Skip to main content

Artificial Intelligence for Smart Cities: Locational Planning and Dynamic Routing of Emergency Vehicles

  • Chapter
  • First Online:
The Impact of Artificial Intelligence on Governance, Economics and Finance, Volume 2

Abstract

To enhance the efficiency and effectiveness of essential emergency services such as ambulances, fire brigades, and police, one of the most important problems to tackle is to minimize the response times of these emergency vehicles. As well as attaining optimal waiting sites and deployment strategies for the emergency vehicles, the optimal routing and traffic preemption of the vehicles are also crucial in minimizing response times and maximizing coverage. As locational planning and dynamic routing of the emergency vehicles relate to many different situations with varying emergency levels, they are a crucial part of the smart city concept. In this chapter, we present a perspective for the use of artificial intelligence and optimization in sustainable healthcare logistics within a smart city. We provide a survey of literature and identify many applications from around the globe. Related mathematical models and solution approaches are also presented, as necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alanis, R., Ingolfsson, A., & Kolfal, B. (2013). A Markov chain model for an EMS system with repositioning. Production and Operations Management, 22(1), 216–231.

    Article  Google Scholar 

  • Almehdawe, E., Jewkes, B., & He, Q. M. (2016). Analysis and optimization of an ambulance offload delay and allocation problem. Omega, 65, 148–158.

    Article  Google Scholar 

  • Andersson, T., & Värbrand, P. (2007). Decision support tools for ambulance dispatch and relocation. Journal of the Operational Research Society, 58(2), 195–201.

    Article  Google Scholar 

  • Aringhieri, R., Bruni, M. E., Khodaparasti, S., & van Essen, J. T. (2017). Emergency medical services and beyond: Addressing new challenges through a wide literature review. Computers & Operations Research, 78, 349–368.

    Article  Google Scholar 

  • Barthwal, S., & Menghani, P. (2017, January). An advance system for emergency vehicles: Based on M2M communication. In 2017 11th International Conference on Intelligent Systems and Control (ISCO) (pp. 374–378). IEEE.

    Google Scholar 

  • Başar, A., Çatay, B., & Ünlüyurt, T. (2012). A taxonomy for emergency service station location problem. Optimization Letters, 6(6), 1147–1160.

    Article  Google Scholar 

  • Bélanger, V., Kergosien, Y., Ruiz, A., & Soriano, P. (2016). An empirical comparison of relocation strategies in real-time ambulance fleet management. Computers & Industrial Engineering, 94, 216–229.

    Article  Google Scholar 

  • Billhardt, H., Fernández, A., Lemus, L., Lujak, M., Osman, N., Ossowski, S., & Sierra, C. (2014). Dynamic coordination in fleet management systems: Toward smart cyber fleets. IEEE Intelligent Systems, 29(3), 70–76.

    Article  Google Scholar 

  • Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational Research, 147(3), 451–463.

    Article  Google Scholar 

  • Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91.

    Article  Google Scholar 

  • Daskin, M. S. (1983). A maximum expected covering location model: Formulation, properties and heuristic solution. Transportation Science, 17(1), 48–70.

    Article  Google Scholar 

  • Enayati, S., Mayorga, M. E., Rajagopalan, H. K., & Saydam, C. (2018). Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers. Omega, 79, 67–80.

    Article  Google Scholar 

  • Erkut, E., Ingolfsson, A., & Erdoğan, G. (2008). Ambulance location for maximum survival. Naval Research Logistics (NRL), 55(1), 42–58.

    Article  Google Scholar 

  • Fisher, M. L., & Jaikumar, R. (1981). A generalized assignment heuristic for vehicle routing. Networks, 11(2), 109–124.

    Article  Google Scholar 

  • Gendreau, M., Laporte, G., & Semet, F. (1997). Solving an ambulance location model by tabu search. Location Science, 5(2), 75–88.

    Article  Google Scholar 

  • Gendreau, M., Laporte, G., & Semet, F. (2001). A dynamic model and parallel tabu search heuristic for real-time ambulance relocation. Parallel Computing, 27(12), 1641–1653.

    Article  Google Scholar 

  • Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2008). A Tabu search heuristic for the vehicle routing problem with two‐dimensional loading constraints. Networks: An International Journal51(1), 4–18.

    Google Scholar 

  • Goldberg, J. B. (2004). Operations research models for the deployment of emergency services vehicles. EMS Management Journal, 1(1), 20–39.

    Google Scholar 

  • Griffin, R., & McGwin, G., Jr. (2013). Emergency medical service providers’ experiences with traffic congestion. The Journal of Emergency Medicine, 44(2), 398–405.

    Article  Google Scholar 

  • Güneş, E. D., & Nickel, S. (2015). Location problems in healthcare. In G. Laporte, S. Nickel, & F. Saldanha da Gama (Eds.), Location science (pp. 555–579). Springer.

    Google Scholar 

  • Ho, S. C., Szeto, W. Y., Kuo, Y. H., Leung, J. M., Petering, M., & Tou, T. W. (2018). A survey of dial-a-ride problems: Literature review and recent developments. Transportation Research Part b: Methodological, 111, 395–421.

    Article  Google Scholar 

  • Huang, Y. S., Shiue, J. Y., & Luo, J. (2015). A traffic signal control policy for emergency vehicles preemption using Timed Petri nets. IFAC-PapersOnLine, 48(3), 2183–2188.

    Article  Google Scholar 

  • Humagain, S., Sinha, R., Lai, E., & Ranjitkar, P. (2020). A systematic review of route optimisation and pre-emption methods for emergency vehicles. Transport Reviews, 40(1), 35–53.

    Article  Google Scholar 

  • Iannoni, A. P., Morabito, R., & Saydam, C. (2011). Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model. Socio-Economic Planning Sciences, 45(3), 105–117.

    Article  Google Scholar 

  • Ioannou, G., Kritikos, M., & Prastacos, G. (2001). A greedy look-ahead heuristic for the vehicle routing problem with time windows. Journal of the Operational Research Society, 52(5), 523–537.

    Article  Google Scholar 

  • Jagtenberg, C. J., Bhulai, S., & van der Mei, R. D. (2015). An efficient heuristic for real-time ambulance redeployment. Operations Research for Health Care, 4, 27–35.

    Article  Google Scholar 

  • Jose, C., & Grace, K. V. (2020). Optimization based routing model for the dynamic path planning of emergency vehicles. Evolutionary Intelligence, 1–15. https://doi.org/10.1007/s12065-020-00448-y.

  • Katsuma, R., & Yoshida, S. (2018). Dynamic routing for emergency vehicle by collecting real-time road conditions. International Journal of Communications, Network and System Sciences, 11(2), 27–44.

    Article  Google Scholar 

  • Knight, V. A., Harper, P. R., & Smith, L. (2012). Ambulance allocation for maximal survival with heterogeneous outcome measures. Omega, 40(6), 918–926.

    Article  Google Scholar 

  • Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2014). The fleet size and mix pollution-routing problem. Transportation Research Part b: Methodological, 70, 239–254.

    Article  Google Scholar 

  • Kodire, V., Bhaskaran, S., & Vishwas, H. N. (2016, August). GPS and ZigBee based traffic signal preemption. In 2016 International Conference on Inventive Computation Technologies (ICICT) (Vol. 2, pp. 1–5). IEEE.

    Google Scholar 

  • Lam, S. S. W., Zhang, J., Zhang, Z. C., Oh, H. C., Overton, J., Ng, Y. Y., & Ong, M. E. H. (2015). Dynamic ambulance reallocation for the reduction of ambulance response times using system status management. The American Journal of Emergency Medicine, 33(2), 159–166.

    Article  Google Scholar 

  • Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408–416.

    Article  Google Scholar 

  • Li, X., Zhao, Z., Zhu, X., & Wyatt, T. (2011). Covering models and optimization techniques for emergency response facility location and planning: A review. Mathematical Methods of Operations Research, 74(3), 281–310.

    Article  Google Scholar 

  • Lin, C., Choy, K. L., Ho, G. T., Chung, S. H., & Lam, H. Y. (2014). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41(4), 1118–1138.

    Article  Google Scholar 

  • Liu, H., & Li, Y. (2020). Smart cities for emergency management. Nature, 578(7796), 515.

    Article  Google Scholar 

  • Maxwell, M. S., Henderson, S. G., & Topaloglu, H. (2013). Tuning approximate dynamic programming policies for ambulance redeployment via direct search. Stochastic Systems, 3(2), 322–361.

    Article  Google Scholar 

  • McLay, L. A., & Mayorga, M. E. (2010). Evaluating emergency medical service performance measures. Health Care Management Science, 13(2), 124–136.

    Article  Google Scholar 

  • Naoum-Sawaya, J., & Elhedhli, S. (2013). A stochastic optimization model for real-time ambulance redeployment. Computers & Operations Research, 40(8), 1972–1978.

    Article  Google Scholar 

  • Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review. European Journal of Operational Research, 111(3), 423–447.

    Article  Google Scholar 

  • Özdemirel, A., Gökgür, B., & Eliiyi, D. T. (2012). An assignment and routing problem with time windows and capacity restriction. Procedia-Social and Behavioral Sciences, 54, 149–158.

    Article  Google Scholar 

  • Pighin, M., & Fierens, P. I. (2015, October). VANET for emergency vehicles: Preliminary results. In 2015 XVI Workshop on Information Processing and Control (RPIC) (pp. 1–4). IEEE.

    Google Scholar 

  • Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1), 1–11.

    Article  Google Scholar 

  • RapidSOS. (2015, May). Quantifying the impact of emergency response times. Retrieved September 9, 2020 from https://cdn2.hubspot.net/hubfs/549701/Documents/RapidSOS_Outcomes_White_Paper_-_2015_4.pdf

  • Schmid, V. (2012). Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. European Journal of Operational Research, 219(3), 611–621.

    Article  Google Scholar 

  • Su, Q., Luo, Q., & Huang, S. H. (2015). Cost-effective analyses for emergency medical services deployment: A case study in Shanghai. International Journal of Production Economics, 163, 112–123.

    Article  Google Scholar 

  • Tasar, B., Türsel Eliiyi, D., & Kandiller, L. (2019). Vehicle routing with compartments under product incompatibility constraints. Promet-Traffic & Transportation, 31(1), 25–36.

    Article  Google Scholar 

  • Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363–1373.

    Article  Google Scholar 

  • Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). Heuristics for multi-attribute vehicle routing problems: A survey and synthesis. European Journal of Operational Research, 231(1), 1–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Eliiyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eliiyi, U. (2022). Artificial Intelligence for Smart Cities: Locational Planning and Dynamic Routing of Emergency Vehicles. In: Bozkuş Kahyaoğlu, S. (eds) The Impact of Artificial Intelligence on Governance, Economics and Finance, Volume 2. Accounting, Finance, Sustainability, Governance & Fraud: Theory and Application. Springer, Singapore. https://doi.org/10.1007/978-981-16-8997-0_3

Download citation

Publish with us

Policies and ethics