Skip to main content

Nanotechnology in Drug Delivery Systems: Ways to Boost Bioavailability of Drugs

  • Chapter
  • First Online:
Nanotechnology for Infectious Diseases

Abstract

Medicinal plants and their products have been utilized ever since prehistoric era for health and medicinal assessment and are exploited thus far. Undoubtedly, robust utilization of medicinal wealth has resulted progressive exhaustion. Additionally, these plant by-products face tribulations such as inadequate absorption at specific sites. To overcome proper accumulation problems, nanotechnology is playing a significant role. This chapter aims to highlight novel drug delivery systems, their challenges and potential in innovative nanomedicines. In present times, it has been well recognized that nanocarrier systems encompass multifaceted relevances than conservative formulations. Currently, imperative thoughtfulness is being given to synthesis of therapeutic formations comprising biocompatible nanocomposites, e.g., micellar, liposomes, nanocapsules as well nanofibers, etc. These aforesaid delivery arrangements usually are polymeric in nature and possess nanostructured morphology and consequently are used to offer targeted delivery of drugs and to improve bioavailability. Certainly, nanomedicine and nano-delivery systems are moderately new, however, swiftly emerging discipline possessing supplies in nanoscale dimensions are engaged to deliver purposes such as diagnostic apparatus or to carry therapeutic drugs to desired locations in an organized mode. Nanotechnology proffers manifold applications in curing persistent sicknesses in human beings by targeted delivery of accurate medicines. Currently, a plethora of uses of nanomedicine are there; for instance, chemotherapeutic drugs, biological materials, immunotherapeutic agents, etc. for cure of a range of ailments. Accordingly, present chapter portrays rationalized synopsis of current progress in area of nano-oriented drug carriers and nanomedicines. These nano-based drug delivery systems have improved effectiveness of old as well as new drugs, eventually, accurate diagnosis via novel indicators. In addition, the limitations and benefits of nanomedicine have also been discussed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aldakheel RK, Rehman S, Almessiere MA, Khan FA, Gondal MA, Mostafa A, Baykal A (2020) Bactericidal and in vitro cytotoxicity of Moringa oleifera seed extract and its elemental analysis using laser-induced breakdown spectroscopy. Pharmaceuticals 13(8):193

    Article  CAS  PubMed Central  Google Scholar 

  • Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32(25):5906–5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amna T, Hassan MS, Nam K-T, Bing YY, Barakat NA, Khil M-S, Kim HY (2012) Preparation, characterization, and cytotoxicity of CPT/Fe2O3-embedded PLGA ultrafine composite fibers: a synergistic approach to develop promising anticancer material. Int J Nanomedicine 7:1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amna T, Barakat NA, Hassan MS, Khil M-S, Kim HY (2013) Camptothecin loaded poly (ε-caprolactone) nanofibers via one-step electrospinning and their cytotoxicity impact. Colloids Surf A Physicochem Eng Asp 431:1–8

    Article  CAS  Google Scholar 

  • Amna T, Hassan MS, Sheikh FA (2020) Nanocamptothecins as new generation pharmaceuticals for the treatment of diverse cancers: overview on a natural product to nanomedicine. In: Application of nanotechnology in biomedical sciences. Springer, Cham, pp 39–49

    Chapter  Google Scholar 

  • Attari E, Nosrati H, Danafar H, Kheiri Manjili H (2019) Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. J Biomed Mater Res A 107(11):2492–2500

    Article  CAS  PubMed  Google Scholar 

  • Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7(8):1253–1271

    Article  CAS  PubMed  Google Scholar 

  • Banker GS, Lieberman HA, Rieger MM (1996) Pharmaceutical dosage forms: disperse systems. M. Dekker, New York

    Google Scholar 

  • Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA (2008) Emerging nanopharmaceuticals. Nanomedicine 4(4):273–282

    Article  CAS  PubMed  Google Scholar 

  • Choradiya BR, Patil SB (2021) A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq 339(116751.10):1016

    Google Scholar 

  • Chyzy A, Tomczykowa M, Plonska-Brzezinska ME (2020) Hydrogels as potential nano-, micro- and macro-scale systems for controlled drug delivery. Materials 13(1):188

    Article  CAS  PubMed Central  Google Scholar 

  • Dalwadi C, Patel G (2015) Application of nanohydrogels in drug delivery systems: recent patents review. Recent Pat Nanotechnol 9(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • El-Aswar EI, Ramadan H, Elkik H, Taha AG (2022) A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. J Environ Manag 301:113908

    Article  CAS  Google Scholar 

  • Gao W, Zhang Y, Zhang Q, Zhang L (2016) Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann Biomed Eng 44(6):2049–2061

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg U, Chauhan S, Nagaich U, Jain N (2019) Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull 9(2):195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granata G, Petralia S, Forte G, Conoci S, Consoli GML (2020) Injectable supramolecular nanohydrogel from a micellar self-assembling calix[4]arene derivative and curcumin for a sustained drug release. Mater Sci Eng C 111:110842

    Article  CAS  Google Scholar 

  • Haggag YA, Faheem AM, Tambuwala MM, Osman MA, El-Gizawy SA, O’Hagan B, Irwin N, McCarron PA (2018) Effect of poly (ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharm Dev Technol 23(4):370–381

    Article  CAS  PubMed  Google Scholar 

  • Hani U, Shivakumar H, Anjum H, Pasha MY (2014) Preparation and optimization of curcumin-hydroxy propyl cyclodextrin bioadhesive vaginal films for human papilloma virus-induced cervical cancer. J Biomater Tissue Eng 4(10):796–803

    Article  Google Scholar 

  • Huang ZM, He CL, Yang A, Zhang Y, Han XJ, Yin J, Wu Q (2006) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J Biomed Mater Res A 77(1):169–179

    Article  CAS  PubMed  Google Scholar 

  • Joshi D, Garg T, Goyal AK, Rath G (2015) Development and characterization of novel medicated nanofibers against periodontitis. Curr Drug Deliv 12(5):564–577

    Article  CAS  PubMed  Google Scholar 

  • Kamsani NH, Haris MS, Pandey M, Taher M, Rullah K (2021) Biomedical application of responsive ‘smart’ electrospun nanofibers in drug delivery system: a minireview. Arab J Chem 2021:103199

    Article  CAS  Google Scholar 

  • Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6(9):1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma P, Mumper RJ (2013) Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4(2):1000164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahanta AK, Senapati S, Paliwal P, Krishnamurthy S, Hemalatha S, Maiti P (2018) Nanoparticle-induced controlled drug delivery using chitosan-based hydrogel and scaffold: application to bone regeneration. Mol Pharm 16(1):327–338

    Article  CAS  PubMed  Google Scholar 

  • Mahinroosta M, Farsangi ZJ, Allahverdi A, Shakoori Z (2018) Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater Today Chem 8:42–55

    Article  CAS  Google Scholar 

  • Nahvi I, Belkahla S, Asiri SM, Rehman S (2021) Overview and prospectus of algal biogenesis of nanoparticles. In: Microbial nanotechnology: green synthesis and applications. Springer, Singapore, pp 121–134

    Chapter  Google Scholar 

  • Narayanaswamy R, Torchilin VP (2019) Hydrogels and their applications in targeted drug delivery. Molecules 24(3):603

    Article  CAS  PubMed Central  Google Scholar 

  • Nayak D, Minz AP, Ashe S, Rauta PR, Kumari M, Chopra P, Nayak B (2016) Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J Colloid Interface Sci 470:142–152

    Article  CAS  PubMed  Google Scholar 

  • Olerile LD, Liu Y, Zhang B, Wang T, Mu S, Zhang J, Selotlegeng L, Zhang N (2017) Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf B Biointerfaces 150:121–130

    Article  CAS  PubMed  Google Scholar 

  • Otto A, Du Plessis J, Wiechers J (2009) Formulation effects of topical emulsions on transdermal and dermal delivery. Int J Cosmet Sci 31(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Patel GC, Yadav BK (2018) Polymeric nanofibers for controlled drug delivery applications. In: Organic materials as smart nanocarriers for drug delivery. Elsevier, Amsterdam, pp 147–175

    Chapter  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33

    Article  CAS  Google Scholar 

  • Pierard G, Lachapelle J, Frentz G, Schopf E, Stolz E (1996) Hydrocortisone 17-butyrate topical emulsion (Locoid Crelo®) in psoriasis. J Eur Acad Dermatol Venereol 6(1):11–14

    Google Scholar 

  • Qureshi A, Blaisi NI, Abbas AA, Khan NA, Rehman S (2021) Prospectus and development of microbes mediated synthesis of nanoparticles. In: Microbial nanotechnology: green synthesis and applications. Springer, Singapore, pp 1–15

    Google Scholar 

  • Rehman S (2016) Endophytes: the producers of important functional metabolites. Int J Curr Microbiol App Sci 5(5):377–391

    Article  CAS  Google Scholar 

  • Rehman S, Al Salem Z, Al Jindan R, Hameed S (2019) Microbial natural products: exploiting microbes against drug-resistant bugs. In: Pathogenicity and drug resistance of human pathogens. Springer, Singapore, pp 393–404

    Chapter  Google Scholar 

  • Rehman S, Asiri SM, Khan FA, Jermy BR, Ravinayagam V, Alsalem Z, Al Jindan R, Qurashi A (2020a) Anticandidal and in vitro anti-proliferative activity of sonochemically synthesized indium tin oxide nanoparticles. Sci Rep 10(1):1–9

    Article  CAS  Google Scholar 

  • Rehman S, Farooq R, Jermy R, Mousa Asiri S, Ravinayagam V, Al Jindan R, Alsalem Z, Shah MA, Reshi Z, Sabit H, Alam Khan F (2020b) A wild fomes fomentarius for biomediation of one pot synthesis of titanium oxide and silver nanoparticles for antibacterial and anticancer application. Biomol Ther 10(4):622

    CAS  Google Scholar 

  • Rehman S, Jermy R, Asiri SM, Shah MA, Farooq R, Ravinayagam V, Ansari MA, Alsalem Z, Al Jindan R, Reshi Z, Khan FA (2020c) Using Fomitopsis pinicola for bioinspired synthesis of titanium dioxide and silver nanoparticles, targeting biomedical applications. RSC Adv 10(53):32137–32147

    Article  CAS  Google Scholar 

  • Rehman S, Almessiere MA, Al-Suhaimi AE, Hussain M, Yousuf Bari M, Mehmood Ali S, Al-Jameel SS, Slimani Y, Khan FA, Baykal A (2021a) Ultrasonic synthesis and biomedical application of Mn0.5Zn0.5ErxYxFe2− 2xO4 nanoparticles. Biomolecules 11(5):703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman S, Almessiere MA, Al-Jameel SS, Ali U, Slimani Y, Tashkandi N, Al-Saleh NS, Manikandan A, Khan FA, Al-Suhaimi EA, Baykal A (2021b) Designing of Co0.5Ni0.5GaxFe2− xO4 (0.0 ≤ x ≤ 1.0) microspheres via hydrothermal approach and their selective inhibition on the growth of cancerous and fungal cells. Pharmaceutics 13(7):962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sábio RM, Meneguin AB, Ribeiro TC, Silva RR, Chorilli M (2019) New insights towards mesoporous silica nanoparticles as a technological platform for chemotherapeutic drugs delivery. Int J Pharm 564:379–409

    Article  CAS  PubMed  Google Scholar 

  • Shakeel F, Baboota S, Ahuja A, Ali J, Faisal M, Shafiq S (2008) Stability evaluation of celecoxib nanoemulsion containing Tween 80. Thai J Pharm Sci 32:4–9

    CAS  Google Scholar 

  • Sosnik A, Seremeta KP (2017) Polymeric hydrogels as technology platform for drug delivery applications. Gels 3(3):25

    Article  CAS  PubMed Central  Google Scholar 

  • Tiwari S, Amiji M (2006) Nanoemulsion formulations for tumor-targeted delivery. In: Nanotechnology for cancer therapy. CRC Press, Boca Raton, FL

    Google Scholar 

  • Valdivia FJG, Dachs AC, Perdiguer NC (1997) Nanoemulsion of the oil water type, useful as an ophthalmic vehicle and process for the preparation thereof. Google Patents

    Google Scholar 

  • Verderio P, Bonetti P, Colombo M, Pandolfi L, Prosperi D (2013) Intracellular drug release from curcumin-loaded PLGA nanoparticles induces G2/M block in breast cancer cells. Biomacromolecules 14(3):672–682

    Article  CAS  PubMed  Google Scholar 

  • Webber MJ, Dankers PY (2019) Supramolecular hydrogels for biomedical applications. Macromol Biosci 19:1800452

    Article  CAS  Google Scholar 

  • Xiao S, Zhou D, Luan P, Gu B, Feng L, Fan S, Liao W, Fang W, Yang L, Tao E (2016) Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 106:98–110

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Liu X, Li Y, Zhang M, He J, Zhang X, Liu H, Wang X, Gu H (2017) Fluorescence and drug loading properties of ZnSe:Mn/ZnS-Paclitaxel/SiO2 nanocapsules templated by F127 micelles. J Colloid Interface Sci 490:436–443

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Deng W, Wang Y, Cao X, Chen J, Wang Q, Xu W, Du P, Yu Q, Chen J (2016) Cationic carbon quantum dots derived from alginate for gene delivery: one-step synthesis and cellular uptake. Acta Biomater 42:209–219

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amna, T., Hassan, M.S., Gharsan, F.N., Rehman, S., Sheikh, F.A. (2022). Nanotechnology in Drug Delivery Systems: Ways to Boost Bioavailability of Drugs. In: Hameed, S., Rehman, S. (eds) Nanotechnology for Infectious Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-16-9190-4_10

Download citation

Publish with us

Policies and ethics