Skip to main content

The Role of Glia in Huntington’s Disease

  • Chapter
  • First Online:
The Biology of Glial Cells: Recent Advances
  • 1198 Accesses

Abstract

The accumulation of intracellular protein deposits as inclusion bodies is the common pathological hallmark of most age-related neurodegenerative disorders including Huntington’s diseases (HD). HD is an autosomal dominantly inherited neurodegenerative disorder caused by an aberrant expansion of CAG repeats in the coding region of huntingtin gene. The mutant huntingtin protein form aggregates in neurons and causes neuronal dysfunction and degeneration in multiple ways including transcriptional dysregulation, dysfunction in protein quality control system, etc. Marked inflammatory reaction has been observed in postmortem brain samples of HD patients as well as in various mouse models of HD that could be linked at least in part with the pathogenesis of HD. Here we review the recent studies that have revealed the critical role of glial cells and inflammation in the pathogenesis of HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arzberger T, Krampfl K, Leimgruber S, Weindl A (1997) Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease—an in situ hybridization study. J Neuropathol Exp Neurol 56(4):440–454

    Article  CAS  PubMed  Google Scholar 

  • Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81(12):1079–1088

    Article  PubMed  Google Scholar 

  • Benraiss A, Wang S, Herrlinger S, Li X, Chandler-Militello D, Mauceri J, Burm HB, Toner M, Osipovitch M, Jim XQ, Ding F, Wang F, Kang N, Kang J, Curtin PC, Brunner D, Windrem MS, Munoz-Sanjuan I, Nedergaard M, Goldman SA (2016) Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun 7:11,758

    Article  Google Scholar 

  • Biber K, Neumann H, Inoue K, Boddeke HW (2007) Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30(11):596–602

    Article  CAS  PubMed  Google Scholar 

  • Blackburn D, Sargsyan S, Monk PN, Shaw PJ (2009) Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia 57(12):1251–1264

    Article  PubMed  Google Scholar 

  • Bonelli RM, Hodl AK, Hofmann P, Kapfhammer HP (2004) Neuroprotection in Huntington’s disease: a 2-year study on minocycline. Int Clin Psychopharmacol 19(6):337–342

    Article  PubMed  Google Scholar 

  • Boscia F, Esposito CL, Di Crisci A, de Franciscis V, Annunziato L, Cerchia L (2009) GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling. PLoS One 4(8):e6486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford J, Shin JY, Roberts M, Wang CE, Sheng G, Li S, Li XJ (2010) Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 285(14):10,653–10,661

    Article  CAS  Google Scholar 

  • Calabresi P, Centonze D, Pisani A, Sancesario G, Gubellini P, Marfia GA, Bernardi G (1998) Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: implications for ischemia and Huntington’s disease. Ann Neurol 43(5):586–597

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Parekh M, Seliman H, Bakshinskaya D, Dai W, Kwan K, Chen KY, Liu AYC (2018) Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction. J Biol Chem 293(40):15,581–15,593

    Article  CAS  Google Scholar 

  • Cho IK, Yang B, Forest C, Qian L, Chan AWS (2019) Amelioration of Huntington’s disease phenotype in astrocytes derived from iPSC-derived neural progenitor cells of Huntington’s disease monkeys. PLoS One 14(3):e0214156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung W-S, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7(9):a020370

    Article  PubMed  PubMed Central  Google Scholar 

  • Crapser JD, Ochaba J, Soni N, Reidling JC, Thompson LM, Green KN (2020) Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington’s disease. Brain 143(1):266–288

    Article  PubMed  Google Scholar 

  • Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Deglon N, Ferrante RJ, Bonvento G (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet 19(15):3053–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Miralles M, Hong X, Tan LJ, Caron NS, Huang Y, To XV, Lin RY, Franciosi S, Papapetropoulos S, Hayardeny L, Hayden MR, Chuang KH, Pouladi MA (2016) Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease. Sci Rep 6:31,652

    Article  CAS  Google Scholar 

  • Giralt A, Saavedra A, Carreton O, Xifro X, Alberch J, Perez-Navarro E (2011) Increased PKA signaling disrupts recognition memory and spatial memory: role in Huntington’s disease. Hum Mol Genet 20(21):4232–4247

    Article  CAS  PubMed  Google Scholar 

  • Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17(3):455–461

    Article  CAS  PubMed  Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY, Young AB, Shoulson I, Bonilla E, Martin JB (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306(5940):234–238

    Article  CAS  PubMed  Google Scholar 

  • van Hagen M, Piebes DGE, de Leeuw WC, Vuist IM, van Roon-Mom WMC, Moerland PD, Verschure PJ (2017) The dynamics of early-state transcriptional changes and aggregate formation in a Huntington’s disease cell model. BMC Genomics 18(1):373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27(24):6473–6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanisch UK (2013) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  • He F, Ge W, Martinowich K, Becker-Catania S, Coskun V, Zhu W, Wu H, Castro D, Guillemot F, Fan G, de Vellis J, Sun YE (2005) A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 8(5):616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, Elliston LA, Hartog C, Goldstein DR, Thu D, Hollingsworth ZR, Collin F, Synek B, Holmans PA, Young AB, Wexler NS, Delorenzi M, Kooperberg C, Augood SJ, Faull RL, Olson JM, Jones L, Luthi-Carter R (2006) Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 15(6):965–977

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Zhao T, Li XJ, Li S (2016) Mutant huntingtin impairs BDNF release from astrocytes by disrupting conversion of Rab3a-GTP into Rab3a-GDP. J Neurosci 36(34):8790–8801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM, Chiu FL, Kuo HC, Chang C, Chern Y (2015) Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol 78(2):178–192

    Article  CAS  PubMed  Google Scholar 

  • Imarisio S, Carmichael J, Korolchuk V, Chen CW, Saiki S, Rose C, Krishna G, Davies JE, Ttofi E, Underwood BR, Rubinsztein DC (2008) Huntington’s disease: from pathology and genetics to potential therapies. Biochem J 412(2):191–209

    Article  CAS  PubMed  Google Scholar 

  • Jansen AH, van Hal M, Op den Kelder IC, Meier RT, de Ruiter AA, Schut MH, Smith DL, Grit C, Brouwer N, Kamphuis W, Boddeke HW, den Dunnen WF, van Roon WM, Bates GP, Hol EM, Reits EA (2017) Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia 65(1):50–61

    Article  PubMed  Google Scholar 

  • Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW 2nd, Mochly-Rosen D (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22(10):1635–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanski R, van Strien ME, van Tijn P, Hol EM (2014) A star is born: new insights into the mechanism of astrogenesis. Cell Mol Life Sci 71(3):433–447

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R (2017) Unravelling and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci 40(7):422–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH (2004) Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 24(37):7999–8008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft AD, Kaltenbach LS, Lo DC, Harry GJ (2012) Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging 33(3):621.e617–621.e633

    Article  CAS  Google Scholar 

  • Li JY, Plomann M, Brundin P (2003) Huntington’s disease: a synaptopathy? Trends Mol Med 9(10):414–420

    Article  CAS  PubMed  Google Scholar 

  • Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacVicar BA, Newman EA (2015) Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol 7(5):1–15

    Article  Google Scholar 

  • Mandrekar-Colucci S, Karlo JC, Landreth GE (2012) Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J Neurosci 32(30):10,117–10,128

    Article  CAS  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506

    Article  CAS  PubMed  Google Scholar 

  • Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR, Kennedy RT, Rebec GV (2008) Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 153(1):329–337

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26(10):523–530

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML (2016) The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 132(1):1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29(10):3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1):67–78

    Article  CAS  PubMed  Google Scholar 

  • Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A (2019) The role of microglia and astrocytes in Huntington’s disease. Front Mol Neurosci 12(October):258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3):323–345

    Article  CAS  PubMed  Google Scholar 

  • Persson M, Ronnback L (2012) Microglial self-defence mediated through GLT-1 and glutathione. Amino Acids 42(1):207–219

    Article  CAS  PubMed  Google Scholar 

  • Phatnani H, Maniatis T (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol 7(6):1–18

    Article  Google Scholar 

  • Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262

    Article  CAS  PubMed  Google Scholar 

  • Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 85(15):5733–5737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725

    Article  CAS  PubMed  Google Scholar 

  • Rouach N, Koulakoff A, Giaume C (2004) Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int 45(2–3):265–272

    Article  CAS  PubMed  Google Scholar 

  • Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171(6):1001–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons DA, Casale M, Alcon B, Pham NHA, Narayan N, Lynch G (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia 55(10):1074–1084

    Article  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  • Tabrizi SJ, Leavitt B, Landwehrmeyer B, Wild E, Saft C, Barker R, Craufurd D, Rickards H, Rosser A, Priller J, Kordasiewicz H, Czech C, Swayze E, Norris DA, Baumann T, Gerlach I, Schobel S, Smith A, Lane R, Bennett CF (2018) J01 effects of IONIS-HTTRX (RG6042) in patients with early huntington’s disease, results of the first htt-lowering drug trial. J Neurol Neurosurg Psychiatry 89(Suppl 1):A97–A98

    Google Scholar 

  • Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130(Pt 7):1759–1766

    Article  PubMed  Google Scholar 

  • Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Anderson MA, Mody I, Olsen ML, Sofroniew MV, Khakh BS (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trager U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S, McKinnon C, Sirinathsinghji E, Kahlon S, Pfister EL, Moser R, Hummerich H, Antoniou M, Bates GP, Luthi-Carter R, Lowdell MW, Bjorkqvist M, Ostroff GR, Aronin N, Tabrizi SJ (2014) HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFkappaB pathway dysregulation. Brain 137(Pt 3):819–833

    Article  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57(5):369–384

    Article  CAS  PubMed  Google Scholar 

  • Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 29(37):11,511–11,522

    Article  CAS  Google Scholar 

  • Wild EJ, Tabrizi SJ (2017) Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol 16(10):837–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihar Ranjan Jana .

Editor information

Editors and Affiliations

Ethics declarations

This work was supported by the core grant of NBRC provided by the Department of Biotechnology, Govt. of India, as well as from the ISIRD, SRIC of IIT Kharagpur.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, T., Jana, N.R. (2022). The Role of Glia in Huntington’s Disease. In: Patro, I., Seth, P., Patro, N., Tandon, P.N. (eds) The Biology of Glial Cells: Recent Advances. Springer, Singapore. https://doi.org/10.1007/978-981-16-8313-8_24

Download citation

Publish with us

Policies and ethics