Skip to main content

Wood Degradation, Challenges, and Mitigation

  • Chapter
  • First Online:
Science of Wood Degradation and its Protection
  • 835 Accesses

Abstract

Wood is an ancient material used in the development of human civilization. It is the first material used by the human kind for its protection and survival that further came into use as material for shelter preparation and food preparation, as fuel wood. Since then the wood has become an integral part of day-to-day life of mankind. This renewable and recyclable material however forms material of food, shelter and reproduction for many other organisms too. In this chapter we have discussed about the joint action of major organisms, which are dependent on wood for their survival and also the environmental factors in the process of wood degradation. Such degradation of wood and wooden products results in enormous economic loss, and it has a negative impact on the present era of global warming, as carbon locked in the wood is released in the process of degradation. Consequently, the possibility of mitigating wood degradation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baker. A. J. (1974). Degradation of wood by products of metal corrosion. Forest Service Research Paper FPL 229, Forest Products Laboratory, U.S. Department of Agriculture.

    Google Scholar 

  • Behr, E. A., Behr, C. T., & Wilson, L. F. (1972). Influence of wood hardness on feeding by the eastern subterranean termite, Reticulitermes flavipes (Isoptera: Rhinotermitadae). Annals of the Entomological Society of America, 65, 457–460.

    Article  Google Scholar 

  • Berkel, A. (1970). Wood Material Technology (p. 592). Istanbul University, Forest Faculty Publication, IU Public No: 1448.

    Google Scholar 

  • Borges, L. M. S., Cragg, S. M., & Busch, S. (2009). A laboratory assay for measuring feeding and mortality of the marine wood-borer Limnoria under forced feeding conditions: A basis for a standard test method. International Biodeterioration & Biodegradation, 63, 289–296.

    Article  Google Scholar 

  • Bozkurt, Y., & Erdin, N. (1989). Commercially important exotic trees (p. 382). Istanbul University, Natural and Applied Sciences Publications, Public No: 3572-4.

    Google Scholar 

  • Brink, D. P., Ravi, K., Lidén, G., & Gorwa-Grauslund, M. F. (2019). Mapping the diversity of microbial lignin catabolism: Experiences from the eLignindatabase. Applied Microbiology and Biotechnology., 103, 3979–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12, 681–180.

    Article  Google Scholar 

  • Bultman, J. D. (1976). Research at the Naval Research laboratory on bioresistant tropical woods: An overview. In Chemical basis for natural resistance, proceedings of a workshop on the biodeterioration of tropical woods (pp. 1–6). Naval Research Laboratory, Department of the Navy.

    Google Scholar 

  • Cambell, R. N., & Clark, J. W. (1960). Decay resistance of bald cypress heartwood. Forest Products Journal, 10, 250–253.

    Google Scholar 

  • Carll, C., & Wiedenhoeft, A. C. (2009). Moisture-related properties of wood and the effects of moisture on wood and wood products. In P. A. West Conshohocken (Ed.), Moisture control in buildings: The key factor in mold prevention (2nd ed., pp. 54–79). ASTM International.

    Google Scholar 

  • Chen, A. Y. Y., & Olsen, T. (2016). Chromated copper arsenate–treated wood: A potential source of arsenic exposure and toxicity in dermatology. International Journal of Women’s Dermatology, 2, 28–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chudnoff, M. (1984). Tropical timbers of the world (p. 464). Agric. Hand b. 607. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  • Cogulet, A., Blanchet, P., & Landry, V. (2018). The multifactorial aspect of wood weathering: A review based on a holistic approach of wood degradation protected by clear coating. Bio Resources, 13, 2116–2138.

    CAS  Google Scholar 

  • Couteaux, M. M., Bottner, P., & Berg, B. (1995). Litter decomposition, climate and litter quality. Trends in Ecology & Evolution, 10, 63–66.

    Article  CAS  Google Scholar 

  • Cowling, E. B., & Brown, W. (1969). Structural features of cellulosic materials in relation to enzymatic hydrolysis in cellulases and their application. In G. J. Hajny & E. T. Reese (Eds.), Advances in chemistry series 95 (pp. 157–187). American Chemical Society.

    Google Scholar 

  • Cragg, S. M., Beckham, T. G., Bruce, N. C., Bugg, T. D. H., Distel, L. D., Dupree, P., Etxabe, A. G., Goodell, S. B., Jellison, J., McGeehan, E. J., McQueen-Mason, J., Schnorr, K., Walton, H. P., Watts, J. E. M., & Zimmer, M. (2015). Lignocellulose degradation mechanisms across the tree of life. Current Opinion in Chemical Biology, 29, 108–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cragg, S. M., Pitman, A. J., & Henderson, S. M. (1999). Developments in the understanding of the biology of the marine wood boring crustaceans and in methods of controlling them. International Biodeterioration & Biodegradation, 43, 197–205.

    Article  Google Scholar 

  • Dietenberger, M., & Hasburgh, L. (2016). Wood products thermal degradation and fire. Reference Module in Materials Science and Materials Engineering, 1–8.

    Google Scholar 

  • Eaton, R. A., & Hale, M. D. (1993). Wood: Decay, pests and protection. Chapman and Hall Ltd..

    Google Scholar 

  • Edlund, M. L., & Nilsson, T. (1998). Testing the durability of wood. Material and Structure, 31, 641–647.

    Article  Google Scholar 

  • Edmonson, C. H. (1947). Marine borer resistance of Syncarpia lurifolia. Tropical woods, 92, 44–49.

    Google Scholar 

  • Eriksson, K. E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood and wood components. Springer.

    Book  Google Scholar 

  • Erwin, T. L. (1982). Tropical forests: Their richness in coleoptera and other arthropod species. The Cdecptensts Bidledn, 36, 74–75.

    Google Scholar 

  • Evans, P. D., Schmalzl, K. J., & Michell, A. J. (1992). Rapid loss of lignin at wood surfaces during natural weathering. Document-the International Research Group on Wood Preservation (Sweden).

    Google Scholar 

  • Feist, W. C., & Hon, D. N. S. (1984). Chemistry of weathering and protection. In R. M. Rowell (Ed.), The chemistry of solid wood (pp. 401–454). American Chemical Society.

    Chapter  Google Scholar 

  • George, B., Suttie, E., Merlin, A., & Deglise, X. (2005). Photo degradation and photo stability of wood—The state of art. Polymer Degradation and Stability, 88, 268–274.

    Article  CAS  Google Scholar 

  • Goodell, B. (2003). Brown-rot fungal degradation of wood – Our evolving view. In B. Goodell, D. D. Nicholas, & T. P. Schulz (Eds.), Wood deterioration and preservation: Advances in our changing world (ACS symposium series) (Vol. 845, pp. 97–118). American Chemical Society.

    Chapter  Google Scholar 

  • Goodell, B. (2020). Fungi involved in the biodeterioration and bioconversion of lignocellulose substrates. In J. P. Benz & K. Schipper (Eds.), The Mycota. Genetics and biotechnology, (a comprehensive treatise on fungi as experimental systems for basic and applied research) (Vol. II, 3rd ed., pp. 369–397). Springer.

    Google Scholar 

  • Goodell, B., Winandy, J. E., & Morrell, J. J. (2020). Fungal degradation of wood: Emerging data, new insights and changing perceptions. Coatings, 10, 1210.

    Article  CAS  Google Scholar 

  • Grant, R. (2008). Teak plantations and carbon offsets. Newsletter No. 4 August 2008. http://www.rainforestsaver.org/news/no4-teak-plantations-and-carbon-offsets

  • Green, F., Larsen, M. J., Winandy, J. E., & Highley, T. L. (1991). Role of oxalic acid in incipient brown-rot decay. Material und Organismen, 26, 191–213.

    CAS  Google Scholar 

  • Gupta, S., & Prakash, J. (2009). Studies on Indian green leafy vegetables for their antioxidantactivity. Plant Foods and Human Nutrition, 64, 39–45.

    Article  CAS  Google Scholar 

  • Harborne, J. B. (1988). The flavonoids: Recent advances. In T. W. Goodwin (Ed.), Plant pigments (pp. 299–343). Academic Press.

    Google Scholar 

  • Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504.

    Article  CAS  PubMed  Google Scholar 

  • Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack, K., & Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133–302.

    Article  Google Scholar 

  • Harris, W. V. (1961). Termites, their recognition and control (p. 187). Longmans Green and Co. Ltd..

    Google Scholar 

  • Haslett, A. N., & Young, G. D. (1990). Plantation grown tropical timbers 1. Wood property and processing evaluation procedures to improve usage. The Journal of Tropical Forest Science, 3, 131–139.

    Google Scholar 

  • Haupt, M., Leithoff, H., Meier, D., Puls, J., Richter, H. D., & Faix, O. (2003). Heartwoodextractives and natural durability of plantation-grown teakwood (Tectona grandis L.)-a case study. Holzals Roh- und Werkst., 61, 473–474.

    Article  CAS  Google Scholar 

  • Highley, T. L. (1999). Biodeterioration of wood. In Wood handbook wood as an engineering material (pp. 13–16). General Technical Report FPL-GTR-113. U. S. Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  • Higuchi, T. (1985). Biosysnthesis and biodegradation of wood components (pp. 6–15). Academic press inc. Ltd..

    Google Scholar 

  • Higuchi, T. (2002). Biochemistry of wood components: Biosynthesis and microbial degradation of lignin. Wood Research: Bulletin of the Wood Research Institute Kyoto University, 89, 43–51.

    CAS  Google Scholar 

  • Intergovernmental Negotiating Committee. (2001). Operation of the interim prior informed consent procedure for banned or severely restricted chemicals in international trade M. Debois, K. Karmen. In Proceedings of the Rotterdam convention on the prior informed consent procedure for certain hazardous chemicals and pesticides in international trade (Vol. 12). United Nations Environment Program.

    Google Scholar 

  • Karande, A. A., & Chongdar, S. (2001). Development of antifouling technologies based on bioactive metabolites–A review, In K. S. Rao, S. Sawant, & P. Aggarwal (Eds.), Proceedings of the National Sivrikaya, Hüseyin Wood Industry and Engineering, 1, 1(2019), 33–39. Research Article 39 Seminar on forestry, forest products and coastal population (pp. 99–106). Institute of Wood Science and Technology.

    Google Scholar 

  • Kim, Y. S., & Singh, A. P. (1996). Micromorphological characteristics of waterlogged archaeo-logical woods attacked by marine microorganisms. In L. A. Donaldson et al. (Eds.), Recent advances in wood anatomy (pp. 389–399). New Zealand Forest Research Institute.

    Google Scholar 

  • King, B., Henderson, W. J., & Murphy, M. E. (1980). A bacterial contribution to wood nitrogen. International Biodeterioration Bulletin, 16, 79–84.

    CAS  Google Scholar 

  • Kirker, G., & Winandy, J. (2014). Above ground deterioration of wood and wood-based materials. In Deterioration and protection of sustainable biomaterials (pp. 113–129). American Chemical Society.

    Chapter  Google Scholar 

  • Kokutse, A. D., Stokes, A., Bailleres, H., Kokou, K., & Baudasse, C. (2006). Decay resistance of Togolese teak (Tectona grandis L.) heartwood and relationship with colour. Trees, 20, 219–223.

    Article  Google Scholar 

  • Kollmann, F. F., & Côté, W. A., Jr. (1968). Principles of wood science and technology (Vol. I, pp. 98–135). Solid Wood.

    Book  Google Scholar 

  • Lambert, R. L., Lang, G. E., & Reiners, W. A. (1980). Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology, 61, 1460–1473.

    Article  Google Scholar 

  • Levy, J. F., Millbank, J. W., Dwyer, G., & Baines, E. F. (1974). The role of bacteria in wood decay (pp. 3–13). Rec Brit Wood Press Ann Conv.

    Google Scholar 

  • Marechal, J. P., & Hellio, C. (2009). Challenges for the development of new non-toxic antifouling solutions. International Journal of Molecular Sciences, 10, 4623–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy, K., Cookson, L., & Scown, D. (2009). Natural durability of six eucalypt species from low rainfall farm forestry. RIRDC Publication No 08/161.RIRDC Project No CSF-61App 61.

    Google Scholar 

  • Meentemeyer, V. (1978). Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465–472.

    Article  CAS  Google Scholar 

  • Mindess, S. (2007). Environmental deterioration of timber. Environmental Deterioration of Materials, 21, 287.

    Article  Google Scholar 

  • Morris, P. I. (1998). Understanding biodeterioration of wood in structures (pp. 6–10). Building Envelope Council.

    Google Scholar 

  • Mouzouras, R. (1989). Soft rot decay of wood by marine microfungi. Journal of the Institute of Wood Science, 11, 193–201.

    Google Scholar 

  • Müller, U., Ratzsch, M., Schwanninger, M., Steiner, M., & Zobl, H. (2003). Yellowing and IR-changes of spruce wood as result of UV-irradiation. Journal of Photochemistry and Photobiology B: Biology, 69, 97–105.

    Article  Google Scholar 

  • Nascimento, M. D., Santana, A. L. B. D., Maranhão, C. A., Oliveira, L. S., & Bieber, L. (2013). Phenolic extractives and natural resistance of wood. Biodegradation-Life of Science, 801, 349–371.

    Google Scholar 

  • Nath, S. K. (2017). Use wood combat climate change. In Pandey et al. (Eds.), Wood is good: Current trends and future prospects in wood utilization (pp. 469–478). Springer.

    Chapter  Google Scholar 

  • NFU. (2021). Creosote update: Find out more on the 2021 approval review. https://www.nfuonline.com/cross-sector/environment/environment-news/creosote-update-find-out-more-on-the-2021-approval-review/

  • Norrstrom, H. (1969). Color of unbleached sulfate pulp. SvenskPapperstidn, 72, 25–38.

    Google Scholar 

  • Obadoyin, J. S. (2018). Impacts of wood and other accessories in construction. Global Scientific Journals, 6, 35–44.

    Google Scholar 

  • Otten, S., & Rosazza, J. P. (1983). Journal of Biological Chemistry, 258, 1610–1613.

    Article  CAS  Google Scholar 

  • Pandey, K. K. (2005). Anote on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degradation and Stability, 87, 375–379.

    Article  CAS  Google Scholar 

  • Panshin, A. J., & de Zeeuw, C. (1980). Textbook of wood technology: Structure, identification, properties, and uses of the commercial woods of the United States and Canada (4th ed.). McGraw-Hill Series in Forest Resources.

    Google Scholar 

  • Reinprecht, L. (2016). Wood deterioration, protection and maintenance (p. 65). Wiley.

    Book  Google Scholar 

  • Rowell, R. M., Pettersen, R., Han, J. S., Rowell, J. S., & Tshabalala, M. A. (2005). Cell wall chemistry. In R. M. Rowell (Ed.), Handbook of wood chemistry and wood composites (p. 2). CRC Press.

    Chapter  Google Scholar 

  • Rudman, P., & Gay, F. J. (1963). The cause of natural durability of timber. X. The deterrent properties of some three-ringed carbocyclic and heterocyclic substances to the subterranean termite Nasutitermes exitiosus (Hill). Holzforschung, 17, 21–25.

    Article  CAS  Google Scholar 

  • Samuelsson, J., Gustafsson, L., & Ingelog, T. (1994). Dying and dead trees—A review of their importance for biodiversity. Threatened Species Unit SLU.

    Google Scholar 

  • Scheffer, T. C., & Cowling, E. B. (1966). Natural resistance of wood to microbial deterioration. Annual Review of Phytopathology, 4, 147–170.

    Article  CAS  Google Scholar 

  • Scheffer, T. C., & Hopp, H. (1949). Decay resistance of black locust heartwood. USDA Technical Bulletins, 984 pp.

    Google Scholar 

  • Scheffrahn, R. H. (1991). Allelochemical resistance of wood to termites. Sociobiology, 19, 257–281.

    Google Scholar 

  • Schemidt, O., & Liese, W. (1994). Occurrence and significance of bacteria in wood. Holzforschung, 48, 271–277.

    Article  Google Scholar 

  • Schultz, T. P., & Nicholas, D. D. (2000). Naturally durable heartwood: Evidence for aproposed dual defensive function of the extractives. Phytochemistry, 54, 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Sen, S., Sivrikaya, H., & Yalçin, M. (2009). Natural durability of heartwoods from European and tropical Africa trees exposed to marine conditions. African Journal of Biotechnology, 8, 4425–4432.

    Google Scholar 

  • Sen-Sarma, P. K., Thakur, M. L., Misra, S. C., & Gupta, B. K. (1975). Wood destroying termites of India (p. 190). F.R.I. Publication.

    Google Scholar 

  • Sigoillot, J. C., Berrin, J. G., Bey, M., Lesage-Meessen, L., Levasseur, A., Lomascolo, A., Record, E., & Uzan-Boukhris, E. (2012). Fungal strategies for lignin degradation. Advances in Botanical Research, 61, 263–308.

    Article  CAS  Google Scholar 

  • Singh, A. P., & Dawson, B. (1998). Wood structure and coating penetrability. Surface Coatings Australia, 35, 22–24.

    CAS  Google Scholar 

  • Singh, A. P., & Wakeling, R. N. (1997). Presence of widespread bacterial attacks in preservative-treated cooling tower timbers. New zeal. Forest Science, 27, 79–85.

    Google Scholar 

  • Swift, M. J. (1977). The ecology of wood decomposition. Science Progress, 64, 175–199.

    CAS  Google Scholar 

  • Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. In D. J. Anderson, P. Greig-smith, & F. A. Pitelka (Eds.), Studies in ecology (Vol. 5, pp. 167–219). University of California Press.

    Google Scholar 

  • Talia, P., & Arneodo, J. (2018). Lignocellulose degradation by termites. In Termites and sustainable management (pp. 101–117). Springer.

    Chapter  Google Scholar 

  • Teacă, C. A., RoÅŸu, D., Bodîrlău, R., & RoÅŸu, L. (2013). Structural changes in wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements - A brief review. Bio Resource, 8, 1478–1507.

    Google Scholar 

  • The New York Times. (1984, August 16). A wide creosote ban is proposed by E.P.A (p. 11). Section C.

    Google Scholar 

  • TRADA (Technology & Enviros Consulting, Options and Risk Assessment for Treated Wood Waste). (2005). ISBN No: 1-84405-177-3 WRAP Reference No: 09WOO.

    Google Scholar 

  • Tsunoda, K. (1990). The natural resistance of tropical woods against biodeterioration. Wood Research, 77, 18–27.

    Google Scholar 

  • Van Etten, H. D., Matthews, D. E., & Smith, D. A. (1982). Phytoalexins. In J. A. Bailey & J. W. Mansfield (Eds.) (pp. 181–217). Blackie.

    Google Scholar 

  • Vinagre, P. A., Simas, T., & Cruz, E. (2020). Marine biofouling: A European database for the marine renewable energy sector. Journal of Marine Science and Engineering, 8, 495–520.

    Article  Google Scholar 

  • Wiedenhoeft, A. C. (2012). Handbook of wood chemistry and wood composites. In M. Roger (Ed.), Structure and function of wood. Rowell.

    Chapter  Google Scholar 

  • Wiedenhoeft, A. C., & Miller, R. B. (2002). Breif comments on the nomenclature of softwood axial resin canals and their associated cells. IAWA Journal, 23, 299–303.

    Article  Google Scholar 

  • Williams, R. S. (2005). Weathering of wood. Handbook of wood chemistry and wood composites. CRC Press. ISBN: 1439853800.

    Google Scholar 

  • Williams, R. S. (2010). Finishing of wood. In Wood handbook—Wood as an engineering material (pp. 16–1 and 16–39). General Technical Report FPL-GTR-190, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  • Wong, A. H. H., Kim, Y. S. Singh, A. P., & Ling, W. C. (2005). Natural durability of tropical species with emphasis on Malaysian hardwood-variation and prospects. Paper prepared for the 36th annual meeting, held at Bangalore.

    Google Scholar 

  • Youngs, R. L. (2009). History, nature, and products of wood. Forests and Forest Plants, 2.

    Google Scholar 

  • Zhong, H., & Schowalter, T. D. (1989). Conifer bole utilization by wood boring beetles in western Oregon. Can. Journal of Forestry Research, 19, 943–947.

    Article  Google Scholar 

  • Zucker, W. V. (1983). Tannins: Does structure determine function? An ecological perspective. The American Naturalist, 121, 335–365.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sundararaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sundararaj, R., Shanbhag, R.R., Padma, S., Shashikala, S., Rao, R.V. (2022). Wood Degradation, Challenges, and Mitigation. In: Sundararaj, R. (eds) Science of Wood Degradation and its Protection. Springer, Singapore. https://doi.org/10.1007/978-981-16-8797-6_1

Download citation

Publish with us

Policies and ethics