Skip to main content
Log in

Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J., and Handelsman, J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251.

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E., and Larsson, D. 2014. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5, 648.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H., and Mawhinney, D.B. 2006. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 366, 772–783.

    Article  PubMed  CAS  Google Scholar 

  • Buchfink, B., Xie, C., and Huson, D.H. 2014. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q.L., Li, H., Zhou, X.Y., Zhao, Y., Su, J.Q., Zhang, X., and Huang, F.Y. 2017. An underappreciated hotspot of antibiotic resistance: The groundwater near the municipal solid waste landfill. Sci. Total Environ. 609, 966–973.

    Article  PubMed  CAS  Google Scholar 

  • Czekalski, N., Gascón Díez, E., and Bürgmann, H. 2014. Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME J. 8, 1381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deycard, V.N., Schäfer, J., Blanc, G., Coynel, A., Petit, J.C.J., Lanceleur, L., Dutruch, L., Bossy, C., and Ventura, A. 2014. Contributions and potential impacts of seven priority substances (As, Cd, Cu, Cr, Ni, Pb, and Zn) to a major European Estuary (Gironde Estuary, France) from urban wastewater. Mar. Chem. 167, 123–134.

    Article  CAS  Google Scholar 

  • Forsberg, K.J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O.A., and Dantas, G. 2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gillings, M.R., Gaze, W.H., Pruden, A., Smalla, K., Tiedje, J.M., and Zhu, Y.G. 2014. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 9, 1269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo, J., Li, J., Chen, H., Bond, P.L., and Yuan, Z. 2017. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 123, 468–478.

    Article  PubMed  CAS  Google Scholar 

  • Helms, M., Vastrup, P., Gerner-Smidt, P., and Mølbak, K. 2002. Excess mortality associated with antimicrobial drug-resistant Salmonella Typhimurium. Emerg. Infect. Dis. 8, 490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu, Y., Yang, X., Qin, J., Lu, N., Cheng, G., Wu, N., Pan, Y., Li, J., Zhu, L., Wang, X., et al. 2013. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun. 4, 2151.

    Article  PubMed  CAS  Google Scholar 

  • Huson, D.H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.J., and Tappu, R. 2016. MEGAN community edition - Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji, X., Shen, Q., Liu, F., Ma, J., Xu, G., Wang, Y., and Wu, M. 2012. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 235-236, 178–185.

    Article  PubMed  CAS  Google Scholar 

  • Jia, B., Raphenya, A.R., Alcock, B., Waglechner, N., Guo, P., Tsang, K.K., Lago, B.A., Dave, B.M., Pereira, S., Sharma, A.N., 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573.

    Article  PubMed  CAS  Google Scholar 

  • Kozinska, A., Pazdzior, E., Pekala, A., and Niemczuk, W. 2014. Acinetobacter johnsonii and Acinetobacter lwoffii-the emerging fish pathogens. Bull. Vet. Inst. Pulawy 58, 193–199.

    Article  CAS  Google Scholar 

  • Krawczyk, P.S., Lipinski, L., and Dziembowski, A. 2018. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, e35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristiansson, E., Fick, J., Janzon, A., Grabic, R., Rutgersson, C., Weijdegård, B., Söderström, H., and Larsson, D.J. 2011. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 6, e17038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laffite, A., Kilunga, P.I., Kayembe, J.M., Devarajan, N., Mulaji, C.K., Giuliani, G., Slaveykova, V.I., and Poté, J. 2016. Hospital effluents are one of several sources of metal, antibiotic resistance genes, and bacterial markers disseminated in sub-saharan urban rivers. Front. Microbiol. 7, 1128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamba, M., Graham, D.W., and Ahammad, S.Z. 2017. Hospital wastewater releases of carbapenem-resistance pathogens and genes in urban India. Environ. Sci. Technol. 51, 13906–13912.

    Article  PubMed  CAS  Google Scholar 

  • Leplae, R., Lima-Mendez, G., and Toussaint, A. 2010. ACLAME: A classification of mobile genetic elements, update 2010. Nucleic Acids Res. 38, D57–D61.

    Article  PubMed  CAS  Google Scholar 

  • Li, H. and Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, W., Fu, L., Niu, B., Wu, S., and Wooley, J. 2012. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, A.D., Li, L.G., and Zhang, T. 2015. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants. Front. Microbiol. 6, 1025.

    PubMed  PubMed Central  Google Scholar 

  • Li, L.G., Xia, Y., and Zhang, T. 2017. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J. 11, 651–662.

    Article  PubMed  CAS  Google Scholar 

  • Lo, C.C. and Chain, P.S.G. 2014. Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinformatics 15, 366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lood, R., Ertürk, G., and Mattiasson, B. 2017. Revisiting antibiotic resistance spreading in wastewater treatment plants–bacteriophages as a much neglected potential transmission vehicle. Front. Microbiol. 8, 2298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopatkin, A.J., Meredith, H.R., Srimani, J.K., Pfeiffer, C., Durrett, R., and You, L. 2017. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat. Commun. 8, 1689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, J., Tian, Z., Yu, J., Yang, M., and Zhang, Y. 2018. Distribution and abundance of antibiotic resistance genes in sand settling reservoirs and drinking water treatment plants across the Yellow River, China. Water 10, 246.

    Article  Google Scholar 

  • Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C., and Fatta-Kassinos, D. 2013. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 47, 957–995.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, N., Tano, J., Nasu, Y., Koyama, M., Narui, K., Kamishima, H., Saito, T., Tsuyuki, K., and Sasatsu, M. 2007. Antimicrobial susceptibilities and distribution of resistance genes for β-lactams and macrolides in Streptococcus pneumoniae isolated between 2002 and 2004 in Tokyo. Int. J. Antimicrob. Agents 29, 26–33.

    Article  PubMed  CAS  Google Scholar 

  • Pal, C., Bengtsson-Palme, J., Kristiansson, E., and Larsson, D.G.J. 2015. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16, 964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., and Larsson, D.G.J. 2014. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 42, D737–D743.

    Article  PubMed  CAS  Google Scholar 

  • Peng, Y., Leung, H.C.M., Yiu, S.M., and Chin, F.Y.L. 2012. IDBAUD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428.

    Article  PubMed  CAS  Google Scholar 

  • Salyers, A.A. and Amabile-Cuevas, C.F. 1997. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41, 2321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitz, F.J., Fluit, A.C., Gondolf, M., Beyrau, R., Lindenlauf, E., Verhoef, J., Heinz, H.P., and Jones, M.E. 1999. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J. Antimicrob. Chemother. 43, 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., and Huttenhower, C. 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seiler, C. and Berendonk, T.U. 2012. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 3, 399.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sipahi, O.R. 2008. Economics of antibiotic resistance. Expert Rev. Anti-Infect. Ther. 6, 523–539.

    Article  PubMed  Google Scholar 

  • Tang, J., Bu, Y., Zhang, X.X., Huang, K., He, X., Ye, L., Shan, Z., and Ren, H. 2016. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. Ecotoxicol. Environ. Saf. 132, 260–269.

    Article  PubMed  CAS  Google Scholar 

  • VandeWalle, J., Goetz, G., Huse, S., Morrison, H., Sogin, M., Hoffmann, R., Yan, K., and McLellan, S. 2012. Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure. Environ. Microbiol. 14, 2538–2552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • World Health Organization (WHO). 2014. Antimicrobial resistance: global report on surveillance. World Health Organization.

  • Wu, Y., Cui, E., Zuo, Y., Cheng, W., and Chen, H. 2018. Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach. Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-018-1598-x.

    Google Scholar 

  • Yang, Y., Li, B., Zou, S., Fang, H.H.P., and Zhang, T. 2014. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62, 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Marrs, C.F., Simon, C., and Xi, C. 2009. Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci. Total Environ. 407, 3702–3706.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C., Qiu, S., Wang, Y., Qi, L., Hao, R., Liu, X., Shi, Y., Hu, X., An, D., Li, Z., et al. 2013. Higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PLoS One 8, e64857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hor-Gil Hur or Tatsuya Unno.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Shin, H., Han, D. et al. Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. J Microbiol. 56, 408–415 (2018). https://doi.org/10.1007/s12275-018-8195-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8195-z

Keywords

Navigation