Skip to main content

Gut Microbiota and Depression, Anxiety, and Cognitive Disorders

  • Chapter
  • First Online:
Sex/Gender-Specific Medicine in the Gastrointestinal Diseases

Abstract

Human gut microbiome plays a critical role in brain development and function. Although the relationship between gut microbiota and the brain remains relatively stable throughout the lifespan of a human, certain differences exist depending on the developmental stage. Gut microbiota can modulate biological changes in the brain via multiple pathways. They take part in the regulation of systemic and neural immune systems as well as the metabolism and function of neurotransmitters related to emotion and behavior. Various mechanisms of the gut microbiome involved in brain development and function exhibit differences depending on sex, with sex hormone regulation mediating such sex differences.

Gut microbiota are involved in regulating behaviors and emotions such as depression and anxiety. Alteration of gut microbiome has been observed in patients with depression and anxiety disorders. The gut microbiome can influence depression and anxiety by modulating the stress reaction system and inflammatory response. Moreover, several studies on humans and animals have reported that probiotics have anti-depressive effects. A sex difference has been observed in the onset of depression and anxiety disorder. Factors contribute to sex differences in psychiatric disorders include the gut microbiome, sex hormone, regulatory immune system, and stress reaction system.

Gut microbiota can affect cognitive functions of the brain. A decreased number of microorganisms in the gut is associated with neural aging and cognitive impairment. The neuroimmuno-modulatory mechanism of the gut microbiome is related to the onset of neurodegenerative diseases, especially cognitive impairment. A few studies have suggested that altered function of the gut microbiome is partially responsible for the onset of dementia, a neurodegenerative disorder. It has been reported that dementia, mainly Alzheimer’s disease, is more common in women than in men. Additionally, previous studies have noted sex differences in etiological mechanism of dementia. Thus, the regulation of sex hormones and neural damage or neurodegeneration process by the gut microbiome may explain the sex difference in the onset of dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10:735–42.

    Article  CAS  PubMed  Google Scholar 

  2. Wu JC. Psychological co-morbidity in functional gastrointestinal disorders: epidemiology, mechanisms and management. J Neurogastroenterol Motil. 2012;18:13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome–brain axis across the lifespan. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371:20150122.

    Article  CAS  Google Scholar 

  4. Crawley JN. Behavioral phenotyping strategies for mutant mice. Neuron. 2008;57:809–18.

    Article  CAS  PubMed  Google Scholar 

  5. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60:307–17.

    Article  PubMed  Google Scholar 

  6. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108:3047–52.

    Article  CAS  PubMed Central  Google Scholar 

  7. Jalanka-Tuovinen J, Salonen A, Nikkilä J, Immonen O, Kekkonen R, Lahti L, et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One. 2011;6:e23035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav. 2009;96:557–67.

    Article  CAS  PubMed  Google Scholar 

  9. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609.e3.

    Article  CAS  PubMed  Google Scholar 

  10. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43:164–74.

    Article  PubMed  Google Scholar 

  11. Mayer EA. Gut feelings: the emerging biology of gut–brain communication. Nat Rev Neurosci. 2011;12:453–66.

    Article  CAS  PubMed  Google Scholar 

  12. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108:16050–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Salzman NH. Microbiota–immune system interaction: an uneasy alliance. Curr Opin Microbiol. 2011;14:99–105.

    Article  PubMed  Google Scholar 

  15. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170:1179–88.

    Article  CAS  PubMed  Google Scholar 

  16. Uribe A, Alam M, Johansson O, Midtvedt T, Theodorsson E. Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology. 1994;107:1259–69.

    Article  CAS  PubMed  Google Scholar 

  17. Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays. 2011;33:574–81.

    Article  CAS  PubMed  Google Scholar 

  18. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun. 2011;25:397–407.

    Article  CAS  PubMed  Google Scholar 

  19. Lyte M, Vulchanova L, Brown DR. Stress at the intestinal surface: catecholamines and mucosa–bacteria interactions. Cell Tissue Res. 2011;343:23–32.

    Article  CAS  PubMed  Google Scholar 

  20. Meleine M, Matricon J. Gender-related differences in irritable bowel syndrome: potential mechanisms of sex hormones. World J Gastroenterol. 2014;20:6725.

    Article  PubMed Central  PubMed  Google Scholar 

  21. De Theije CG, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun. 2014;37:197–206.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang T, Savaiano DA. In vitro lactose fermentation by human colonic bacteria is modified by Lactobacillus acidophilus supplementation. J Nutr. 1997;127:1489–95.

    Article  CAS  PubMed  Google Scholar 

  23. Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39:400–12.

    Article  CAS  PubMed  Google Scholar 

  24. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72:1027–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mulak A, Taché Y, Larauche M. Sex hormones in the modulation of irritable bowel syndrome. World J Gastroenterol. 2014;20:2433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gonzalez-Freire M, Diaz-Ruiz A, Hauser D, Martinez-Romero J, Ferrucci L, Bernier M, et al. The road ahead for health and lifespan interventions. Ageing Res Rev. 2020;59:101037.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sherwin BB. Estrogen and cognitive functioning in women: lessons we have learned. Behav Neurosci. 2012;126:123.

    Article  CAS  PubMed  Google Scholar 

  28. Peirce JM, Alviña K. The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res. 2019;97:1223–41.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.

    Article  PubMed  Google Scholar 

  30. Jiang H-y, Zhang X, Yu Z-h, Zhang Z, Deng M, Zhao J-h, et al. Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res. 2018;104:130–6.

    Article  PubMed  Google Scholar 

  31. Luo Y, Zeng B, Zeng L, Du X, Li B, Huo R, et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl Psychiatry. 2018;8:1–10.

    Article  CAS  Google Scholar 

  32. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–17.

    Article  CAS  PubMed  Google Scholar 

  33. Erny D, de Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lamers F, Vogelzangs N, Merikangas K, De Jonge P, Beekman A, Penninx B. Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry. 2013;18:692–9.

    Article  CAS  PubMed  Google Scholar 

  35. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N. Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol. 2006;21:227–31.

    Article  PubMed  Google Scholar 

  36. Duivis HE, Vogelzangs N, Kupper N, de Jonge P, Penninx BW. Differential association of somatic and cognitive symptoms of depression and anxiety with inflammation: findings from the Netherlands Study of Depression and Anxiety (NESDA). Psychoneuroendocrinology. 2013;38:1573–85.

    Article  CAS  PubMed  Google Scholar 

  37. Niraula A, Witcher KG, Sheridan JF, Godbout JP. Interleukin-6 induced by social stress promotes a unique transcriptional signature in the monocytes that facilitate anxiety. Biol Psychiatry. 2019;85:679–89.

    Article  CAS  PubMed  Google Scholar 

  38. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17:662–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cheung SG, Goldenthal AR, Uhlemann A-C, Mann JJ, Miller JM, Sublette ME. Systematic review of gut microbiota and major depression. Front Psychiatry. 2019;10:34.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Yunes R, Poluektova E, Dyachkova M, Klimina K, Kovtun A, Averina O, et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe. 2016;42:197–204.

    Article  CAS  PubMed  Google Scholar 

  41. Woods SE, Leonard MR, Hayden JA, Brophy MB, Bernert KR, Lavoie B, et al. Impaired cholecystokinin-induced gallbladder emptying incriminated in spontaneous “black” pigment gallstone formation in germfree Swiss Webster mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G335–G49.

    Article  CAS  PubMed  Google Scholar 

  42. Schéle E, Grahnemo L, Anesten F, Hallén A, Bäckhed F, Jansson J-O. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology. 2013;154:3643–51.

    Article  CAS  PubMed  Google Scholar 

  43. Hao W-Z, Li X-J, Zhang P-W, Chen J-X. A review of antibiotics, depression, and the gut microbiome. Psychiatry Res. 2020;284:112691.

    Article  CAS  PubMed  Google Scholar 

  44. Bercik P, Park A, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol Motil. 2011;23:1132–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut. 2007;56:1522–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kato-Kataoka A, Nishida K, Takada M, Kawai M, Kikuchi-Hayakawa H, Suda K, et al. Fermented milk containing Lactobacillus casei strain Shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl Environ Microbiol. 2016;82:3649–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Savignac H, Kiely B, Dinan T, Cryan J. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil. 2014;26:1615–27.

    Article  CAS  PubMed  Google Scholar 

  48. Huang R, Wang K, Hu J. Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2016;8:483.

    Article  PubMed Central  Google Scholar 

  49. Wallace CJ, Milev R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann General Psychiatry. 2017;16:1–10.

    Google Scholar 

  50. Macedo D, Chaves Filho AJM, de Sousa CNS, Quevedo J, Barichello T, Júnior HVN, et al. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord. 2017;208:22–32.

    Article  CAS  PubMed  Google Scholar 

  51. Albert K, Pruessner J, Newhouse P. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle. Psychoneuroendocrinology. 2015;59:14–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Songtachalert T, Roomruangwong C, Carvalho AF, Bourin M, Maes M. Anxiety disorders: sex differences in serotonin and tryptophan metabolism. Curr Top Med Chem. 2018;18:1704–15.

    Article  CAS  PubMed  Google Scholar 

  53. Maeng LY, Milad MR. Sex differences in anxiety disorders: interactions between fear, stress, and gonadal hormones. Horm Behav. 2015;76:106–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Turner-Cobb JM, Osborn M, da Silva L, Keogh E, Jessop DS. Sex differences in hypothalamic–pituitary–adrenal axis function in patients with chronic pain syndrome. Stress. 2010;13:293–301.

    Article  CAS  Google Scholar 

  55. Hanamsagar R, Bilbo SD. Sex differences in neurodevelopmental and neurodegenerative disorders: focus on microglial function and neuroinflammation during development. J Steroid Biochem Mol Biol. 2016;160:127–33.

    Article  CAS  PubMed  Google Scholar 

  56. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26:1155–62.

    Article  CAS  PubMed  Google Scholar 

  57. Chen J-j, Zheng P, Liu Y-Y, Zhong X-G, Wang H-Y, Guo Y-J, et al. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr Dis Treat. 2018;14:647.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Audet M-C. Stress-induced disturbances along the gut microbiota-immune-brain axis and implications for mental health: Does sex matter? Front Neuroendocrinol. 2019;54:100772.

    Article  CAS  PubMed  Google Scholar 

  59. Wang T, Hu X, Liang S, Li W, Wu X, Wang L, et al. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef Microbes. 2015;6:707–17.

    Article  CAS  PubMed  Google Scholar 

  60. Vázquez E, Barranco A, Ramírez M, Gruart A, Delgado-García JM, Martínez-Lara E, et al. Effects of a human milk oligosaccharide, 2′-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. J Nutr Biochem. 2015;26:455–65.

    Article  CAS  PubMed  Google Scholar 

  61. Savignac H, Tramullas M, Kiely B, Dinan T, Cryan J. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav Brain Res. 2015;287:59–72.

    Article  CAS  PubMed  Google Scholar 

  62. Fernandez-Real J-M, Serino M, Blasco G, Puig J, Daunis-i-Estadella J, Ricart W, et al. Gut microbiota interacts with brain microstructure and function. J Clin Endocrinol Metab. 2015;100:4505–13.

    Article  CAS  PubMed  Google Scholar 

  63. Liu P, Wu L, Peng G, Han Y, Tang R, Ge J, et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun. 2019;80:633–43.

    Article  PubMed  Google Scholar 

  64. Chung Y-C, Jin H-M, Cui Y, Jung JM, Park J-I, Jung E-S, et al. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. J Funct Foods. 2014;10:465–74.

    Article  CAS  Google Scholar 

  65. Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr. 2007;61:355–61.

    Article  CAS  PubMed  Google Scholar 

  66. Sarkar A, Harty S, Lehto SM, Moeller AH, Dinan TG, Dunbar RI, et al. The microbiome in psychology and cognitive neuroscience. Trends Cogn Sci. 2018;22:611–36.

    Article  PubMed  Google Scholar 

  67. Claesson MJ, Jeffery IB, Conde S, Power SE, O’connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.

    Article  CAS  PubMed  Google Scholar 

  68. Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol Neurobiol. 2019;56:1841–51.

    Article  CAS  PubMed  Google Scholar 

  69. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014;34:15490–6.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Chang C-H, Lin C-H, Lane H-Y. d-glutamate and Gut microbiota in Alzheimer’s disease. Int J Mol Sci. 2020;21:2676.

    Article  CAS  PubMed Central  Google Scholar 

  71. Rogers G, Bruce K. Challenges and opportunities for faecal microbiota transplantation therapy. Epidemiol Infect. 2013;141:2235–42.

    Article  CAS  PubMed  Google Scholar 

  72. Moon M, Choi JG, Nam DW, Hong H-S, Choi Y-J, Oh MS, et al. Ghrelin ameliorates cognitive dysfunction and neurodegeneration in intrahippocampal amyloid-β 1-42 oligomer-injected mice. J Alzheimers Dis. 2011;23:147–59.

    Article  CAS  PubMed  Google Scholar 

  73. Krüger JF, Hillesheim E, Pereira AC, Camargo CQ, Rabito EI. Probiotics for dementia: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2021;79:160–70.

    Article  PubMed  Google Scholar 

  74. Cox LM, Abou-El-Hassan H, Maghzi AH, Vincentini J, Weiner HL. The sex-specific interaction of the microbiome in neurodegenerative diseases. Brain Res. 2019;1724:146385.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Radler ME, Hale MW, Kent S. Calorie restriction attenuates lipopolysaccharide (LPS)-induced microglial activation in discrete regions of the hypothalamus and the subfornical organ. Brain Behav Immun. 2014;38:13–24.

    Article  CAS  PubMed  Google Scholar 

  76. Schafer MJ, Alldred MJ, Lee SH, Calhoun ME, Petkova E, Mathews PM, et al. Reduction of β-amyloid and γ-secretase by calorie restriction in female Tg2576 mice. Neurobiol Aging. 2015;36:1293–302.

    Article  CAS  PubMed  Google Scholar 

  77. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell. 2018;172:500–16.e16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep. 2016;6:1–12.

    Article  CAS  Google Scholar 

  79. Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011;10:324–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Youn Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hur, H.J., Park, H.Y. (2022). Gut Microbiota and Depression, Anxiety, and Cognitive Disorders. In: Kim, N. (eds) Sex/Gender-Specific Medicine in the Gastrointestinal Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-0120-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0120-1_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0119-5

  • Online ISBN: 978-981-19-0120-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics