Skip to main content

Antimicrobial Resistance in Marine Ecosystem: An Emerging Threat for Public Health

  • Living reference work entry
  • First Online:
Handbook on Antimicrobial Resistance

Abstract

The evolution of pathogenic microorganisms that can resist a wide range of antimicrobial treatments leading to treatment failure and loss of human and animal life represents one of the most thoughtful public health concerns in the world. The marine ecosystem is now increasingly recognized as a potentially significant “hotspot” for the emergence, maintenance, and dispersal of many clinically relevant and potentially novel AMR genes and microbes. The trends on AMR surges in marine life are the reflections of the conditions in humans. AMR in the marine ecosystem is a natural and ancient phenomenon, albeit higher levels are always related to increased human activities. Various marine pollutants and indiscriminate use of chemicals, including antimicrobials, in aquaculture practices contribute to AMR in the marine ecosystem. Antimicrobials used to treat infections in coastal aquaculture practices can get into the marine environment, which could adversely impact the marine biodiversity and terrestrial animal and human health consequent to the selection of AMR bacteria and AMR genes. Persistent pollutants like plastics function as important vectors for the dissemination of AMR bacteria into the marine ecosystem. As there are several ways these AMR bacteria and genes can be conveyed back to terrestrial animals and humans, AMR surges in the marine ecosystem represent a significant zoonotic health risk. The present chapter summarizes the current knowledge on AMR in the marine ecosystem and the major future research perspectives in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aedo, S., Ivanova, L., Tomova, A., & Cabello, F. C. (2014). Plasmid-related quinolone resistance determinants in epidemic Vibrio parahaemolyticus, uropathogenic Escherichia coli, and marine bacteria from an aquaculture area in Chile. Microbial Ecology, 68, 324–328.

    Article  CAS  Google Scholar 

  • Allison, S.D. (2005). Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol. Lett. 8(6), 626–635.

    Google Scholar 

  • Al-Bahry, S. N., Al-Zadjali, M. A., Mahmoud, I. Y., & Elshafie, A. E. (2012). Biomonitoring marine habitats in reference to antibiotic resistant bacteria and ampicillin resistance determinants from oviductal fluid of the nesting green sea turtle, Chelonia mydas. Chemosphere, 87(11), 1308–1315.

    Article  CAS  Google Scholar 

  • Al-Bahry, S. N., Mahmoud, I. Y., Al-Zadjali, M., Elshafie, A., Al-Harthy, A., & Al-Alawi, W. (2011). Antibiotic resistant bacteria as bio-indicator of polluted effluent in the green turtles, Chelonia mydas in Oman. Marine Environmental Research, 71(2), 139–144.

    Article  CAS  Google Scholar 

  • Al-Sarawi, H. A., Jha, A. N., Baker-Austin, C., Al-Sarawi, M. A., & Lyons, B. P. (2017). Baseline screening for the presence of antimicrobial resistance in E. coli isolated from Kuwait’s marine environment. Marine Pollution Bulletin, 129(2), 893–898.

    Article  Google Scholar 

  • Amarasiri, M., Sano, D., & Suzuki, S. (2020). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Critical Reviews in Environmental Science and Technology, 50(19), 2016–2059.

    Article  CAS  Google Scholar 

  • Aminov, R. I. (2011). Horizontal gene exchange in environmental microbiota. Frontiers in Microbiology, 2, 158.

    Article  Google Scholar 

  • Arias-Andres, M., Klumper, U., Rojas-Jimenez, K., & Grossart, H. P. (2018). Microplastic pollution increases gene exchange in aquatic ecosystems. Environmental Pollution, 237, 253–261.

    Article  CAS  Google Scholar 

  • Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14, 176–182.

    Article  CAS  Google Scholar 

  • Baquero, F., Martinez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19, 260–265.

    Article  CAS  Google Scholar 

  • Barbosa, T. M., Phelan, R. W., Leong, D., Morrissey, J. P., Adams, C., Dobson, A. D., & O’Gara, F. (2014). A novel erythromycin resistance plasmid from Bacillus sp. strain HS24, isolated from the marine sponge Haliclona simulans. PLoS One, 9, e115583.

    Article  Google Scholar 

  • Baya, A. M., Brayton, P. R., Brown, V. L., Grimes, D. J., Russek-Cohen, E., & Colwell, R. R. (1986). Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Applied and Environmental Microbiology, 51(6), 1285–1292.

    Article  CAS  Google Scholar 

  • Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. L., & Joakim Larsson, D. G. (2014). Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Frontiers in Microbiology, 5, e648.

    Article  Google Scholar 

  • Blackburn, J. K., Mitchell, M. A., Blackburn, M. C. H., Curtis, A., & Thompson, B. A. (2010). Evidence of antibiotic resistance in free-swimming, top-level marine predatory fishes. Journal of Zoo and Wildlife Medicine, 41(1), 7–16.

    Article  Google Scholar 

  • Bogomolni, A. L., Gast, R. J., Ellis, J. C., Dennett, M., Pugliares, K. R., Lentell, J., & Moore, M. J. (2008). Victims or vectors: A survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic. Diseases of Aquatic Organisms, 81, 13–38.

    Article  Google Scholar 

  • Bryant, J. A., Clemente, T. M., Viviani, D. A., Fong, A. A., Thomas, K. A., Kemp, P., Karl, D. M., White, A. E., & DeLong, E. F. (2016). Diversity and activity of communities inhabiting plastic debris in the North Pacific gyre. mSystems, 1, e00024–e00016.

    Article  Google Scholar 

  • Burridge, L., Weis, J. S., Cabello, F., Pizarro, J., & Bostick, K. (2010). Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture, 306, 7–23.

    Article  CAS  Google Scholar 

  • Buschmann, A. H., Tomova, A., López, A., Maldonado, M. A., Henríquez, L. A., Ivanova, L., Moy, F., Godfrey, H. P., & Cabello, F. C. (2012). Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS One, 7, e42724.

    Article  CAS  Google Scholar 

  • Cattoir, V., Poirel, L., Aubert, C., Soussy, C. J., & Nordmann, P. (2008). Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp. Emerging Infectious Diseases, 14, 231–237.

    Article  CAS  Google Scholar 

  • Chen, B., Yang, Y., Liang, X., Yu, K., Zhang, T., & Li, X. (2013). Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. Environmental Science and Technology, 47(22), 12753–12760.

    Article  CAS  Google Scholar 

  • Chen, H., Liu, S., Xu, X. R., Liu, S. S., Zhou, G. J., Sun, K. F., Zhao, J. L., & Ying, G. G. (2015). Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Marine Pollution Bulletin, 90(1–2), 181–187.

    Article  CAS  Google Scholar 

  • da Costa Andrade, V., Del Busso Zampieri, B., Ballesteros, E. R., Pinto, A. B., Cardoso, F., & de Oliveira, A. J. (2015). Densities and antimicrobial resistance of Escherichia coli isolated from marine waters and beach sands. Environmental Monitoring and Assessment, 187, 342.

    Article  Google Scholar 

  • Dang, H. Y., Ren, J., Song, L. S., Sun, S., & An, L. G. (2008). Dominant chloramphenicol-resistant bacteria and resistance genes in coastal marine waters of Jiaozhou Bay, China. World Journal of Microbiology and Biotechnology, 24(2), 209–217.

    Article  CAS  Google Scholar 

  • Dang, H. Y., Song, L., Chen, M., & Chang, Y. (2006a). Concurrence of cat and tet genes in multiple antibiotic-resistant bacteria isolated from a sea cucumber and sea urchin mariculture farm in China. Microbial Ecology, 52, 634–643.

    Article  CAS  Google Scholar 

  • Dang, H. Y., Zhang, X. X., Song, L. S., Chang, Y. Q., & Yang, G. P. (2006b). Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes in mariculture waters of China. Marine Pollution Bulletin, 52, 1494–1503.

    Article  CAS  Google Scholar 

  • Dawood, M. A. O., & Koshio, S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture, 454, 243–251.

    Article  CAS  Google Scholar 

  • De Oliveira, F. C. A. J., Ranzani de França, P. T., & Pinto, A. B. (2010). Antimicrobial resistance of heterotrophic marine bacteria isolated from seawater and sands of recreational beaches with different organic pollution levels in southeastern Brazil: Evidences of resistance dissemination. Environmental Monitoring and Assessment, 169(1–4), 375–384.

    Article  Google Scholar 

  • Di Cesare, A., Vignaroli, C., Luna, G. M., Pasquaroli, S., & Biavasco, F. (2012). Antibiotic-resistant enterococci in seawater and sediments from a coastal fish farm. Microbial Drug Resistance, 18(5), 502–519.

    Article  Google Scholar 

  • Eckert, E. M., Di Cesare, A., Coci, M., & Corno, G. (2018). Persistence of antibiotic resistance genes in large subalpine lakes: The role of anthropogenic pollution and ecological interactions. Hydrobiologia, 824, 93–108.

    Article  CAS  Google Scholar 

  • Erdem-Kimiran, A., Arslan, E. O., Yurudu, N. O. S., Zeybek, Z., Dogruoz, N., & Cotuk, A. (2007). Isolation and identification of enterococci from seawater samples: Assessment of their resistance to antibiotics and heavy metals. Environmental Monitoring Assessment, 125, 219–228.

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization). (2016). The state of world fisheries and aquaculture. Rome.

    Google Scholar 

  • Giraud, E., Douet, D. G., Le Bris, H., Bouju-Albert, A., Donnay-Moreno, C., Thorin, C., & Pouliquen, H. (2006). Survey of antibiotic resistance in an integrated marine aquaculture system under oxolinic acid treatment. FEMS Microbiology Ecology, 55, 439–448.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Shin, H., Han, D., Hur, H. G., & Unno, T. (2018). Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. Journal of Microbiology, 56, 408–415.

    Article  CAS  Google Scholar 

  • Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199.

    Article  CAS  Google Scholar 

  • Han, Q. F., Zhao, S., Zhanga, X. R., Wang, X. L., Song, C., & Wang, S. G. (2020). Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environment International, 138, 105551.

    Article  CAS  Google Scholar 

  • Hao, S., Yang, P., Han, M., Xu, J., Yu, S., Chen, C., Chen, W. H., Zhang, H., & Ning, K. (2018). Data-mining of antibiotic resistance genes provides insight into the community structure of ocean microbiome. BioRxiv, 246033. https://doi.org/10.1101/246033.

  • Hatosy, S. M., & Martiny, A. C. (2015). The ocean as a global reservoir of antibiotic resistance genes. Applied and Environmental Microbiology, 81(21), 7593–7599.

    Article  CAS  Google Scholar 

  • Heuer, H., Krögerrecklenfort, E., Wellington, E. M. H., Egan, S., van Elsas, J. D., van Overbeek, L., Collard, J. M., Guillaume, G., Karagouni, A. D., Nikolakopoulou, T. L., & Smalla, K. (2002). Gentamicin resistance genes in environmental bacteria: Prevalence and transfer. FEMS Microbiology Ecology, 42, 289–302.

    Article  CAS  Google Scholar 

  • Johnson, S. P., Nolan, S., & Gulland, F. M. D. (1998). Antimicrobial susceptibility of bacteria isolated from pinnipeds stranded in central and northern California. Journal of Zoo and Wildlife Medicine, 29, 288–294.

    CAS  Google Scholar 

  • Karayakar, F., Ay, Ö., & Cicik, B. (2004). The identification of plasmid dependent resistancy of Escherichia coli against some antibiotics isolated from stations on Mersin shore line. Ecology, 13(52), 28–32.

    Google Scholar 

  • Kim, H. Y., Lee, I. S., & Oh, J. E. (2017). Human and veterinary pharmaceuticals in the marine environment including fish farms in Korea. Science of the Total Environment, 579, 940–949.

    Article  CAS  Google Scholar 

  • Kim, S. R., Nonaka, L., & Suzuki, S. (2004). Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiology Letters, 237, 147–156.

    Article  CAS  Google Scholar 

  • Kim, Y. H., Jun, L. J., Park, S. H., Yoon, S. H., Chuang, J. K., Kim, J. C., & Jeong, H. D. (2007). Prevalence of tet(B) and tet(M) genes among tetracycline resistant Vibrio spp. 002E in the aquatic environments of Korea. Diseases of Aquatic Organisms, 75, 209–216.

    Article  CAS  Google Scholar 

  • Kumar, S., Lekshmi, M., Parvathi, A., Nayak, B. B., & Varela, M. F. (2017). Antibiotic resistance in seafood borne pathogens. In O. V. Singh (Ed.), Food borne pathogens and antibiotic resistance. Wiley.

    Google Scholar 

  • Lalumera, G. M., Calamari, D., Galli, P., Castiglioni, S., Crosa, G., & Fanelli, R. (2004). Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere, 54, 661–668.

    Article  CAS  Google Scholar 

  • Laport, M. S., Pontes, P. V., Dos Santos, D. S., Santos-Gandelman, J., Muricy, G., Bauwens, M., Giambiagi-deMarval, M., & George, I. (2016). Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast. Brazilian Journal of Microbiology, 47(3), 617–620.

    Article  CAS  Google Scholar 

  • Li, B., Yang, Y., Ma, L., Ju, F., Guo, F., Tiedje, J. M., & Zhang, T. (2015). Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. The ISME Journal, 9, 2490–2502.

    Article  CAS  Google Scholar 

  • Li, L. G., Yin, X., & Zhang, T. (2018). Tracking antibiotic resistance gene pollution from different sources using machine-learning classification. Microbiome, 6(1), 93.

    Article  Google Scholar 

  • Liu, X., Steele, J. C., & Meng, X. Z. (2017). Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 223, 161–169.

    Article  CAS  Google Scholar 

  • Lockwood, S. K., Chovan, J. L., & Gaydos, J. K. (2006). Aerobic bacterial isolations from harbor seals (Phoca vitulina) stranded in Washington: 1992-2003. Journal of Zoo and Wildlife Medicine, 37, 281–291.

    Article  Google Scholar 

  • Martinez, J. L. (2003). Recent advances on antibiotic resistance genes. In M. Fingerman (Ed.), Recent advances in marine biotechnology (Molecular genetics of marine organisms) (Vol. 10, pp. 13–32). London.

    Google Scholar 

  • Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893–2902.

    Article  CAS  Google Scholar 

  • Matyar, F. (2012). Antibiotic and heavy metal resistance in bacteria isolated from the eastern Mediterranean Sea coast. Bulletin of Environmental Contamination and Toxicology, 89(3), 551–556.

    Article  CAS  Google Scholar 

  • Matyar, F., Kaya, A., & Dincer, S. (2008). Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Science of the Total Environment, 407(1), 279–285.

    Article  CAS  Google Scholar 

  • Midtlyng, P. J., Grave, K., & Horsberg, T. E. (2011). What has been done to minimize the use of antibacterial and antiparasitic drugs in Norwegian aquaculture? Aquaculture Research, 42, 28–34.

    Article  Google Scholar 

  • Millanao, B. A., Barrientos, H. M., Gomez, C. C., Tomova, A., Buschmann, A., Dölz, H., & Cabello, F. (2011). Injudicious and excessive use of antibiotics: Public health and salmon aquaculture in Chile. Revista Medica de Chile, 139, 107–118.

    Google Scholar 

  • Miranda, C. D., Felix, G. A., & Matthew, L. R. (2018). Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Frontiers in Microbiology, 9, 1284.

    Article  Google Scholar 

  • Miranda, C. D., & Zemelman, R. (2001). Antibiotic resistance in fish from the Concepcio’n Bay, Chile. Marine Pollution Bulletin, 42, 1096–1102.

    Article  CAS  Google Scholar 

  • Moore, R. E., Millar, B. C., & Moore, J. E. (2020). Antimicrobial resistance (AMR) and marine plastics: Can food packaging litter act as a dispersal mechanism for AMR in oceanic environments? Marine Pollution Bulletin, 150, 110702.

    Article  CAS  Google Scholar 

  • Mudryk, Z., Perliński, P., & Skórczewski, P. (2010). Detection of antibiotic resistant bacteria inhabiting the sand of non-recreational marine beach. Marine Pollution Bulletin, 60(2), 207–214.

    Article  CAS  Google Scholar 

  • Muziasari, W. I., Pärnänen, K., Johnson, T. A., Lyra, C., Karkman, A., Stedtfeld, R. D., Tamminen, M., Tiedje, J. M., & Virta, M. (2016). Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiology Ecology, 92(4), fiw052.

    Article  Google Scholar 

  • Muziasari, W. I., Pärnänen, K. M. S., Karkman, A., Lyra, C., Tamminen, M., Suzuki, S., & Virta, M. (2014). Sulfonamide and trimethoprim resistance genes persist in sediments at Baltic Sea aquaculture farms but are not detected in the surrounding environment. PLoS One, 9, e92702.

    Article  Google Scholar 

  • Muziasari, W. I., Pitkänen, L. K., Sorum, H., Stedtfeld, R. D., Tiedje, J. M., & Virta, M. (2017). The resistome of farmed fish feces contributes to the enrichment of antibiotic resistance genes in sediments below Baltic Sea fish farms. Frontiers in Microbiology, 7, 2137.

    Article  Google Scholar 

  • Nathani, N. M., Mootapally, C., & Dave, B. P. (2019). Antibiotic resistance genes allied to the pelagic sediment microbiome in the Gulf of Khambhat and Arabian Sea. Science of the Total Environment, 653, 446–454.

    Article  CAS  Google Scholar 

  • Neela, F. A., Nonaka, L., Rahman, M. H., & Suzuki, S. (2009). Transfer of the chromosomally encoded tetracycline resistance gene tet(M) from marine bacteria to Escherichia coli and enterococcus faecalis. World Journal of Microbiology and Biotechnology, 25, 1095–1110.

    Article  CAS  Google Scholar 

  • Nonaka, L., Ikeno, K., & Suzuki, S. (2007). Distribution of tetracycline resistance gene, tet(M), in Gram-positive and Gram-negative bacteria isolated from sediment and seawater at a coastal aquaculture site in Japan. Microbes and Environments, 22, 355–364.

    Article  Google Scholar 

  • O’Neill, J. (2015). Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste. The Review on Antimicrobial Resistance. [Online]. Available at: http://amr-review.org/sites/default/files/Antimicrobials%20in%20agriculture%20and%20the%20environment%20-%20Reducing%20unnecessary%20use%20and%20waste.pdf. Accessed: 25 August 2020.

  • Port, J. A., Wallace, J. C., Griffith, W. C., & Faustman, E. M. (2012). Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound. PLoS One, 7(10), e48000.

    Article  CAS  Google Scholar 

  • Rahman, M. H., Nonaka, L., Tago, R., & Suzuki, S. (2008). Occurrence of two genotypes of tetracycline (TC) resistance gene tet(M) in the TC resistant bacteria in marine sediments of Japan. Environmental Science and Technology, 42, 5055–5061.

    Article  CAS  Google Scholar 

  • Rasmussen, L. D., & Sorensen, S. J. (1998). The effect of long term exposure to mercury on the bacterial community in marine sediment. Current Microbiology, 36, 291–297.

    Article  CAS  Google Scholar 

  • Rico, A., Phu, T. M., Satapornvanit, K., Min, J., Shahabuddin, A. M., Henriksson, P. J. G., Murray, F. J., Little, D. C., Dalsgaard, A., & Van den Brink, P. A. (2013). Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture, 412-413, 231–243.

    Article  CAS  Google Scholar 

  • Rodríguez, L., & Benjamín, P. (2015). Plan de Contingencia Sernapesca para la Industria del Salmón. [Online]. Available at: http://repositorio.uchile.cl/handle/2250/132847. Accessed: 25 August 2020.

  • Rodríguez-Blanco, A., Lemos, M. L., & Osorio, C. R. (2012). Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments. Antimicrobial Agents and Chemotherapy, 56(5), 2619–2626.

    Article  Google Scholar 

  • Rodríguez-Verdugo, A., Gaut, B. S., & Tenaillon, O. (2013). Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evolutionary Biology, 13, 50.

    Article  Google Scholar 

  • Romero, J. L., Grande Burgos, M. J., Pérez-Pulido, R., Gálvez, A., & Lucas, R. (2017). Resistance to antibiotics, biocides, preservatives and metals in bacteria isolated from seafoods: Co-selection of strains resistant or tolerant to different classes of compounds. Frontiers in Microbiology, 8, 1650.

    Article  Google Scholar 

  • Rosenfeld, W. D., & Zobell, C. E. (1947). Antibiotic production by marine microorganisms. Journal of Bacteriology, 54(3), 393–398.

    Article  CAS  Google Scholar 

  • Rozas, M., & Enríquez, R. (2014). Piscirickettsiosis and Piscirickettsia salmonis in fish: A review. Journal of Fish Diseases, 37, 163–188.

    Article  CAS  Google Scholar 

  • Schaefer, A. M., Bossart, G. D., Harrington, T., Fair, P. A., McCarthy, P. J., & Reif, J. S. (2019). Temporal changes in antibiotic resistance among bacteria isolated from common Bottlenose Dolphins (Tursiops truncatus) in the Indian River Lagoon, Florida, 2003-2015. Aquatic Mammals, 45(5), 533–542.

    Article  Google Scholar 

  • Schaefer, A. M., Goldstein, J. D., Reif, J. S., Fair, P. A., & Bossart, G. D. (2009). Antibiotic-resistant organisms cultured from Atlantic bottlenose dolphins (Tursiops truncatus) inhabiting estuarine waters of Charleston, SC and Indian River Lagoon, FL. EcoHealth, 6(1), 33–41.

    Article  Google Scholar 

  • Scott, L. C., Lee, N., & Gim, A. T. (2020). Antibiotic resistance in minimally human-impacted environments. International Journal of Environmental Research and Public Health, 17(11), 3939.

    Article  Google Scholar 

  • Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399.

    Article  Google Scholar 

  • SERNAPESCA. (2017). Informe Sobre Uso de Antimicrobianos en la Salmonicultura Nacional 2016. Valparaíso. [Online]. Available at: http://www.sernapesca.cl. Accessed on 06 May 2020.

  • Shah, S. Q. A., Cabello, F. C., L'Abée-Lund, T. M., Tomova, A., Godfrey, H. P., Buschmann, A. H., & Sørum, H. (2014). Antimicrobial resistance and salmon aquaculture. Environmental Microbiology, 16, 1310–1320.

    Article  CAS  Google Scholar 

  • Sousa, M., Torres, C., Barros, J., Somalo, S., Igrejas, G., & Poeta, P. (2011). Gilthead seabream (Sparus aurata) as carriers of SHV-12 and TEM-52 extended–spectrum beta-lactamases-containing Escherichia coli isolates. Foodborne Pathogen Diseases, 8, 1139–1141.

    Google Scholar 

  • Sun, M., Ye, M., Jiao, W., Feng, Y., Yu, P., Liu, M., Jiao, J., He, X., Liu, K., Zhao, Y., Wu, J., Jiang, X., & Hu, F. (2018). Changes in tetracycline partitioning and bacteria/phage – Co-mediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid. Journal of Hazardous Materials, 345, 131–139.

    Article  CAS  Google Scholar 

  • Takasu, H., Suzuki, S., Reungsang, A., & Viet, P. H. (2011). Fluoroquinolone (FQ) contamination does not correlate with occurrence of FQ-resistant bacteria in aquatic environments of Vietnam and Thailand. Microbes and Environments, 26(2), 135–143.

    Article  Google Scholar 

  • Tamminen, M., Karkman, A., Lohmus, A., Muziasari, W. I., Takasu, H., Wada, S., Suzuki, S., & Virta, M. (2011). Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environmental Science and Technology, 45(2), 386–391.

    Article  CAS  Google Scholar 

  • Thavasi, R., Aparnadevi, K., Jayalakshmi, S., & Balasubramanian, T. (2007). Plasmid mediated antibiotic resistance in marine bacteria. Journal of Environmental Biology, 28(3), 617–621.

    CAS  Google Scholar 

  • Thornber, K., Verner-Jeffreys, D., Hinchliffe, S., Rahman, M. M., Bass, D., & Tyler, C. R. (2020). Evaluating antimicrobial resistance in the global shrimp industry. Reviews in Aquaculture, 12, 966–986.

    Article  Google Scholar 

  • Tomova, A., Ivanova, L., Buschmann, A. H., Godfrey, H. P., & Cabello, F. C. (2018). Plasmid-mediated quinolone resistance (PMQR) genes and class 1 integrons in quinolone-resistant marine bacteria and clinical isolates of Escherichia coli from an aquacultural area. Microbial Ecology, 75, 104–112.

    Article  CAS  Google Scholar 

  • Tomova, A., Ivanova, L., Buschmann, A. H., Rioseco, M. L., Kalsi, R. K., Godfrey, H. P., & Cabello, F. C. (2015). Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environmental Microbiology Reports, 7(5), 803–809.

    Article  CAS  Google Scholar 

  • Vasquez, C. A. V., Macgregor, S. K., Rowcliffe, J. M., & Jepson, P. D. (2008). Occurrence of a monophasic strain of Salmonella group B isolated from cetaceans in England and Wales between 1990 and 2002. Environmental Microbiology, 10, 2462–2468.

    Article  Google Scholar 

  • Wang, R. X., Wang, J. Y., Sun, Y. C., Yang, B. L., & Wang, A. L. (2015). Antibiotic resistance monitoring in Vibrio spp. isolated from rearing environment and intestines of abalone Haliotis diversicolor. Marine Pollution Bulletin, 101(2), 701–706.

    Article  CAS  Google Scholar 

  • Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs, 15, 158–174.

    Article  Google Scholar 

  • WHO (World Health Organization). (2020). Antibiotic resistance. [Online]. Available at: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance. Accessed: 18 May 2021.

  • Yang, J., Wang, C., Shu, C., Liu, L., Geng, J., Hu, S., & Feng, J. (2013). Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microbial Ecology, 65(4), 975–981.

    Article  CAS  Google Scholar 

  • Yang, Y., Liu, G., Song, W., Ye, C., Lin, H., Li, Z., & Liu, W. (2019). Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environment International, 123, 79–86.

    Article  CAS  Google Scholar 

  • Zhang, R., Wang, Y., & Gu, J. D. (2006). Identification of environmental plasmid-bearing Vibrio species isolated from polluted and pristine marine reserves of Hong Kong, and resistance to antibiotics and mercury. Antonie Van Leeuwenhoek, 89, 307–315.

    Article  CAS  Google Scholar 

  • Zhang, W. W., Zhang, S. F., Wang, J. Y., Wang, Y., Mu, J. L., Wang, P., Lin, X. Z., & Ma, D. Y. (2017). Microplastic pollution in the surface waters of the Bohai Sea, China. Environmental Pollution, 231, 541–548.

    Google Scholar 

  • Zhang, X. X., Zhang, T., Fang, H. H. (2009). Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 82, 397–414.

    Google Scholar 

  • Zhu, Y. G., Zhao, Y., Li, B., Huang, C. L., Zhang, S. Y., Yu, S., Chen, Y. S., Zhang, T., Gillings, M. R., & Su, J. Q. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2, 16270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krupesha Sharma S. R. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

S. R., K.S., G., S.T. (2023). Antimicrobial Resistance in Marine Ecosystem: An Emerging Threat for Public Health. In: Mothadaka, M.P., Vaiyapuri, M., Rao Badireddy, M., Nagarajrao Ravishankar, C., Bhatia, R., Jena, J. (eds) Handbook on Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-9723-4_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9723-4_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9723-4

  • Online ISBN: 978-981-16-9723-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics