Skip to main content

Amyloid-β in Brain Aging and Alzheimer’s Disease

  • Chapter
  • First Online:
Aging Mechanisms II

Abstract

During aging, the brain milieu changes in a multitude of ways, resulting in a decline of physiological functions and increased susceptibility to disease. One of the major age-related pathological changes in the brain is the accumulation of amyloid-β (Aβ) peptides as plaques. The appearance of pathologic Aβ species is believed to trigger Alzheimer’s disease (AD), one of the principal neurodegenerative diseases and the leading cause of dementia, of which aging is the most important risk factor. Accumulation of Aβ in the brain is caused by an imbalance in Aβ kinetics that may arise from aging-related changes in degradation or clearance mechanisms. Aβ is degraded by enzymes such as neprilysin and is removed from the brain via numerous pathways including glial phagocytosis, transport across the blood-brain barrier, interstitial fluid bulk flow, and cerebrospinal fluid absorption. The functional activity of many of these systems declines with aging. Elevated levels of pathogenic Aβ species result in the emergence of senile plaques in the neuropil or as cerebral amyloid angiopathy in blood vessels. In addition, soluble Aβ oligomers appear prior to amyloid fibril formation and have detrimental effects on neuronal functions. To elucidate the pathomechanisms underlying AD, we have previously developed new mouse models that precisely recapitulate amyloid pathology without overexpressing disease-relevant molecules. Here we provide an overview of the catabolism, anabolism, and clearance of Aβ, the characteristics of amyloid pathologies in the human brain, and recent advances in AD research, including new technologies and animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attems J, Jellinger KA (2004) Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology—a pilot study. Acta Neuropathol 107:83–90

    Article  PubMed  Google Scholar 

  • Banerjee G, Adams ME, Jaunmuktane Z, Alistair Lammie G, Turner B, Wani M, Sawhney IMS, Houlden H, Mead S, Brandner S, Werring DJ (2019) Early onset cerebral amyloid angiopathy following childhood exposure to cadaveric dura. Ann Neurol 85:284–290

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes K, Matsas R, Hooper NM, Turner AJ, Kenny AJ (1988) Endopeptidase-24.11 is striosomally ordered in pig brain and, in contrast to aminopeptidase N and peptidyl dipeptidase A (‘angiotensin converting enzyme’), is a marker for a set of striatal efferent fibres. Neuroscience 27:799–817

    Article  CAS  PubMed  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC (2012) Dominantly inherited Alzheimer network. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belloy ME, Napolioni V, Greicius MD (2019) A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron 101:820–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benilova I, Gallardo R, Ungureanu AA, Castillo Cano V, Snellinx A, Ramakers M, Bartic C, Rousseau F, Schymkowitz J, De Strooper B (2014) The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-β (Aβ) aggregation. J Biol Chem 289:30977–30989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343:450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak H, Braak E (1991) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1:213–216

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz WD, Nelson PT, Besser LM, Heller KB, Kukull WA (2015) Cerebral amyloid angiopathy and its co-occurrence with Alzheimer’s disease and other cerebrovascular neuropathologic changes. Neurobiol Aging 36:2702–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugiani O, Giaccone G, Rossi G, Mangieri M, Capobianco R, Morbin M, Mazzoleni G, Cupidi C, Marcon G, Giovagnoli A, Bizzi A, Di Fede G, Puoti G, Carella F, Salmaggi A, Romorini A, Patruno GM, Magoni M, Padovani A, Tagliavini F (2010) Hereditary cerebral hemorrhage with amyloidosis associated with the E693K mutation of APP. Arch Neurol 67:987–995

    Article  PubMed  Google Scholar 

  • Burkart JM, Finkenwirth C (2015) Marmosets as model species in neuroscience and evolutionary anthropology. Neurosci Res 93:8–19

    Article  PubMed  Google Scholar 

  • Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B, Konnerth A (2012) Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 109:8740–8745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, Michon A, Martin C, Charbonnier F, Raux G, Camuzat A, Penet C, Mesnage V, Martinez M, Clerget-Darpoux F, Brice A, Frebourg T (1999) Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 65:664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho KM, Franca MS, Camarao GC, Ruchon AF (1997) A new brain metalloendopeptidase which degrades the Alzheimer beta-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. Braz J Med Biol Res 30:1153–1156

    Article  CAS  PubMed  Google Scholar 

  • Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3:89ra57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez-Gutiérrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M, Lismont S, Zhou L, Van Cleynenbreugel S, Esselmann H, Wiltfang J, Serneels L, Karran E, Gijsen H, Schymkowitz J, Rousseau F, Broersen K, De Strooper B (2012) The mechanism of γ-secretase dysfunction in familial Alzheimer disease. EMBO J 31:2261–2274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, Qian X, Laláková J, Kühnemund M, Voytyuk I, Wolfs L, Mancuso R, Salta E, Balusu S, Snellinx A, Munck S, Jurek A, Fernandez Navarro J, Saido TC, Huitinga I, Lundeberg J, Fiers M, De Strooper B (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182:976–991.e19

    Article  CAS  PubMed  Google Scholar 

  • Chhatwal JP, Schultz AP, Johnson K, Benzinger TL, Jack C Jr, Ances BM, Sullivan CA, Salloway SP, Ringman JM, Koeppe RA, Marcus DS, Thompson P, Saykin AJ, Correia S, Schofield PR, Rowe CC, Fox NC, Brickman AM, Mayeux R, McDade E, Bateman R, Fagan AM, Goate AM, Xiong C, Buckles VD, Morris JC, Sperling RA (2013) Impaired default network functional connectivity in autosomal dominant Alzheimer disease. Neurology 81:736–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Cline EN, Bicca MA, Viola KL, Klein WL (2018) The amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 64(s1):S567–S610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crofts HS, Wilson S, Muggleton NG, Nutt DJ, Scott EA, Pearce PC (2001) Investigation of the sleep electrocorticogram of the common marmoset (Callithrix jacchus) using radiotelemetry. Clin Neurophysiol 112:2265–2273

    Article  CAS  PubMed  Google Scholar 

  • Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118:4002–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duckworth WC (1979) Insulin degradation by liver cell membranes. Endocrinology 104:1758–1764

    Article  CAS  PubMed  Google Scholar 

  • Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19:608–624

    CAS  PubMed  Google Scholar 

  • Duyckaerts C, Sazdovitch V, Ando K, Seilhean D, Privat N, Yilmaz Z, Peckeu L, Amar E, Comoy E, Maceski A, Lehmann S, Brion JP, Brandel JP, Haïk S (2018) Neuropathology of iatrogenic Creutzfeldt-Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology. Acta Neuropathol 135:201–212

    Article  CAS  PubMed  Google Scholar 

  • Eckman EA, Reed DK, Eckman CB (2001) Degradation of the Alzheimer’s amyloid β peptide by endothelin-converting enzyme. J Biol Chem 276:24540–24548

    Article  CAS  PubMed  Google Scholar 

  • Eckman EA, Watson M, Marlow L, Sambamurti K, Eckman CB (2003) Alzheimer’s disease β-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J Biol Chem 278:2081–2084

    Article  CAS  PubMed  Google Scholar 

  • Elali A, Rivest S (2013) The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer’s disease. Front Physiol 4:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkins JS, Douglas VC, Johnston SC (2004) Alzheimer disease risk and genetic variation in ACE: a meta-analysis. Neurology 62:363–368

    Article  CAS  PubMed  Google Scholar 

  • Eng JA, Frosch MP, Choi K, Rebeck GW, Greenberg SM (2004) Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol 55:250–256

    Article  PubMed  Google Scholar 

  • Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, Brody DL (2013) Amyloid-β oligomerization in Alzheimer dementia versus high pathology controls. Ann Neurol 73:104–119

    Article  CAS  PubMed  Google Scholar 

  • Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, van Duijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 278:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100:4162–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris W, Schütz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM, Selkoe DJ (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 171:241–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitz NF, Cronican AA, Saleem M, Fauq AH, Chapman R, Lefterov I, Koldamova R (2012) Abca1 deficiency affects Alzheimer’s disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J Neurosci 32:13125–13136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span—from yeast to humans. Science 328:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabelle A, Jaussent I, Bouallègue FB, Lehmann S, Lopez R, Barateau L, Grasselli C, Pesenti C, de Verbizier D, Béziat S, Mariano-Goulart D, Carlander B, Dauvilliers Y, Alzheimer’s Disease Neuroimaging Initiative, Multi-Domain Intervention Alzheimer’s Prevention Trial study groups (2019) Reduced brain amyloid burden in elderly patients with narcolepsy type 1. Ann Neurol 85:74–83

    Article  CAS  PubMed  Google Scholar 

  • Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J, Balic A, Giladi A, Sheban F, Dutertre CA, Pfeifle C, Peri F, Raffo-Romero A, Vizioli J, Matiasek K, Scheiwe C, Meckel S, Mätz-Rensing K, van der Meer F, Thormodsson FR, Stadelmann C, Zilkha N, Kimchi T, Ginhoux F, Ulitsky I, Erny D, Amit I, Prinz M (2019) Cross-species single-cell analysis reveals divergence of the Primate Microglia Program. Cell 179:1609–22.e16

    Article  CAS  PubMed  Google Scholar 

  • Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M, Combarros O, Bullido MJ, Engelborghs S, De Deyn P, Berr C, Pasquier F, Dubois B, Tognoni G, Fiévet N, Brouwers N, Bettens K, Arosio B, Coto E, Del Zompo M, Mateo I, Epelbaum J, Frank-Garcia A, Helisalmi S, Porcellini E, Pilotto A, Forti P, Ferri R, Scarpini E, Siciliano G, Solfrizzi V, Sorbi S, Spalletta G, Valdivieso F, Vepsäläinen S, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Hanon O, Piccardi P, Annoni G, Seripa D, Galimberti D, Licastro F, Soininen H, Dartigues JF, Kamboh MI, Van Broeckhoven C, Lambert JC, Amouyel P, Campion D (2011) APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 16:903–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geula C, Nagykery N, Wu CK (2002) Amyloid-β deposits in the cerebral cortex of the aged common marmoset (Callithrix jacchus): incidence and chemical composition. Acta Neuropathol 103:48–58

    Article  CAS  PubMed  Google Scholar 

  • Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ (2020) Cerebral amyloid angiopathy and Alzheimer disease—one peptide, two pathways. Nat Rev Neurol 16:30–42

    Article  CAS  PubMed  Google Scholar 

  • Guy JL, Lambert DW, Warner FJ, Hooper NM, Turner AJ (2005) Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochim Biophys Acta 1751:2–8

    Article  CAS  PubMed  Google Scholar 

  • Hamaguchi T, Taniguchi Y, Sakai K, Kitamoto T, Takao M, Murayama S, Iwasaki Y, Yoshida M, Shimizu H, Kakita A, Takahashi H, Suzuki H, Naiki H, Sanjo N, Mizusawa H, Yamada M (2016) Significant association of cadaveric dura mater grafting with subpial Aβ deposition and meningeal amyloid angiopathy. Acta Neuropathol 132:313–315

    Article  PubMed  Google Scholar 

  • Hamazaki H (1996) Cathepsin D is involved in the clearance of Alzheimer’s β-amyloid protein. FEBS Lett 396:139–142

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, Zhou J, Yan R, Vanmechelen E, De Vos A, Nisticò R, Corbo M, Imbimbo BP, Streffer J, Voytyuk I, Timmers M, Tahami Monfared AA, Irizarry M, Albala B, Koyama A, Watanabe N, Kimura T, Yarenis L, Lista S, Kramer L, Vergallo A (2021) The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry 89:745–756

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG (2000) Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun 276:422–427

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CA, Härtig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443

    Article  PubMed  Google Scholar 

  • Hellström-Lindahl E, Ravid R, Nordberg A (2008) Age-dependent decline of neprilysin in Alzheimer’s disease and normal brain: inverse correlation with Aβ levels. Neurobiol Aging 29:210–221

    Article  PubMed  CAS  Google Scholar 

  • Hemming ML, Selkoe DJ (2005) Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J Biol Chem 280:37644–37650

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Igarashi A, Kamata M, Nakagawa H (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Aβ); retards Aβ aggregation, deposition, fibril formation; and inhibits cytotoxicity. J Biol Chem 276:47863–47868

    Article  CAS  PubMed  Google Scholar 

  • Huang YA, Zhou B, Wernig M, Sudhof TC (2017) ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Abeta secretion. Cell 168:427–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y, Saido TC (2000) Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6:143–150

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Aβ by neprilysin. Science 292:1550–1552

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Takaki Y, Fukami S, Tsubuki S, Saido TC (2002) Region-specific reduction of A beta-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging. J Neurosci Res 70:493–500

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE (2008) ApoE promotes the proteolytic degradation of Aβ. Neuron 58:681–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jönsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99

    Article  CAS  PubMed  Google Scholar 

  • Ju YE, Lucey BP, Holtzman DM (2014) Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat Rev Neurol 10:115–119

    Article  CAS  PubMed  Google Scholar 

  • Jun H, Bramian A, Soma S, Saito T, Saido TC, Igarashi KM (2020) Disrupted place cell remapping and impaired grid cells in a knockin model of Alzheimer’s disease. Neuron 107:1095–112.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehoe PG, Russ C, Mcilory S, Williams H, Holmans P, Holmes C, Liolitsa D, Vahidassr D, Powell J, Mcgleenon B, Liddell M, Plomin R, Dynan K, Williams N, Neal J, Cairns NJ, Wilcock G, Passmore P, Lovestone S, Williams J, Owen MJ (1999) Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nat Genet 21:71–72

    Article  CAS  PubMed  Google Scholar 

  • Kero M, Paetau A, Polvikoski T, Tanskanen M, Sulkava R, Jansson L, Myllykangas L, Tienari PJ (2013) Amyloid precursor protein (APP) A673T mutation in the elderly Finnish population. Neurobiol Aging 34:e1511–e1513

    Article  CAS  Google Scholar 

  • Kidana K, Tatebe T, Ito K, Hara N, Kakita A, Saito T, Takatori S, Ouchi Y, Ikeuchi T, Makino M, Saido TC, Akishita M, Iwatsubo T, Hori Y, Tomita T (2018) Loss of kallikrein-related peptidase 7 exacerbates amyloid pathology in Alzheimer’s disease model mice. EMBO Mol Med 10:e8184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacs GG, Lutz MI, Ricken G, Ströbel T, Höftberger R, Preusser M, Regelsberger G, Hönigschnabl S, Reiner A, Fischer P, Budka H, Hainfellner JA (2016) Dura mater is a potential source of Aβ seeds. Acta Neuropathol 131:911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam AD, Deck G, Goldman A, Eskandar EN, Noebels J, Cole AJ (2017) Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat Med 23:678–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauwers E, Lalli G, Brandner S, Collinge J, Compernolle V, Duyckaerts C, Edgren G, Haïk S, Hardy J, Helmy A, Ivinson AJ, Jaunmuktane Z, Jucker M, Knight R, Lemmens R, Lin IC, Love S, Mead S, Perry VH, Pickett J, Poppy G, Radford SE, Rousseau F, Routledge C, Schiavo G, Schymkowitz J, Selkoe DJ, Smith C, Thal DR, Theys T, Tiberghien P, van den Burg P, Vandekerckhove P, Walton C, Zaaijer HL, Zetterberg H, De Strooper B (2020) Potential human transmission of amyloid beta pathology: surveillance and risks. Lancet Neurol 19:872–878

    Article  CAS  PubMed  Google Scholar 

  • Leonenko G, Shoai M, Bellou E, Sims R, Williams J, Hardy J, Escott-Price V, Alzheimer’s Disease Neuroimaging Initiative (2019) Genetic risk for Alzheimer disease is distinct from genetic risk for amyloid deposition. Ann Neurol 86:427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126

    Article  CAS  PubMed  Google Scholar 

  • Lin YT, Seo J, Gao F, Feldman HM, Wen HL, Penney J, Cam HP, Gjoneska E, Raja WK, Cheng J, Rueda R, Kritskiy O, Abdurrob F, Peng Z, Milo B, Yu CJ, Elmsaouri S, Dey D, Ko T, Yankner BA, Tsai LH (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98:1141–54.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CC, Zhao N, Fu Y, Wang N, Linares C, Tsai CW, Bu G (2017) ApoE4 accelerates early seeding of amyloid pathology. Neuron 96:1024–32.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malfroy B, Swerts JP, Guyon A, Roques BP, Schwartz JC (1978) High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature 276:523–526

    Article  CAS  PubMed  Google Scholar 

  • Maloney JA, Bainbridge T, Gustafson A, Zhang S, Kyauk R, Steiner P, van der Brug M, Liu Y, Ernst JA, Watts RJ, Atwal JK (2014) Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein. J Biol Chem 289:30990–31000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, Zhang MR, Trojanowski JQ, Lee VM, Ono M, Masamoto K, Takano H, Sahara N, Iwata N, Okamura N, Furumoto S, Kudo Y, Chang Q, Saido TC, Takashima A, Lewis J, Jang MK, Aoki I, Ito H, Higuchi M (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79:1094–1108

    Article  CAS  PubMed  Google Scholar 

  • Masaki T (2004) Historical review: endothelin. Trends Pharmacol Sci 25:219–224

    Article  CAS  PubMed  Google Scholar 

  • Masuda A, Kobayashi Y, Kogo N, Saito T, Saido TC, Itohara S (2016) Cognitive deficits in single App knock-in mouse models. Neurobiol Learn Mem 135:73–82

    Article  CAS  PubMed  Google Scholar 

  • Matsas R, Fulcher IS, Kenny AJ, Turner AJ (1983) Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci U S A 80:3111–3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science. 330(6012):1774. https://doi.org/10.1126/science.1197623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinley J, McCarthy A, Lynch T (2013) Don’t lose sleep over neurodegeneration-it helps clear amyloid Beta. Front Neurol 4:206

    PubMed  PubMed Central  Google Scholar 

  • Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, Hersh LB, Thiele DL (2003) Amyloid-β peptide levels in brain are inversely correlated with insulysin activity levels in vivo. Proc Natl Acad Sci U S A 100:6221–6226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X (2016) Marmosets: a neuroscientific model of human social behavior. Neuron 90:219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mormino EC, Brandel MG, Madison CM, Marks S, Baker SL, Jagust WJ (2012) Aβ deposition in aging is associated with increases in brain activation during successful memory encoding. Cereb Cortex 22:1813–1823

    Article  PubMed  Google Scholar 

  • Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452

    Article  CAS  PubMed  Google Scholar 

  • Obici L, Demarchi A, de Rosa G, Bellotti V, Marciano S, Donadei S, Arbustini E, Palladini G, Diegoli M, Genovese E, Ferrari G, Coverlizza S, Merlini G (2005) A novel AbetaPP mutation exclusively associated with cerebral amyloid angiopathy. Ann Neurol 58:639–644

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist S, Schöll M, Strandberg O, Mattsson N, Stomrud E, Zetterberg H, Blennow K, Landau S, Jagust W, Hansson O (2017) Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun 8:1214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019) A critical appraisal of amyloid-beta-targeting therapies for Alzheimer disease. Nat Rev Neurol 15:73–88

    Article  PubMed  Google Scholar 

  • Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD (2011) Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS 8:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Polvikoski T, Sulkava R, Haltia M, Kainulainen K, Vuorio A, Verkkoniemi A, Niinistö L, Halonen P, Kontula K (1995) Apolipoprotein E, dementia, and cortical deposition of beta-amyloid protein. N Engl J Med 333:1242–1247

    Article  CAS  PubMed  Google Scholar 

  • Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO (2003) Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid β from the human brain. Neuropathol Appl Neurobiol 29:106–117

    Article  CAS  PubMed  Google Scholar 

  • Quiroz YT, Budson AE, Celone K, Ruiz A, Newmark R, Castrillón G, Lopera F, Stern CE (2010) Hippocampal hyperactivation in presymptomatic familial Alzheimer’s disease. Ann Neurol 68:865–875

    Article  PubMed  PubMed Central  Google Scholar 

  • Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci 38:433–447

    Article  CAS  PubMed  Google Scholar 

  • Ries M, Sastre M (2016) Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci 8:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ritchie DL, Adlard P, Peden AH, Lowrie S, Le Grice M, Burns K, Jackson RJ, Yull H, Keogh MJ, Wei W, Chinnery PF, Head MW, Ironside JW (2017) Amyloid-β accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol 134:221–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Callejas JD, Fuchs E, Perez-Cruz C (2016) Evidence of Tau hyperphosphorylation and dystrophic microglia in the common marmoset. Front Aging Neurosci 8:315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenberg RN, Lambracht-Washington D, Yu G, Xia W (2016) Genomics of Alzheimer disease: a review. JAMA Neurol 73:867–874

    Article  PubMed  PubMed Central  Google Scholar 

  • Saido TC (2003) Overview-Aβ metabolism: from Alzheimer research to brain aging control. In: Saido TC (ed) Aβ metabolism and Alzheimer’s disease. Landes Bioscience, Georgetown, pp 1–16

    Chapter  Google Scholar 

  • Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, Aβ N3(pE), in senile plaques. Neuron 14:457–466

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J, Nishimura M, Iwata N, Van Broeckhoven C, Ihara Y, Saido TC (2011) Potent amyloidogenicity and pathogenicity of Aβ43. Nat Neurosci 14:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC (2014) Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17:661–663

    Article  CAS  PubMed  Google Scholar 

  • Sandebring A, Welander H, Winblad B, Graff C, Tjernberg LO (2013) The pathogenic Aβ43 is enriched in familial and sporadic Alzheimer disease. PLoS One 8:e55847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, Hardy J, Vassar R, Winblad B, Saido TC (2017) APP mouse models for Alzheimer’s disease preclinical studies. EMBO J 36:2473–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki H, Saito Y, Hayashi M, Otsuka K, Niwa M (1988) Nucleotide sequence of the tissue-type plasminogen activator cDNA from human fetal lung cells. Nucleic Acids Res 16:5695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scammell TE (2015) Narcolepsy. N Engl J Med 373:2654–2662

    Article  CAS  PubMed  Google Scholar 

  • Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388:505–517

    Article  CAS  PubMed  Google Scholar 

  • Schiel N, Souto A (2017) The common marmoset: an overview of its natural history, ecology and behavior. Dev Neurobiol 77:244–262

    Article  PubMed  Google Scholar 

  • Selkoe DJ (2001) Clearing the brain’s amyloid cobwebs. Neuron 32:177–180

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano-Pozo A, Qian J, Monsell SE, Betensky RA, Hyman BT (2015) APOEε2 is associated with milder clinical and pathological Alzheimer disease. Ann Neurol 77:917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shropshire TD, Reifert J, Rajagopalan S, Baker D, Feinstein SC, Daugherty PS (2014) Amyloid β peptide cleavage by kallikrein 7 attenuates fibril growth and rescues neurons from Aβ-mediated toxicity in vitro. Biol Chem 395:109–118

    Article  CAS  PubMed  Google Scholar 

  • Snitz BE, Chang Y, Tudorascu DL, Lopez OL, Lopresti BJ, DeKosky ST, Carlson MC, Cohen AD, Kamboh MI, Aizenstein HJ, Klunk WE, Kuller LH (2020) Predicting resistance to amyloid-beta deposition and cognitive resilience in the oldest-old. Neurology 95:e984–e994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutoko S, Masuda A, Kandori A, Sasaguri H, Saito T, Saido TC, Funane T (2021) Early identification of Alzheimer’s disease in mouse models: application of deep neural network algorithm to cognitive behavioral parameters. iScience 24:102198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11:457–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thal DR, Ghebremedhin E, Rüb U, Yamaguchi H, Del Tredici K, Braak H (2002a) Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 61:282–293

    Article  PubMed  Google Scholar 

  • Thal DR, Rüb U, Orantes M, Braak H (2002b) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  PubMed  Google Scholar 

  • Thal DR, Tredici KD, Braak H (2004) Neurodegeneration in normal brain aging and disease. Sci Aging Knowledge Environ 2004(23):pe26

    Article  PubMed  Google Scholar 

  • Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid β protein deposits in the aged brain. Sci Aging Knowledge Environ 2006:re1

    Article  PubMed  Google Scholar 

  • Tomita T, Iwatsubo T (2013) Structural biology of presenilins and signal peptide peptidases. J Biol Chem 288:14673–14680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner AJ, Isaac RE, Coates D (2001) The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. Bioessays 23:261–269

    Article  CAS  PubMed  Google Scholar 

  • Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, Darwish SM, Van Berlo V, Barnes DE, Mantle M, Karydas AM, Coppola G, Roberson ED, Miller BL, Garcia PA, Kirsch HE, Mucke L, Nagarajan SS (2016) Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann Neurol 80:858–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL (2017) Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol 16:311–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang DS, Iwata N, Hama E, Saido TC, Dickson DW (2003) Oxidized neprilysin in aging and Alzheimer’s disease brains. Biochem Biophys Res Commun 310:236–241

    Article  CAS  PubMed  Google Scholar 

  • Welander H, Franberg J, Graff C, Sundstrom E, Winblad B, Tjernberg LO (2009) Aβ43 is more frequent than Aβ40 in amyloid plaque cores from Alzheimer disease brains. J Neurochem 110:697–706

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266

    Article  CAS  PubMed  Google Scholar 

  • Willem M, Tahirovic S, Busche MA, Ovsepian SV, Chafai M, Kootar S, Hornburg D, Evans LD, Moore S, Daria A, Hampel H, Müller V, Giudici C, Nuscher B, Wenninger-Weinzierl A, Kremmer E, Heneka MT, Thal DR, Giedraitis V, Lannfelt L, Müller U, Livesey FJ, Meissner F, Herms J, Konnerth A, Marie H, Haass C (2015) η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 526:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jönsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15:455–532

    Article  PubMed  Google Scholar 

  • Wong-Leung YL, Kenny AJ (1968) Some properties of a microsomal peptidase in rat kidney. Biochem J 110:5P

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Kluve-Beckerman B, Liepnieks JJ, Benson MD (1995) In vitro degradation of serum amyloid A by cathepsin D and other acid proteases: possible protection against amyloid fibril formation. Scand J Immunol 41:570–574

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G (2019) Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 15:501–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasojima K, Akiyama H, Mcgeer EG, Mcgeer PL (2001a) Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of beta-amyloid peptide. Neurosci Lett 297:97–100

    Article  CAS  PubMed  Google Scholar 

  • Yasojima K, Mcgeer EG, Mcgeer PL (2001b) Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res 919:115–121

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wu L, Pchitskaya E, Zakharova O, Saito T, Saido T, Bezprozvanny I (2015) Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer’s disease. J Neurosci 35:13275–13286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Cedazo-Minguez A, Hallbeck M, Jerhammar F, Marcusson J, Terman A (2012) Intracellular distribution of amyloid β peptide and its relationship to the lysosomal system. Transl Neurodegener 1:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Liu D, Roychaudhuri R, Teplow DB, Bowers MT (2015) Amyloid beta protein assembly: differential effects of the protective A2T mutation and recessive A2V familial Alzheimer’s disease mutation. ACS Chem Nerosci 6:1732–1740

    Article  CAS  Google Scholar 

  • Zott B, Busche MA, Sperling RA, Konnerth A (2018) What happens with the circuit in Alzheimer’s disease in mice and humans? Annu Rev Neurosci 41:277–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, Sakmann B, Walsh DM, Konnerth A (2019) A vicious cycle of β amyloid-dependent neuronal hyperactivation. Science 365:559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou K, Yamaguchi H, Akatsu H, Sakamoto T, Ko M, Mizoguchi K, Gong JS, Yu W, Yamamoto T, Kosaka K, Yanagisawa K, Michikawa M (2007) Angiotensin-converting enzyme converts amyloid β-protein 1-42 (Aβ(1-42)) to Aβ(1-40), and its inhibition enhances brain Aβ deposition. J Neurosci 27:8628–8635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Sasaguri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasaguri, H., Saido, T.C. (2022). Amyloid-β in Brain Aging and Alzheimer’s Disease. In: Mori, N. (eds) Aging Mechanisms II . Springer, Singapore. https://doi.org/10.1007/978-981-16-7977-3_21

Download citation

Publish with us

Policies and ethics