Skip to main content

Vancomycin and Methicillin Resistance in Staphylococcus aureus: What Is the Next?

  • Living reference work entry
  • First Online:
Handbook on Antimicrobial Resistance

Abstract

Initially four decades ago, Staphylococcus aureus caused infections in clinical and civic situations. This microbe has instigated a significant amount of burden. A subset of antimicrobial-resistant S. aureus, viz., methicillin-resistant S. aureus (MRSA) and vancomycin-intermediate/vancomycin-resistant S. aureus (VISA/VRSA), are prioritized as high-risk pathogens by the WHO for controlling the antimicrobial resistance (AMR). Due to its various virulence weapons and the ongoing evolution of AMR, this pathogen has occupied key significance in the last four decades. These resistant pathogens, which were confined to hospital-acquired infections, are now being found in a growing number of civic surroundings and also in food-producing faunas. The global epidemiology of MRSA and VRSA has been extensively illustrated. This chapter dealt on the evolution of AMR in the pathogen S. aureus, as well as the identification of resistance mechanism identified. As a result, the need for novel antimicrobials to treat these AMR bacteria is highlighted along with the future prediction on the development of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-Allah, I. M., El-Housseiny, G. S., Alshahrani, M. Y., El-Masry, S. S., Aboshanab, K. M., & Hassouna, N. A. (2022). An anti-MRSA phage from raw fish rinse: Stability evaluation and production optimization. Frontiers in Cellular and Infection Microbiology, 563.

    Google Scholar 

  • Amberpet, R., Sistla, S., Sugumar, M., Nagasundaram, N., Manoharan, M., & Parija, S. C. (2019). Detection of heterogeneous vancomycin-intermediate Staphylococcus aureus: A preliminary report from South India. The Indian Journal of Medical Research, 150, 194–198. https://doi.org/10.4103/ijmr.IJMR_1976_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appelbaum, P. C. (2006). MRSA—The tip of the iceberg. Clinical Microbiology and Infection, 12(Suppl 2), 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Appelbaum, P. C. (2007). Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). International Journal of Antimicrobial Agents, 30(5), 398–408.

    Article  CAS  PubMed  Google Scholar 

  • Arbeit, R. D., Maki, D., Tally, F. P., Campanaro, E., Eisenstein, B. I., & Daptomycin 98-01 and 99-01 Investigators. (2004). The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clinical Infectious Diseases, 38(12), 1673–1681.

    Article  CAS  PubMed  Google Scholar 

  • Bain, K. T., & Wittbrodt, E. T. (2001). Linezolid for the treatment of resistant gram-positive cocci. The Annals of Pharmacotherapy, 35, 566–575.

    Article  CAS  PubMed  Google Scholar 

  • Bendre, R. S., Patil, R. D., Patil, P. N., Patel, H. M., & Sancheti, R. S. (2022). Synthesis and characterization of new Schiff-bases as Methicillin resistant Staphylococcus aureus (MRSA) inhibitors. Journal of Molecular Structure, 1252, 132152.

    Article  CAS  Google Scholar 

  • Bronner, S., Monteil, H., & Prévost, G. (2004). Regulation of virulence determinants in Staphylococcus aureus: Complexity and applications. FEMS Microbiology Reviews, 28(2), 183–200.

    Article  CAS  PubMed  Google Scholar 

  • Caffrey, A. R., Quilliam, B. J., & LaPlante, K. L. (2010). Risk factors associated with mupirocin resistance in methicillin-resistant Staphylococcus aureus. Journal of Hospital Infection, 76(3), 206–210.

    Article  CAS  PubMed  Google Scholar 

  • Cao, M., Chang, Z., Tan, J., Wang, X., Zhang, P., Lin, S., et al. (2022). Superoxide radical-mediated self-synthesized Au/MoO3–x hybrids with enhanced peroxidase-like activity and photothermal effect for anti-MRSA therapy. ACS Applied Materials & Interfaces, 14(11), 13025–13037.

    Article  CAS  Google Scholar 

  • Chao, C. M., Weng, T. S., Chen, Y. H., Lai, C. C., & Lin, W. T. (2022). Anti-MRSA quinolones for acute bacterial skin and skin structure infection: A systematic review and meta-analysis of randomized controlled trials. Expert Review of Anti-Infective Therapy, 20(5), 733–739.

    Article  CAS  PubMed  Google Scholar 

  • Chuang, Y. C., Lin, H. Y., Chen, P. Y., Lin, C. Y., Wang, J. T., & Chang, S. C. (2016). Daptomycin versus linezolid for the treatment of vancomycin-resistant enterococcal bacteraemia: Implications of daptomycin dose. Clinical Microbiology and Infection, 22(10), 890–8e1.

    Article  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 32nd ed. CLSI supplement M100 ISBN 978-1-68440-135-2 [Electronic]). Clinical and Laboratory Standards Institute, USA, 2022. (E version accessed ED32 electronic in 03 March 2022).

    Google Scholar 

  • Dadashi, M., Hajikhani, B., Darban-Sarokhalil, D., van Belkum, A., & Goudarzi, M. (2020). Mupirocin resistance in Staphylococcus aureus: A systematic review and meta-analysis. Journal of Global Antimicrobial Resistance, 20, 238–247.

    Article  PubMed  Google Scholar 

  • David, M. Z., & Daum, R. S. (2010). Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clinical Microbiology Reviews, 23(3), 616–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doub, J. B., Ng, V. Y., Lee, M., Chi, A., Lee, A., Würstle, S., & Chan, B. (2022). Salphage: Salvage bacteriophage therapy for recalcitrant MRSA prosthetic joint infection. Antibiotics, 11(5), 616.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 41(3), 430–449.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S. R., Fouts, D. E., Archer, G. L., Mongodin, E. F., DeBoy, R. T., Ravel, J., et al. (2005). Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. Journal of Bacteriology, 187(7), 2426–2438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein, B. P. (2014). Resistance to rifampicin: a review. The Journal of Antibiotics, 67(9), 625–630.

    Article  CAS  PubMed  Google Scholar 

  • Gootz, T. D. (1990). Discovery and development of new antimicrobial agents. Clinical Microbiology Reviews, 3, 13–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, B., Kelesidis, T., Tsiodras, S., Hindler, J., & Humphries, R. M. (2013). The emerging problem of linezolid-resistant Staphylococcus. The Journal of Antimicrobial Chemotherapy, 68(1), 4–11. https://doi.org/10.1093/jac/dks354

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10, 107. https://doi.org/10.3389/fcimb.2020.00107

    Article  PubMed  PubMed Central  Google Scholar 

  • Haaber, J., Penadés, J. R., & Ingmer, H. (2017). Transfer of antibiotic resistance in Staphylococcus aureus. Trends in Microbiology, 25(11), 893–905.

    Article  CAS  PubMed  Google Scholar 

  • Haag, A. F., Fitzgerald, J. R., & Penadés, J. R. (2019). Staphylococcus aureus in animals. Microbiology Spectrum, 7(3), 7–3.

    Article  Google Scholar 

  • Haseeb, A., Ajit Singh, V., Teh, C. S. J., & Loke, M. F. (2019). Addition of ceftaroline fosamil or vancomycin to PMMA: An in vitro comparison of biomechanical properties and anti-MRSA efficacy. Journal of Orthopaedic Surgery, 27, 2309499019850324. https://doi.org/10.1177/2309499019850324

    Article  PubMed  Google Scholar 

  • Healy, C. M., Hulten, K. G., Palazzi, D. L., Campbell, J. R., & Baker, C. J. (2004). Emergence of new strains of methicillin-resistant Staphylococcus aureus in a neonatal intensive care unit. Clinical Infectious Diseases, 39, 1460–1466.

    Article  PubMed  Google Scholar 

  • Heidary, M., Khosravi, A. D., Khoshnood, S., Nasiri, M. J., Soleimani, S., & Goudarzi, M. (2018). Daptomycin. Journal of Antimicrobial Chemotherapy, 73(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Ito, T., Katayama, Y., & Hiramatsu, K. (1999). Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrobial Agents and Chemotherapy, 43(6), 1449–1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, S. O., & Lyon, B. R. (2009). Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiology, 4(5), 565–582.

    Article  CAS  PubMed  Google Scholar 

  • Jevons, M. P. (1961). ‘Celbenin’-resistant staphylococci. BMJ, 1, 124–125.

    Article  PubMed Central  Google Scholar 

  • Kazakova, S. V., Hageman, J. C., Matava, M., Srinivasan, A., Phelan, L., Garfinkel, B., Boo, T., McAllister, S., Anderson, J., Jensen, B., Dodson, D., Lonsway, D., McDougal, L. K., Arduino, M., Fraser, V. J., Killgore, G., Tenover, F. C., Cody, S., & Jernigan, D. B. (2005). A clone of methicillin resistant Staphylococcus aureus among professional football players. The New England Journal of Medicine, 2005(352), 468–475.

    Article  Google Scholar 

  • Kebriaei, R., Lev, K. L., Shah, R. M., Stamper, K. C., Holger, D. J., Morrisette, T., et al. (2022). Eradication of biofilm-mediated methicillin-resistant Staphylococcus aureus infections in vitro: Bacteriophage-antibiotic combination. Microbiology Spectrum, 10(2), e00411–e00422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, S., Sallum, U. W., Zheng, X., Nau, G. J., & Hasan, T. (2014). Rapid optical determination of beta-lactamase and antibiotic activity. BMC Microbiology, 14, 84. https://doi.org/10.1186/1471-2180-14-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger, W. A., & Unertl, K. E. (2002). New treatment option for gram-positive infections in critically ill patients-overview over linezolid. Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie: AINS, 37(4), 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, J. S., & Jorgensen, J. H. (2005). Inducible clindamycin resistance in staphylococci: Should clinicians and microbiologists be concerned? Clinical Infectious Diseases, 40(2), 280–285.

    Article  PubMed  Google Scholar 

  • Li, M., Zou, P., Tyner, K., & Lee, S. (2017). Physiologically based pharmacokinetic (PBPK) modelling of pharmaceutical nanoparticles. The AAPS Journal, 19, 26–42. https://doi.org/10.1208/s12248-016-0010-3

    Article  CAS  PubMed  Google Scholar 

  • Lindsay, J. A., & Holden, M. T. (2006). Understanding the rise of the superbug: Investigation of the evolution and genomic variation of Staphylococcus aureus. Functional & Integrative Genomics, 6(3), 186–201.

    Article  CAS  Google Scholar 

  • Lowy, F. D. (2003). Antimicrobial resistance: The example of Staphylococcus aureus. The Journal of Clinical Investigation, 111, 1265–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malachowa, N., & DeLeo, F. R. (2010). Mobile genetic elements of Staphylococcus aureus. Cellular and Molecular Life Sciences, 67(18), 3057–3071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manquat, G., Croize, J., Stahl, J. P., Meyran, M., Hirtz, P., & Micoud, M. (1992). Failure of teicoplanin treatment associated with an increase in MIC during therapy of Staphylococcus aureus septicaemia. Journal of Antimicrobial Chemotherapy, 29(6), 731–732.

    Article  CAS  PubMed  Google Scholar 

  • Maranan, M. C., Moreira, B., Boyle-Vavra, S., & Daum, R. S. (1997). Antimicrobial resistance in staphylococci. Epidemiology, molecular mechanisms, and clinical relevance. Infectious Disease Clinics of North America, 11, 813–849.

    Article  CAS  PubMed  Google Scholar 

  • Martínez, N., Luque, R., Milani, C., Ventura, M., Bañuelos, O., & Margolles, A. (2018). A gene homologous to rRNA methylase genes confers erythromycin and clindamycin resistance in bifidobacterium breve. Applied and Environmental Microbiology, 84(10), e02888–e02817.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCallum, N., Berger-Bächi, B., & Senn, M. M. (2010). Regulation of antibiotic resistance in Staphylococcus aureus. International Journal of Medical Microbiology, 300(2–3), 118–129.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, A. J., & Lindsay, J. A. (2012). The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated. BMC Microbiology, 12(1), 1–8.

    Article  Google Scholar 

  • McGehee, R. F., Barrett, F. F., & Finland, F. (1968). Resistance of Staphylococcus aureus to lincomycin, clindamycin and erythromycin. Antimicrobial Agents and Chemotherapy, 13, pg. 392-7.

    Google Scholar 

  • McGuinness, W. A., Malachowa, N., & DeLeo, F. R. (2017). Vancomycin resistance in Staphylococcus aureus. The Yale Journal of Biology and Medicine, 90(2), 269–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes, R. E., Tsakris, A., Sader, H. S., Jones, R. N., Biek, D., McGhee, P., et al. (2012). Characterization of methicillin-resistant Staphylococcus aureus displaying increased MICs of ceftaroline. Journal of Antimicrobial Chemotherapy, 67(6), 1321–1324.

    Article  CAS  PubMed  Google Scholar 

  • Micek, S. T. (2007). Alternatives to vancomycin for the treatment of methicillin resistant Staphylococcus aureus infections. Clinical Infectious Diseases, 45(Suppl 3), S184–S190. https://doi.org/10.1086/519471

    Article  CAS  PubMed  Google Scholar 

  • Nanjundaswamy, S., Jayashankar, J., Chethana, M. H., Renganathan, R. A., Karthik, C. S., Ananda, A. P., et al. (2022). Design, synthesis, and in-silico studies of pyrazolylpyridine analogues: A futuristic antibacterial contender against coagulase positive superbug-MRSA. Journal of Molecular Structure, 132400, 132400.

    Article  Google Scholar 

  • Nicola, F. G., McDougal, L. K., Biddle, J. W., & Tenover, F. C. (1998). Characterization of erythromycin-resistant isolates of Staphylococcus aureus recovered in the United States from 1958 through 1969. Antimicrobial Agents and Chemotherapy, 42, 3024–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padera, R. F. (2006). Infection in ventricular assist devices: The role of biofilm. Cardiovascular Pathology, 15, 264–270. https://doi.org/10.1016/j.carpath.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  • Pillai, S. K., Sakoulas, G., Wennersten, C., Eliopoulos, G. M., Moellering, R. C., Jr., Ferraro, M. J., & Gold, H. S. (2002). Linezolid resistance in Staphylococcus aureus: Characterization and stability of resistant phenotype. The Journal of Infectious Diseases, 186(11), 1603–1607.

    Article  CAS  PubMed  Google Scholar 

  • Planet, P. J., Narechania, A., Chen, L., Mathema, B., Boundy, S., Archer, G., & Kreiswirth, B. (2017). Architecture of a species: Phylogenomics of Staphylococcus aureus. Trends in Microbiology, 25(2), 153–166.

    Article  CAS  PubMed  Google Scholar 

  • Plata, K., Rosato, A. E., & Wegrzyn, G. (2009). Staphylococcus aureus as an infectious agent: Overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochimica Polonica, 56(4), 597–612.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, M., Noble, W. C., & Cookson, B. (1987). Mupirocin resistant Staphylococcus aureus. Lancet, 330, 387–388. https://doi.org/10.1016/S0140-6736(87)92398-1

    Article  Google Scholar 

  • Razavi, M., Marathe, N. P., Gillings, M. R., Flach, C. F., Kristiansson, E., & Joakim Larsson, D. G. (2017). Discovery of the fourth mobile sulfonamide resistance gene. Microbiome, 5(1), 1–12.

    Article  Google Scholar 

  • Robinson, D. A., Kearns, A. M., Holmes, A., Morrison, D., Grundmann, H., Edwards, G., et al. (2005). Re-emergence of early pandemic Staphylococcus aureus as a community-acquired methicillin-resistant clone. The Lancet, 365(9466), 1256–1258.

    Article  Google Scholar 

  • Saga, T., & Yamaguchi, K. (2009). History of antimicrobial agents and resistant bacteria. Japan Medical Association Journal, 52(2), 103–108.

    Google Scholar 

  • Saravolatz, L. D., Stein, G. E., & Johnson, L. B. (2011). Ceftaroline: a novel cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases, 52(9), 11567–1163.

    Google Scholar 

  • Sánchez-Osuna, M., Cortés, P., Barbé, J., & Erill, I. (2019). Origin of the mobile di-hydro-pteroate synthase gene determining sulfonamide resistance in clinical isolates. Frontiers in Microbiology, 9, 3332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schito, G. C. (2006). The importance of the development of antibiotic resistance in Staphylococcus aureus. Clinical Microbiology and Infection, 12(Suppl. 1), 3–8.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, S., Kehrenberg, C., Doublet, B., & Cloeckaert, A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiology Reviews, 28(5), 519–542.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, S., Zhang, W., Du, X. D., Krüger, H., Feßler, A. T., Ma, S., et al. (2021). Mobile oxazolidinone resistance genes in gram-positive and gram-negative bacteria. Clinical Microbiology Reviews, 34(3), e00188–e00120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shearer, J. E., Wireman, J., Hostetler, J., Forberger, H., Borman, J., Gill, J., et al. (2011). Major families of multiresistant plasmids from geographically and epidemiologically diverse staphylococci. G3: Genes|Genomes|Genetics, 1(7), 581–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shittu, A. O., Kaba, M., Abdulgader, S. M., et al. (2018). Mupirocin-resistant Staphylococcus aureus in Africa: A systematic review and meta-analysis. Antimicrobial Resistance and Infection Control, 7, 101. https://doi.org/10.1186/s13756-018-0382-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinsinwar, S., Jayaraman, A., Mahapatra, S. K., & Vellingiri, V. (2022). Anti-virulence properties of catechin-in-cyclodextrin-in-phospholipid liposome through down-regulation of gene expression in MRSA strains. Microbial Pathogenesis, 105585.

    Google Scholar 

  • Sköld, O. (2000). Sulfonamide resistance: Mechanisms and trends. Drug Resistance Updates, 3(3), 155–160.

    Article  PubMed  Google Scholar 

  • Smith, T. C. (2015). Livestock-associated Staphylococcus aureus: The United States experience. PLoS Pathogens, 11(2), e1004564.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, J. H., Hsueh, P. R., Chung, D. R., Ko, K. S., Kang, C. I., Peck, K. R., et al. (2011). Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: An ANSORP study. Journal of Antimicrobial Chemotherapy, 66(5), 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Stefani, S., Campanile, F., Santagati, M., Mezzatesta, M. L., Cafiso, V., & Pacini, G. (2015). Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: A review of the available evidence. International Journal of Antimicrobial Agents, 46(3), 278–289.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, D. L., Gibbons, A. E., Bergstrom, R., & Winn, V. (1988). The eagle effect revisited: Efficacy of clindamycin, erythromycin, and penicillin in the treatment of streptococcal myositis. Journal of Infectious Diseases, 158(1), 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Thomer, L., Schneewind, O., & Missiakas, D. (2016). Pathogenesis of Staphylococcus aureus bloodstream infections. Annual Review of Pathology, 11, 343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G., Jr. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trzcinski, K., Cooper, B. S., Hryniewicz, W., & Dowson, C. G. (2000). Expression of resistance to tetracyclines in strains of methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 45(6), 763–770.

    Article  CAS  PubMed  Google Scholar 

  • Tsiodras, S., Gold, H. S., Sakoulas, G., Eliopoulos, G. M., Wennersten, C., Venkataraman, L., Moellering, R. C., & Ferraro, M. J. (2001). Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet, 358(9277), 207–208. https://doi.org/10.1016/S0140-6736(01)05410-1

    Article  CAS  PubMed  Google Scholar 

  • Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., et al. (2019). Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nature Reviews. Microbiology, 17, 203–218. https://doi.org/10.1038/s41579-018-0147-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaiyapuri, M., Joseph, T. C., Rao, B. M., Lalitha, K. V., & Prasad, M. M. (2019). Methicillin-resistant Staphylococcus aureus in seafood: Prevalence, laboratory detection, clonal nature, and control in seafood chain. Journal of Food Science, 84(12), 3341–3351.

    Article  CAS  PubMed  Google Scholar 

  • Van Duijkeren, E., Schink, A. K., Roberts, M. C., Wang, Y., & Schwarz, S. (2018). Mechanisms of bacterial resistance to antimicrobial agents. Microbiology Spectrum, 6(2), 6–2.

    Google Scholar 

  • Vestergaard, M., Frees, D., & Ingmer, H. (2019). Antibiotic resistance and the MRSA problem. Microbiology Spectrum, 7, GPP3-0057-2018. https://doi.org/10.1128/microbiolspec.GPP3-0057-2018

    Article  Google Scholar 

  • Weidenmaier, C., Goerke, C., & Wolz, C. (2012). Staphylococcus aureus determinants for nasal colonization. Trends in Microbiology, 20(5), 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Wendlandt, S., Schwarz, S., & Silley, P. (2013). Methicillin-resistant Staphylococcus aureus: A food-borne pathogen? Annual Review of Food Science and Technology, 4, 117–139.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D. N. (2016). The ABC of ribosome-related antibiotic resistance. MBio, 7(3), e00598–e00516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodford, N. (2005). Biological counterstrike: antibiotic resistance mechanisms of gram-positive cocci. Clinical Microbiology and Infection, 11(suppl 3), 2–21.

    Article  CAS  PubMed  Google Scholar 

  • Woods, C. R. (2009). Macrolide-inducible resistance to clindamycin and the D-test. The Pediatric Infectious Disease Journal, 28(12), 1115–1118.

    Article  PubMed  Google Scholar 

  • Yoshimura, J., Yamakawa, K., Ohta, Y., Nakamura, K., Hashimoto, H., Kawada, M., et al. (2022). Effect of gram stain–guided initial antibiotic therapy on clinical response in patients with ventilator-associated pneumonia: The GRACE-VAP randomized clinical trial. JAMA Network Open, 5(4), e226136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng, Q., Wang, Z. J., Chen, S., Wang, H., Xie, T. Z., Xu, X. J., et al. (2022). Phytochemical and anti-MRSA constituents of Zanthoxylum nitidum. Biomedicine & Pharmacotherapy, 148, 112758.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murugadas Vaiyapuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pulithara Sebastian, A.S., Vaiyapuri, M., Badireddy, M.R. (2023). Vancomycin and Methicillin Resistance in Staphylococcus aureus: What Is the Next?. In: Mothadaka, M.P., Vaiyapuri, M., Rao Badireddy, M., Nagarajrao Ravishankar, C., Bhatia, R., Jena, J. (eds) Handbook on Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-9723-4_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9723-4_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9723-4

  • Online ISBN: 978-981-16-9723-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics