Skip to main content

Advancement in Titanium Aluminide and its High Temperature Oxidation Behaviour

  • Chapter
  • First Online:
A Treatise on Corrosion Science, Engineering and Technology

Abstract

The present contribution aims at a brief introduction to titanium aluminides and scope of its applications especially in high temperature oxidation resistance applications. The detailed description would include classifications of titanium aluminides, microstructures developed in this system, properties of materials with different microstructural morphology, the fabrication routes usually followed for the development of this aluminides and oxidation behaviour of this alloy. The oxidation behaviour of titanium aluminides is very much dependent upon its microstructures, composition and phases present. The scope of enhancement of oxidation resistance property of this alloy by changing its microstructure, composition and a sui surface treatment technique will be discussed. Finally, the future scope of research on the titanium aluminide with high temperature oxidation resistance application will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim YW (1989) Intermetallic alloys based on gamma titanium aluminide. J Met 41(7):24–30. https://doi.org/10.1007/bf03220267

    Article  CAS  Google Scholar 

  2. Leynes C, Peters M, Kaysser WA (2000) Oxidation-resistant coatings for application on high-temperature titanium alloys in aeroengines. Adv Eng Mater 2(5):265–269

    Article  Google Scholar 

  3. Moser M, Mayrhofer PH, Clemens H (2008) On the influence of coating and oxidation on the mechanical properties of a γ-TiAl based alloy. Intermetallics 16:1206–1211

    Article  CAS  Google Scholar 

  4. Dimiduk DM (1999) Gamma titanium aluminide alloys—an assessment within the competition of aerospace structural materials. Mater Sci Eng A 263:281–288.

    Google Scholar 

  5. Chan KS (1995) Gamma Titanium Aluminides. In: Kim YW, Wagner R, Yamaguchi M (eds) TMS, Warrendale, 835.

    Google Scholar 

  6. Deve HE, Evans AG, Shih DS (1992) A high-toughness γ-titanium aluminide. Acta Metall Mater 40:1259–1265

    Article  CAS  Google Scholar 

  7. Hazzledine PM, Kad BK, Mendiratta Jr. MG (1993) Thin Films: Stresses and Mechanical Properties IV. In: Townsend PH, Weihs TP, Sanchez Jr. JE, Børgesen P (eds) MRS Symp Proc 308:725.

    Google Scholar 

  8. Kim YW, Froes FH (1990) High-temperature aluminides and intermetallics. Warrendale, PA, TMS 465–492.

    Google Scholar 

  9. Saari HMJ (2003) Process modeling of the directional solidification of gas turbine materials. Dissertation, Carleton University,Ottawa, Canada.

    Google Scholar 

  10. Bulmer S (2008) The microstructures and mechanical properties of powder metallurgy Ti-48Al-2Cr-2Nb-0.1W. Dissertation, Carleton University, Ottawa, Canada.

    Google Scholar 

  11. Clemens H, Mayer S (2013) Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater 15(4):191–215

    Article  CAS  Google Scholar 

  12. Kong F, Chen Y, Yang F (2011) Effect of heat treatment on microstructures and tensile properties of as-forged Ti-45Al-5Nb-0.3Y alloy. Intermetallics 19(2):212–216.

    Google Scholar 

  13. Appel F, Wagner R (1998) Microstructure and deformation of two phase gamma-titanium aluminides. Mater Sci Eng R22:187–268

    Article  CAS  Google Scholar 

  14. Kim YW, Dimiduk DM (1991) Progress in the understanding of Gamma Titanium Aluminides. JOM 43:40–47. https://doi.org/10.1007/BF03221103

    Article  CAS  Google Scholar 

  15. Blackburn MJ et al (1981). US Patent 4,294,615.

    Google Scholar 

  16. Huang SC, Shih DS (1990) Microstructure/Property Relationships in Titanium Aluminides and Alloys. In: Kim YW, BoyerRR (eds) TMS, Warrendale, PA:105–122.

    Google Scholar 

  17. Huang JS, Kim YW (1991) Scripta Met 25:1901–1906

    Article  CAS  Google Scholar 

  18. Froes FH, Suryanarayana C, Eliezer D (1992) Review synthesis, properties and applications oftitanium aluminides. J Mater Sci 27:5113–5140

    Article  CAS  Google Scholar 

  19. Bania PJ, Timer, Henderson, Nevada (1991) Private Communications.

    Google Scholar 

  20. Bomberger HB (1972). US Patent 3679403.

    Google Scholar 

  21. ldem (1976) US Patent 3 963 525.

    Google Scholar 

  22. ldem (1978) US Patent 4 129438.

    Google Scholar 

  23. German RM (1984) Powder Metallurgy Science MPIF. Princeton

    Google Scholar 

  24. Guedou J, Franchet JPM, Strudel JBV et al (2018) Titanium-based intermetallic alloy. US Patent 10,119,180, 11.

    Google Scholar 

  25. Roberts PR (1989) In: Gasbarre TG, Jandeska WF (eds) Advances in Powder Metallurgy, MPIF, Princeton 427.

    Google Scholar 

  26. Woodfield AP, amato RA, Yolton CF ibid 413.

    Google Scholar 

  27. Moll JH, YoltonCF MBJ (1990) P/M processing of Titanium Aluminides. Int J Powd Metall 26(2):149–155

    CAS  Google Scholar 

  28. Rowe RG, SutliffJA, Kock EF (1986) In: Froes FH, EylonD (eds) Titanium rapid solidification technology, TMS, Warrendale, Pennsylvania 239.

    Google Scholar 

  29. Rowe RG, TaubAI, Froes FH (1988) In: MehrabianR, Parrish PA (eds) Rapid solidification processing: principles and technologies IV, Claitor, Baton Rouge, Louisiana 149.

    Google Scholar 

  30. Huang SC, HallEL, Gigliotti MFX (1987) In: StoloffNS,Koch CC, Liu CT, Izumi O (eds) High-temperature ordered intermetallic alloys II series MRS, Pittsburgh 81:481.

    Google Scholar 

  31. Mishurda JC, Perepezko JH, GravesJA et al (1988)In: Lacombe P, Tricot R, Beranger G (eds) Proceedings of 6th world conference on Titanium (Les Editions de Physique, Les UlisCedex, France, 1989) Cannes, France, 2:1127.

    Google Scholar 

  32. Suryanarayana C, SundaresanR, Froes FH (1990) In: Clauer AH, Barbadillo JJD (eds) Solid state powder processing, TMS, Warrendale, Pennsylvania 55.

    Google Scholar 

  33. FroesFH, Eylon D (1990) In: Moody NR, Thompson AW (eds) Hydrogen effects on materials behavior, TMS, Warrendale, Pennsylvania 261.

    Google Scholar 

  34. Froes FH, Eylon D, Suryanarayana C (1990) JOM 42(3):26

    Article  CAS  Google Scholar 

  35. Tlotleng M, Masina B, Pityana S (2016) Characteristics of laser In-situ alloyed titanium aluminides coatings. ProcediaManuf7:39–45.

    Google Scholar 

  36. Cárcel B, Serrano A, Zambrano J, Amigo V, Carcel AC (2014) Laser cladding of TiAl intermetallic alloy on Ti6Al4V process optimization and properties. Phys Procedia 56:284–293

    Article  Google Scholar 

  37. Srivastava D, Chang ITH, Loretto MH (2001) The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples. Intermetallics 9:1003–1013

    Article  CAS  Google Scholar 

  38. Weisheit A, Rittinghaus SK, Dutta A, Majumdar JD (2020) Studies on the effect of composition and pre-heating on microstructure and mechanical properties of direct laser clad titanium aluminide. Opt Lasers Eng 13:106041.

    Google Scholar 

  39. Majumdar JD, Rittinghaus SK, Wissenbach K, Hoche D, Blawert C, Weisheit A (2018) Direct laser cladding of the silicide dispersed titanium aluminide (Ti45Al5Nb0.5Si) composites. Opt Laser Technol 106:182–190

    Article  Google Scholar 

  40. Majumdar JD, Rittinghaus SK, Wissenbach K, Hoche D, Blawert C, Weisheit A (2019) Microstructural evolution and microhardness of direct laser clad TiC dispersed Titanium Aluminide (Ti45Al5Nb0.5Si) Alloy.Procedia Manuf 35:840–846.

    Google Scholar 

  41. Reddy RG, Wen X, Divakar M (2001) Isothermal oxidation of TiAl alloy. Metall Mater Trans A32:2357–2361

    Article  Google Scholar 

  42. Leyens C, Braun R, FrohlichM HPEH (2006) Recent progress in the coating protection of gamma titanium-aluminide. J Met 58(1):17–21

    CAS  Google Scholar 

  43. Taniguchi S, Shibata T, Itoh S (1991) Oxidation behaviour of TiAl at high temperatures in purified oxygen. Mater Trans JIM 32(2):151–156

    Article  CAS  Google Scholar 

  44. Leyens C, Peters M (2003) Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH VerlagGmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  45. Gauthier V, DettenwangerF SM (2002) Oxidation behaviour of γ-TiAl coated with zirconia thermal barriers. Intermetallics 10:667–674

    Article  CAS  Google Scholar 

  46. Haanappel VAC, Clemens H, Stroosnijder MF (2002) The high temperature oxidation behaviour of high and low alloyed TiAl based intermetallics. Intermetallics 10:293–305

    Article  CAS  Google Scholar 

  47. Kuranishi T, Habazaki H, Konno H (2005) Oxidation-resistant multilayer coatings using an anodic alumina layer as a diffusion barrier on γ-TiAl substrates. Surf Coat Technol 200:2438–2444

    Article  CAS  Google Scholar 

  48. ShidaY AH (1993) The influence of ternary element addition on the oxidation behaviour of TiAl intermetallic compound in high temperature air. CorrosSci 35(5–8):945–953

    Google Scholar 

  49. Shida Y, Anada H (1994) Role of W, Mo, Nb and Si on oxidation of TiAl in air at high temperatures. Mater Trans JIM 35(9):623–631

    Article  CAS  Google Scholar 

  50. Shim WS, Lee DB (2003) High temperature oxidation of Ti-48%Al-2%W intermetallics. Met Mater Int 9(5):473–477

    Article  CAS  Google Scholar 

  51. Anada H, Shida Y (1994) Effect of Mo addition on the oxidation behaviour of TiAl intermetallic compound. Mater Trans JIM 58(7):746–753

    CAS  Google Scholar 

  52. Wang F, Tang Z, Wu W (1997) Effect of chromium on the oxidation resistance of TiAlintermetallics. Oxid Met 48(5–6):381–390

    Article  CAS  Google Scholar 

  53. VojtechD CJ, Novak P, Serak J, Fabian T (2008) Effect of niobium on the structure and high-temperature oxidation of TiAl-Ti5Si3 eutectic alloy. Intermetallics 16:896–903

    Article  Google Scholar 

  54. Jiang H, Hirohasi M, Lu Y, Imanari H (2002) Effect of Nb on the high temperature oxidation of Ti-(0–50 at.%)Al. ScrMater 46:639–643

    CAS  Google Scholar 

  55. McKee DW, Huang SC (1992) The oxidation behaviour of gamma-titanium aluminide alloys under thermal cycling conditions. CorrosSci 33(12):1899–1914

    CAS  Google Scholar 

  56. Yoshihara M, Miura K (1995) Effects of Nb addition on oxidation behaviour of TiAl. Intermetallics 3:351–363

    Article  Google Scholar 

  57. Vojtech D, Cizova H, Jurek K, Maixner J (2005) Influence of silicon on high-temperature cyclic oxidation behavior of titanium. J Alloys Compd 394:240–249

    Article  CAS  Google Scholar 

  58. Shida Y, Anada H (1996) The effect of various ternary additives on the oxidation behaviour of TiAl in high temperature air. Oxid Metals 45(1/2):197–218

    Article  CAS  Google Scholar 

  59. Faping P, Qingmiao H, Rui Y (2013) Investigation on effects of alloying on oxidation resistance of γ-TiAl by using first principle. Acta Metall Sin 49(4):385–390

    Article  Google Scholar 

  60. Kim JP, Jung HG, Kim KY (1999) Al+Y co-deposition using EB-PVD method for improvement of high-temperature oxidation resistance of TiAl. Surf Coatings Technol 112:91–97

    Article  CAS  Google Scholar 

  61. Zhaolin T, Fuhui W, Weitao W (1997) Effect of MCrAlY coatings on oxidation resistance of TiAlintermetallics. J Chin SocCorrosProt 17(2):116–120

    Google Scholar 

  62. Yi X, Qiang M, Wenping L, Ling W, Xiushui Y, Qiong J, Beilei R (2014) Oxidation behaviour of γ-TiAl alloy with NiCrAlY/Al duplex coating at 950°C. Rare Metal Mater Eng 43(6):1047–1051

    Google Scholar 

  63. Haiqing L, Jun G, Chao S (2012) High temperature oxidation resistance and mechanical properties of NiCrAlY/Al-Al2O3 coatings on an orthorhombic Ti2AlNb alloy. Acta Metall Sin 48(5):579–586

    Google Scholar 

  64. Baoyi R, Xuejun Z, Feng G, Jianping P, Naixian F (2009) Preparation of amorphous SiO2 coating and its protection for Ti-22Al-26Nb alloy at high temperature. J Mater Metallurgy 8(3):188–192

    Google Scholar 

  65. Yuxian C, Wen W, Shenglong Z, Fuhui W (2009) Effect of multi arc ion plated chromia coating on oxidation behavior of γ-TiAl. Corros Sci Prot Technol 21(3):266–268

    Google Scholar 

  66. Sarkar S, Datta S, Das S, Basu D (2009) Oxidation protection of gamma-titanium aluminide using glass ceramic coatings. Surf Coatings Technol 203:1797–1825

    Article  CAS  Google Scholar 

  67. Fengyi M, Shenglong Z (2015) Long-term high temperature oxidation and hot corrosion behaviour of an enamel coating on γ-TiAlintermetallics at 700°C. CorrosSciProtTechnol 27(3):254–258

    Google Scholar 

  68. Guan C, Tang Z, Wang F, Wu W, Li S (2001) Effect of enamel coating on oxidation and hot corrosion resistance of Ti-24Al-14Nb-3V. J Mater Eng Perform 14:75–80

    Google Scholar 

Download references

Acknowledgements

The financial support from Alexander von Humboldt foundation (under Friedrich Wilhelm Award Scheme) to JDM for the present work is gratefully acknowledged. The authors are also grateful to Dr. Rani P George, Dr. U. Kamachi Mudali and their team for their kind invitation to present the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Dutta Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, A., Weisheit, A., Majumdar, J.D. (2022). Advancement in Titanium Aluminide and its High Temperature Oxidation Behaviour. In: Kamachi Mudali, U., Subba Rao, T., Ningshen, S., G. Pillai, R., P. George, R., Sridhar, T.M. (eds) A Treatise on Corrosion Science, Engineering and Technology. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-9302-1_17

Download citation

Publish with us

Policies and ethics