Skip to main content

Biomedical Microelectromechanical System for Molecular, Cellular, and Organ Study

  • Reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

In decades, Microelectromechanical System (MEMS)-based devices haveĀ opened up new frontiers of research in biomedical engineering that benefit from the miniaturized structures and integrated functions. In this chapter, MEMS technologies are introduced as a platform to support the generation of biomedical devices for molecular, cellular, and organ-mimic study. The state-of-the-art of MEMS techniques, including surface processing, bulk processing, LIGA, and quasi-LIGA, are briefly introduced. We summarized the applications of the MEMS-based devices for bio-detection in terms of the dimension of molecular and cells, with focus on molecular detection from secretion, cellular mechanism analysis, and organ-on-a-chip. The emerging opportunities and future obstacles of the biomedical MEMS devices are discussed, yet with a bright prospect that this field would bring unprecedented future to biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer J, Bischoff R, Feltrin G (2009) Microelectromechanical systems (MEMS). In: Encyclopedia of structural health monitoring. Wiley

    Google ScholarĀ 

  2. Zhu J et al (2020) Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 11:7

    ArticleĀ  Google ScholarĀ 

  3. Pryputniewicz R (2012) Current trends and future directions in MEMS. Exp Mech 52:289ā€“303

    ArticleĀ  Google ScholarĀ 

  4. Lee Y (2012) Microfluidics and bio-MEMS: past, present and future. IEEE Cyber

    Google ScholarĀ 

  5. Ahmed D et al (2016) Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 7:1ā€“11

    ArticleĀ  Google ScholarĀ 

  6. Yeh E et al (2017) Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci Adv 3:e1501645

    ArticleĀ  Google ScholarĀ 

  7. Xiao G et al (2019) Microelectrode arrays modified with nanocomposites for monitoring dopamine and spike firings under deep brain stimulation in rat models of parkinsonā€™s disease. ACS Sensors 4:1992ā€“2000

    ArticleĀ  Google ScholarĀ 

  8. Chang L et al (2016) Controllable large-scale transfection of primary mammalian cardiomyocytes on a nanochannel array platform. Small 12:5971ā€“5980

    ArticleĀ  Google ScholarĀ 

  9. Tsai D et al (2017) A very large-scale microelectrode array for cellular-resolution electrophysiology. Nat Commun 8:1ā€“11

    ArticleĀ  Google ScholarĀ 

  10. Li X (2006) Status of development and application of MEMS technology. Transducer Microsyst Technol 5:7ā€“9

    Google ScholarĀ 

  11. Judy J (2001) Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater Struct 10:1115

    ArticleĀ  Google ScholarĀ 

  12. Schrƶpfer G, Lorenz G, Rouvillois S, Breit S (2010) Novel 3D modeling methods for virtual fabrication and EDA compatible design of MEMS via parametric libraries. J Micromech Microeng 20:64003

    ArticleĀ  Google ScholarĀ 

  13. Lal A (2000) Applications of micromachining to nanotechnology. In: Handbook of nanostructured materials and nanotechnology. Academic, pp 579ā€“630

    ChapterĀ  Google ScholarĀ 

  14. Eisenhaure JD et al (2015) The use of shape memory polymers for MEMS assembly. J Microelectromech Syst 25:69ā€“77

    ArticleĀ  Google ScholarĀ 

  15. Kim S et al (2011) Direct fabrication of arbitrary-shaped ferroelectric nanostructures on plastic, glass, and silicon substrates. Adv Mater 23:3786ā€“3790

    ArticleĀ  Google ScholarĀ 

  16. Liu Q, Duan X, Peng C (2014) Novel optical technologies for nanofabrication. Springer

    BookĀ  Google ScholarĀ 

  17. Gatzen H et al (2015) Micro and Nano fabrication. Springer, pp 313ā€“395

    Google ScholarĀ 

  18. Yoon Y et al (2006) Multidirectional UV lithography for complex 3-D MEMS structures. J Microelectromech Syst 15:1121ā€“1130

    ArticleĀ  Google ScholarĀ 

  19. Liang J et al (2008) Improved bi-layer lift-off process for MEMS applications. Microelectron Eng 85:1000ā€“1003

    ArticleĀ  Google ScholarĀ 

  20. Jalbert I (2013) Diet, nutraceuticals and the tear film. Exp Eye Res 117:138ā€“146

    ArticleĀ  Google ScholarĀ 

  21. Mitsubayashi H et al (2006) A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosens Bioelectron 22:558

    ArticleĀ  Google ScholarĀ 

  22. Chu M et al (2011) Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta 83:960ā€“965

    ArticleĀ  Google ScholarĀ 

  23. Javaid M et al (2016) Saliva as a diagnostic tool for oral and systemic diseases. J Oral Biol Craniofacial Res 6:66

    ArticleĀ  Google ScholarĀ 

  24. Malon R et al (2014) Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics. Biomed Res Int 2014:962903

    ArticleĀ  Google ScholarĀ 

  25. Mannoor M et al (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763

    ArticleĀ  Google ScholarĀ 

  26. Arakawa T et al (2016) Mouthguard biosensor with telemetry system for monitoring of saliva glucose: a novel cavitas sensor. Biosens Bioelectron 84:106ā€“111

    ArticleĀ  Google ScholarĀ 

  27. Yang Y, Gao W (2018) Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev. https://doi.org/10.1039/C7CS00730B

  28. Bandodkar A, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363

    ArticleĀ  Google ScholarĀ 

  29. Gao W et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509ā€“514

    ArticleĀ  Google ScholarĀ 

  30. MartĆ­n A et al (2017) Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens 2(12):1860ā€“1868

    ArticleĀ  Google ScholarĀ 

  31. Dong Z et al (2021) Single living cell analysis nano-platform for high-throughput interrogation of gene mutation and cellular behavior. Nano Lett 21:4878ā€“4886

    Google ScholarĀ 

  32. Lin L et al (2021) Multi-microchannel microneedle microporation platform for enhanced intracellular drug delivery.Ā Adv Funct Mater. https://doi.org/10.1002/adfm.202109187

  33. Weinberg E et al (2008) Concept and computational design for a bioartificial nephron-on-a-chip. Int J Artif Organs 31:508

    ArticleĀ  Google ScholarĀ 

  34. Charwat V et al (2013) Monitoring dynamic interactions of tumor cells with tissue and immune cells in a lab-on-a-chip. Anal Chem 85(23):11471ā€“11478

    ArticleĀ  Google ScholarĀ 

  35. Wang X et al (2013) Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11(21):3656ā€“3662

    ArticleĀ  Google ScholarĀ 

  36. Kim D et al (2016) Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 6(6):794ā€“802

    ArticleĀ  Google ScholarĀ 

  37. Brugarolas L et al (2014) A functional microengineered model of the human splenon-on-a-chip. Lab Chip 14:1715ā€“1724

    ArticleĀ  Google ScholarĀ 

  38. Meer V et al (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol Quant Biosci Nano Macro 4:461

    Google ScholarĀ 

  39. Huh D et al (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662

    ArticleĀ  Google ScholarĀ 

  40. Laverty H et al (2011) How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines? Br J Pharmacol 163:675ā€“693

    Google ScholarĀ 

  41. Agarwal et al (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13:3599

    ArticleĀ  Google ScholarĀ 

  42. Geerts A (2001) History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 21:311ā€“336

    ArticleĀ  Google ScholarĀ 

  43. Kane B et al (2006) Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal Chem 78:4291ā€“4298

    ArticleĀ  Google ScholarĀ 

  44. Esch M et al (2014) How multi-organ microdevices can help foster drug development. Adv Drug Deliv Rev 69ā€“70:158ā€“169

    ArticleĀ  Google ScholarĀ 

  45. Sung J, Shuler M (2009) A micro cell culture analog (CCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9:1385ā€“1394

    ArticleĀ  Google ScholarĀ 

  46. Alessandro et al (2014) Organs-on-a-chip: a new tool for drug discovery. Expert Opin Drug Discov 9:335

    ArticleĀ  Google ScholarĀ 

  47. Li A et al (2004) A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem Biol Interact 150:129ā€“136

    ArticleĀ  Google ScholarĀ 

  48. Oleaga C et al (2016) Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6:20030

    ArticleĀ  Google ScholarĀ 

  49. Zhang C et al (2009) Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9:3185ā€“3192

    ArticleĀ  Google ScholarĀ 

  50. Sung J et al (2009) A micro cell culture analog (Ī¼CCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9:1385ā€“1394

    ArticleĀ  Google ScholarĀ 

  51. Lee H et al (2014) Microvasculature: an essential component for organ-on-chip systems. MRS Bull 39:51ā€“59

    ArticleĀ  Google ScholarĀ 

  52. Auger F et al (2013) The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 15:177ā€“200

    ArticleĀ  Google ScholarĀ 

  53. Yeon J et al (2012) In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12:2815ā€“2822

    ArticleĀ  Google ScholarĀ 

  54. Onoe H et al (2013) Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater 12:584ā€“590

    ArticleĀ  Google ScholarĀ 

  55. Kim S et al (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489ā€“1500

    ArticleĀ  Google ScholarĀ 

  56. Hang X et al (2022) Highā€throughput DNA tensioner platform for interrogating mechanical heterogeneity of single living cells. Small. https://doi.org/10.1002/smll.202106196

  57. Hang X et al (2021) Nanosensors for single cell mechanical interrogation. Biosens BioelectronĀ 179:113086

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingqian Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, Y., Chang, T., Wu, H., Dong, Z., Wei, B., Chang, L. (2023). Biomedical Microelectromechanical System for Molecular, Cellular, and Organ Study. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-8984-0_27

Download citation

Publish with us

Policies and ethics