

Download citation

Publish with us

Policies and ethics