Skip to main content

Performance of Natural Fiber Based Nanocomposites Under Environmental Aging Conditions

  • Chapter
  • First Online:
Aging Effects on Natural Fiber-Reinforced Polymer Composites

Part of the book series: Composites Science and Technology ((CST))

Abstract

Nanocomposites are suitable for advanced engineering applications, i.e., automotive, aeronautics, biomedical applications, catalysts, gas-separation membranes, contact lenses, bioactive implant materials, bone applications, and food packaging due to their higher mechanical and thermal resistance properties. Environmental friendly natural fibre-based bionanocomposites are important because of their renewable, biodegradable and compostable nature. Natural fibers both in nano, i.e., cellulose nanocrystal (CNC), microfibrallated cellulose (MFC), microcrystalline (MCC), and macro-sized, i.e., carboxymethyl cellulose (CMC) are used to produce bionanocomposites together with bio or synthetic polymers, i.e., starch, polyurethane (PU), polylactic acid (PLA), using different methods. These composites have already proved to be invaluable gifts to the present and future generations in many different aspects, and thus, thanks go to the modern science and technology. However, in the same way as other composites the physical and mechanical properties are affected severely by different aging conditions like pressure, temperature, humidity and the curing condition. The absorption of water and plasticization of the composites deteriorates the service life, increases the chain mobility and decreases the glass transition temperature. It also reduces the mechanical properties of the composites. Thus, researchers are working on the effect of different aggressive environments on the durability of composites and to understand the changes in the physical and mechanical properties over the period of aging. This chapter deals with the different environmental aging conditions and their impact on the properties of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abral H, Dalimunthe MH, Hartono J, Efendi RP, Asrofi M, Sugiarti E, Sapuan SM, Park J, Kim H-J (2018a) Characterization of tapioca starch biopolymer composites reinforced with micro scale water hyacinth fibers. Starch-Starke 70:1700287

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Abral H, Putra GJ, Asrofi M, Park JW, Kim HJ (2018b) Effect of vibration duration of high ultrasound applied to bio-composite while gelatinized on its properties. Ultrason Sonochem 40(Pt A):697ā€“702

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Alikarami M, Abbasi Z, Moradi V (2013) Study of enzymatic degradation and water absorption of composites carboxymethyl cellulose and poly (epsilon-caprolactone) containing SiO2 nanoparticle by cellulase. J Environ Sci Health Part A Toxic/hazardous Substances Environ Eng 48(12):1516ā€“1521

    CASĀ  Google ScholarĀ 

  • Alvarez VA, Vazquez A (2004) Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stab 84(1):13ā€“21

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ardizzone S, Dioguardi FS, Mussini T, Mussini PR, Rondinini S, Vercelli B, Vertova A (1999) Microcrystalline cellulose powders: structure, surface features and water sorption capability. Cellulose 6(1):57ā€“69

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Arora B, Bhatia R, Attri P (2018) 28-Bionanocomposites: green materials for a sustainable future. In: Hussain CM (ed) New polymer nanocomposites for environmental remediation. Elsevier, A.K. Mishra, pp 699ā€“712

    Google ScholarĀ 

  • Arrieta MP, Fortunati E, Dominici F, Rayon E, Lopez J, Kenny JM (2014a) Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohyd Polym 107:16ā€“24

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Arrieta MP, Fortunati E, Dominici F, Rayon E, Lopez J, Kenny JM (2014b) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139ā€“149

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ashaduzzaman M, Das AK, Kayes MI, Shams MI (2011) Natural durability of Akashmoni (Acacia auriculiformis) and Sissoo (Dalbergia sissoo). Bangladesh J Sci Indus Res 46(2):225ā€“230

    ArticleĀ  Google ScholarĀ 

  • Asrofi M, Abral H, Kasim A, Pratoto A, Mahardika M, Hafizulhaq F (2018a) Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: effect of ultrasonic vibration during processing. Fibers 6(2)

    Google ScholarĀ 

  • Asrofi M, Abral H, Putra YK, Sapuan SM, Kim H-J (2018b) Effect of duration of sonication during gelatinization on properties of tapioca starch water hyacinth fiber biocomposite. Int J Biol Macromol 108:167ā€“176

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Awad SA, Mahini SS, Tucker SJ, Fellows CM (2019) Evaluation of the performance of microcrystalline cellulose in retarding degradation of two epoxy resin systems. Int J Polym Anal Charact 24(2):150ā€“168

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Banerjee M, Sain S, Mukhopadhyay A, Sengupta S, Kar T, Ray D (2014) Surface treatment of cellulose fibers with methylmethacrylate for enhanced properties of in situ polymerized PMMA/cellulose composites. J Appl Polym Sci 131(2)

    Google ScholarĀ 

  • Ben Elmabrouk A, Thielemans W, Dufresne A, Boufi S (2009) Preparation of poly(styrene-co-hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization. J Appl Polymer Sci 114(5):2946ā€“2955

    Google ScholarĀ 

  • Ben Mabrouk A, Magnin A, Belgacem MN, Boufi S (2011) Melt rheology of nanocomposites based on acrylic copolymer and cellulose whiskers. Compos Sci Technol 71(6):818ā€“827

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bitinis N, Fortunati E, Verdejo R, Bras J, Kenny JM, Torre L, Lopez-Manchado MA (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation. Carbohydrate Polym 96(2):621ā€“627

    Google ScholarĀ 

  • Cao XD, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19(38):7137ā€“7145

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Catia B, Franco B (2020) General characteristics, processability, industrial applications and market evolution of biodegradable polymers, De Gruyter. Berlin, Boston, pp 147ā€“182

    Google ScholarĀ 

  • Das AK, Islam MN, Ashaduzzaman M, Nazhad MM (2020) Nanocellulose: its applications, consequences and challenges in papermaking. J Packaging Technol Res

    Google ScholarĀ 

  • de Paula EL, Mano V, Duek EAR, Pereira FV (2015) Hydrolytic degradation behavior of plla nanocomposites reinforced with modified cellulose nanocrystals. Quim Nova 38(8):1014ā€“1020

    Google ScholarĀ 

  • Dutta GK, Karak N (2019) Waste brewed tea leaf derived cellulose nanofiber reinforced fully bio-based waterborne polyester nanocomposite as an environmentally benign material. Rsc Adv 9(36):20829ā€“20840

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ferfera-Harrar H, Dairi N (2014) Green nanocomposite films based on cellulose acetate and biopolymer-modified nanoclays: studies on morphology and properties. Iran Polym J 23(12):917ā€“931

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ferreira FV, Dufresne A, Pinheiro IF, Souza DHS, Gouveia RF, Mei LHI, Lona LMF (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polymer J 108:274ā€“285

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fortunati E, Puglia D, Santulli C, Sarasini F, Kenny JM (2012) Biodegradation of Phormium tenax/poly(lactic acid) composites. J Appl Polym Sci 125:E562ā€“E572

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fortunati E, Puglia D, Kenny JM, Minhaz-Ul Hague M, Pracella M (2013) Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly(lactic acid) based systems. Polym Degrad Stab 98(12):2742ā€“2751

    Google ScholarĀ 

  • Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM, Torre L (2014) Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polym J 56:77ā€“91

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Garcia-Garcia D, Lopez-Martinez J, Balart R, Strƶmberg E, Moriana R (2018) Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(Īµ-caprolactone) (PHB/PCL) thermoplastic blend. Eur Polymer J 104:10ā€“18

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hassan ML, Bras J, Hassan EA, Fadel SM, Dufresne A (2012) Polycaprolactone/modified bagasse whisker nanocomposites with improved moisture-barrier and biodegradability properties. J Appl Polym Sci 125:E10ā€“E19

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47(6):2675ā€“2686

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES (2018) Sugar palm nanocrystalline cellulose reinforced sugar palm starch composite: degradation and water-barrier properties. In: Jawaid M, Mazlan N (eds) Wood and biofiber international conference, vol 368

    Google ScholarĀ 

  • Jardin JM, Zhang Z, Hu G, Tam KC, Mekonnen TH (2020) Reinforcement of rubber nanocomposite thin sheets by percolation of pristine cellulose nanocrystals. Int J Biol Macromol 152:428ā€“436

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polymer Sci 2011

    Google ScholarĀ 

  • Kalita NK, Bhasney SM, Mudenur C, Kalamdhad A, Katiyar V (2020) End-of-life evaluation and biodegradation of poly(lactic acid) (PLA)/polycaprolactone (PCL)/microcrystalline cellulose (MCC) polyblends under composting conditions. Chemosphere 247

    Google ScholarĀ 

  • Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh PC (1999) Degradation of styrene-g-cassava starch filled polystyrene plastics. Polym Degrad Stab 66(3):323ā€“335

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kohli D, Garg S, Jana AK (2019) Physical, mechanical, optical and biodegradability properties of polyvinyl alcohol/cellulose nanofibrils/kaolinite clay-based hybrid composite films. Indian Chem Eng

    Google ScholarĀ 

  • Li W, Wu YH, Liang WW, Li B, Liu SL (2014) Reduction of the water wettability of cellulose film through controlled heterogeneous modification. ACS Appl Mater Interfaces 6(8):5726ā€“5734

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li CX, Huang F, Wang J, Liang XR, Huang SW, Gu J (2018) Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites. J Polym Eng 38(2):137ā€“146

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu Y, Li Y, Chen HM, Yang G, Zheng XT, Zhou SB (2014) Water-induced shape-memory poly(d, l-lactide)/microcrystalline cellulose composites. Carbohyd Polym 104:101ā€“108

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73(4):429ā€“442

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Maiti S, Sain S, Ray D, Mitra D (2013) Biodegradation behaviour of PMMA/cellulose nanocomposites prepared by in-situ polymerization and ex-situ dispersion methods. Polym Degrad Stab 98(2):635ā€“642

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Majeed K, Jawaid M, Hassan A, Abu Bakar A, Khalil H, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391ā€“410

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mariano M, Cercena R, Soldi V (2016) Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis. Ind Crops Prod 94:454ā€“462

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polymer Sci 78(13):2242ā€“2253

    Google ScholarĀ 

  • Medeiros ES, Offeman RD, Klamczynski AP, Glenn GM, Mattoso LHC, Orts WJ (2014) Synthesis, characterization and nanocomposite formation of poly(glycerol succinate-co-maleate) with nanocrystalline cellulose. J Polym Environ 22(2):219ā€“226

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindstrom T, Siro I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358(1ā€“2):67ā€“75

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moran JI, Vazquez A, Cyras VP (2013) Bio-nanocomposites based on derivatized potato starch and cellulose, preparation and characterization. J Mater Sci 48(20):7196ā€“7203

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Murray KA, Killion JA, Major I, Geever LM (2015) Thermal degradation of bio-nanocomposites. In: Visakh PM, Arao Y (eds) Thermal degradation of polymer blends, composites and nanocomposites, pp 221ā€“245

    Google ScholarĀ 

  • Paul MA, Delcourt C, Alexandre M, Degee P, Monteverde F, Dubois P (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87(3):535ā€“542

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pei AH, Malho JM, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44(11):4422ā€“4427

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pinheiro IF, Ferreira FV, Souza DHS, Gouveia RF, Lona LMF, Morales AR, Mei LHI (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polymer J 97:356ā€“365

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pinheiro IF, Ferreira FV, Alves GF, Rodolfo A, Morales AR, Mei LHI (2019) Biodegradable PBAT-based nanocomposites reinforced with functionalized cellulose nanocrystals from pseudobombax munguba: rheological, thermal, mechanical and biodegradability properties. J Polym Environ 27(4):757ā€“766

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Platnieks O, Gaidukovs S, Barkane A, Sereda A, Gaidukova G, Grase L, Thakur VK, Filipova I, Fridrihsone V, Skute M, Laka M (2020) Bio-based poly(butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: thermo-mechanical and biodegradation studies. Polymers 12(7)

    Google ScholarĀ 

  • Pranger L, Tannenbaum R (2008) Biobased nanocomposites prepared by in situ polymerization of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules 41(22):8682ā€“8687

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Qiu KY, Netravali AN (2013) A composting study of membrane-like polyvinyl alcohol based resins and nanocomposites. J Polym Environ 21(3):658ā€“674

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ray D, Sain S (2016) In situ processing of cellulose nanocomposites. Compos A Appl Sci Manuf 83:19ā€“37

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10ā€“11):1629ā€“1652

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Roy N, Saha N, Kitano T, Saha P (2012) Biodegradation of PVP-CMC hydrogel film: a useful food packaging material. Carbohyd Polym 89(2):346ā€“353

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2013) Effect of water absorption on mechanical properties of sugar palm fibre reinforced sugar palm starch (SPF/SPS) Biocomposites. J Biobased Mater Bioenergy 7(1):90ā€“94

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sahoo PK, Jena DK (2018) Synthesis and study of mechanical and fire retardant properties of (carboxymethyl cellulose -g-polyacrylonitrile)/montmorillonite biodegradable nanocomposite. J Polymer Res 25(12)

    Google ScholarĀ 

  • Sain S, Sengupta S, Kar A, Mukhopadhyay A, Sengupta S, Kar T, Ray D (2014) Effect of modified cellulose fibres on the biodegradation behaviour of in-situ formed PMMA/cellulose composites in soil environment: isolation and identification of the composite degrading fungus. Polym Degrad Stab 99:156ā€“165

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sain S, Ray D, Mukhopadhyay A (2015) Improved mechanical and moisture resistance property of in situ polymerized transparent PMMA/cellulose composites. Polym Compos 36(9):1748ā€“1758

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Samal R, Sahoo PK (2009) Development of a biodegradable rice straw-g-poly(methyl methacrylate)/sodium silicate composite flame retardant. J Appl Polym Sci 113(6):3710ā€“3715

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sanchez-Safont EL, Gonzalez-Ausejo J, Gamez-Perez J, Lagaron JM, Cabedo L (2016) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/purified cellulose fiber composites by melt blending: characterization and degradation in composting conditions. J Renew Mater 4(2):123ā€“132

    Google ScholarĀ 

  • Seoane IT, Cerrutti P, Vazquez A, Manfredi LB, Cyras VP (2017a) Polyhydroxybutyrate-based nanocomposites with cellulose nanocrystals and bacterial cellulose. J Polym Environ 25(3):586ā€“598

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Seoane IT, Manfredi LB, Cyras VP, Torre L, Fortunati E, Puglia D (2017b) Effect of cellulose nanocrystals and bacterial cellulose on disintegrability in composting conditions of plasticized PHB nanocomposites. Polymers 9(11)

    Google ScholarĀ 

  • Seoane IT, Cerrutti P, Vazquez A, Cyras VP, Manfredi LB (2019) Ternary nanocomposites based on plasticized poly(3-hydroxybutyrate) and nanocellulose. Polym Bull 76(2):967ā€“988

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shami Z, Sharifi-Sanjani N (2010) The role of Na-montmorillonite on thermal characteristics and morphology of electrospun PAN nanofibers. Fibers Polym 11(5):695ā€“699

    Google ScholarĀ 

  • Syafri E, Sudirman M, Yulianti E, Deswita, Asrofi M, Abral H, Sapuan SM, Ilyas RA, Fudholi A (2019) Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites. J Mater Res Technol Jmr&T 8(6):6223ā€“6231

    Google ScholarĀ 

  • Tran TN, Paul U, Heredia-Guerrero JA, Liakos I, Marras S, Scarpellini A, Ayadi F, Athanassiou A, Bayer IS (2016) Transparent and flexible amorphous cellulose-acrylic hybrids. Chem Eng J 287:196ā€“204

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vercelheze AES, Oliveira ALM, Rezende MI, Muller CMO, Yamashita F, Mali S (2013) Physical properties, photo- and bio-degradation of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite. J Polym Environ 21(1):266ā€“274

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wroblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypinski M, Klepka T, Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. Int J Polym Anal Charact 23(4):383ā€“395

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yang XP, Biswas SK, Han JQ, Tanpichai S, Li MC, Chen CC, Zhu SL, Das AK, Yano H (2020) Surface and interface engineering for nanocellulosic advanced materials. Adv Mater

    Google ScholarĀ 

  • Yao XL, Qi XD, He YL, Tan DS, Chen F, Fu Q (2014) Simultaneous reinforcing and toughening of polyurethane via grafting on the surface of microfibrillated cellulose. ACS Appl Mater Interfaces 6(4):2497ā€“2507

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, A.K., Islam, M.N., Liza, A.A., Promie, A.R. (2022). Performance of Natural Fiber Based Nanocomposites Under Environmental Aging Conditions. In: Muthukumar, C., Krishnasamy, S., Thiagamani, S.M.K., Siengchin, S. (eds) Aging Effects on Natural Fiber-Reinforced Polymer Composites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-8360-2_15

Download citation

Publish with us

Policies and ethics