Skip to main content

Recent Advances in the Synthesis of Covalent Organic Frameworks for Heterogeneous Catalysis

  • Chapter
  • First Online:
Metal-Organic Frameworks (MOFs) as Catalysts

Abstract

Covalent organic frameworks (COFs) are periodically well-organized polymeric skeletons of organic monomer units connected through strong covalent linkages to form stable crystalline materials. The specific bonding among the organic monomer unit constructs a regular and porous skeleton, and therefore, these COFs are considered as highly ordered and uniform materials. COFs have recently appeared as heterogeneous catalysts for various organic transformations and photocatalytic reactions. These properties are arisen due to the reticular design of these materials, and this reticular design comes from the diversity of organic building blocks, stable geometry, and reversibility of dynamic covalent reactions. These materials are usually formed by organic building blocks consisting of heteroatoms and obtained in situ during the synthesis of 2/3D-ordered porous materials. The COFs are acclaimed as functional materials due to their crystallinity, porous nature, both chemical and thermal stability, low skeleton density, high surface area, diverse and easy synthetic methodologies, flexibility, insolubility, cheaper substrates, and highly simplified for functional modifications. Additionally, COFs can be used as appropriate carriers to lock metal ions or by using their functional in-built sites as a catalyst. This chapter summarizes the noteworthy progress in the synthesis of COFs material and their potential catalytic applications with an emphasis on their property as support material for heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

COF:

Covalent organic framework

CTF:

Covalent triazine framework

MOF:

Metal–organic framework

MNPs:

Metal nanoparticles

CP-MAS:

Cross-polarization magic angle spinning

NMR:

Nuclear magnetic resonance

BDBA:

Benzene-1,4-diboronic acid

PXRD:

Powder X-ray diffraction

MCR:

Multi-component reactions

DCM:

Dichloromethane

DMF:

Dimethylformamide

ORR:

Oxygen reduction reaction

eV:

Electronvolt

TFA:

Trifluoroacetic acid

2D/3D:

Two dimensional/three dimensional

TON:

Turn over number

References

  1. (a) Zhang Y, Riduan SN (2012) Functional porous organic polymers for heterogeneous catalysis. Chem Soc Rev 41(6):2083–2094; (b) Puthiaraj P, Lee Y-R, Zhang S, Ahn W-S (2016) Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis. J Mater Chem A 4(42):16288–16311

    Google Scholar 

  2. Fischbach DM, Rhoades G, Espy C, Goldberg F, Smith BJ (2019) Controlling the crystalline structure of imine-linked 3D covalent organic frameworks. Chem Commun 55(25):3594–3597

    Article  CAS  Google Scholar 

  3. (a) Kuhn P, Antonietti M, Thomas A (2008) Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 47(18):3450–3453. https://doi.org/10.1002/anie.200705710; (b) Roeser J, Kailasam K, Thomas A (2012) Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. ChemSusChem 5(9):1793–1799

  4. Zeng Y, Zou R, Zhao Y (2016) covalent organic frameworks for CO2 capture. Adv Mater 28(15):2855–2873

    Article  CAS  PubMed  Google Scholar 

  5. McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35(8):675–683

    Article  CAS  PubMed  Google Scholar 

  6. Cao H-L, Huang H-B, Chen Z, Karadeniz B, Lü J, Cao R (2017) Ultrafine silver nanoparticles supported on a conjugated microporous polymer as high-performance nanocatalysts for nitrophenol reduction. ACS Appl Mater Interfaces 9(6):5231–5236

    Article  CAS  PubMed  Google Scholar 

  7. Mülhaupt R (2004) Hermann staudinger and the origin of macromolecular chemistry. Angew Chem Int Ed 43(9):1054–1063

    Article  Google Scholar 

  8. Côté AP, Benin AI, Ockwig NW, Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166

    Article  PubMed  Google Scholar 

  9. (a) Gomes R, Bhanja P, Bhaumik A (2015) A triazine-based covalent organic polymer for efficient CO2 adsorption. Chem Commun 51(49):10050–10053; (b) Xiang Z, Zhou X, Zhou C, Zhong S, He X, Qin C, Cao D (2012) Covalent-organic polymers for carbon dioxide capture. J Mater Chem A 22(42):22663–22669

    Google Scholar 

  10. (a) Subodh, Prakash K, Masram DT (2020) A reversible chromogenic covalent organic polymer for gas sensing applications. Dalton Trans 49(4):1007–1010; (b) Subodh, Prakash K, Masram DT (2020) Chromogenic covalent organic polymer-based microspheres as solid-state gas sensor. J Mater Chem C 8(27):9201–9204

    Google Scholar 

  11. (a) Subodh, Prakash K, Chaudhary K, Masram DT (2020) A new triazine-cored covalent organic polymer for catalytic applications. Appl Catal A 593:117411; (b) Yadav D, Awasthi SK (2020) An unsymmetrical covalent organic polymer for catalytic amide synthesis. Dalton Trans 49(1):179–186

    Google Scholar 

  12. Shi Y, Fu Q, Li J, Liu H, Zhang Z, Liu T, Liu Z (2020) Covalent organic polymer as a carborane carrier for imaging-facilitated boron neutron capture therapy. ACS Appl Mater Interfaces 12(50):55564–55573

    Google Scholar 

  13. Patra BC, Khilari S, Manna RN, Mondal S, Pradhan D, Pradhan A, Bhaumik A (2017) A Metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal 7(9):6120–6127

    Article  CAS  Google Scholar 

  14. Jejurkar VP, Yashwantrao G, Saha S (2020) Tröger’s base functionalized recyclable porous covalent organic polymer (COP) for dye adsorption from water. New J Chem 44(28):12331–12342

    Article  CAS  Google Scholar 

  15. Julkapli NM, Bagheri S (2015) Graphene supported heterogeneous catalysts: an overview. Int J Hydrogen Energy 40(2):948–979

    Article  CAS  Google Scholar 

  16. Subodh, Mogha NK, Chaudhary K, Kumar G, Masram DT (2018) Fur-imine-functionalized graphene oxide-immobilized copper oxide nanoparticle catalyst for the synthesis of xanthene derivatives. ACS Omega 3(11):16377–16385

    Google Scholar 

  17. (a) Chaudhary K, Subodh, Prakash K, Mogha NK, Masram DT (2020) Fruit waste (Pulp) decorated CuO NFs as promising platform for enhanced catalytic response and its peroxidase mimics evaluation. Arab J Chem 13(4):4869–4881; (b) Kumar G, Mogha NK, Kumar M, Subodh, Masram DT (2020) NiO nanocomposites/rGO as a heterogeneous catalyst for imidazole scaffolds with applications in inhibiting the DNA binding activity. Dalton Trans 49(6):1963–1974

    Google Scholar 

  18. Subodh, Chaudhary K, Prakash K, Masram DT (2020) TiO2 nanoparticles immobilized organo-reduced graphene oxide hybrid nanoreactor for catalytic applications. Appl Surf Sci 509:144902

    Google Scholar 

  19. (a) Liu Y, Zhou W, Teo WL, Wang K, Zhang L, Zeng Y, Zhao Y (2020) Covalent-organic-framework-based composite materials. Chem 6(12):3172–3202; (b) Yadav D, Awasthi SK (2020) A Pd NP-confined novel covalent organic polymer for catalytic applications. New J Chem 44(4):1320–1325

    Google Scholar 

  20. Hu H, Yan Q, Ge R, Gao Y (2018) Covalent organic frameworks as heterogeneous catalysts. Chin J Catal 39(7):1167–1179

    Article  CAS  Google Scholar 

  21. Yadav D, Dixit AK, Raghothama S, Awasthi SK (2020) Ni nanoparticle-confined covalent organic polymer directed diaryl-selenides synthesis. Dalton Trans 49(35):12266–12272

    Article  CAS  PubMed  Google Scholar 

  22. Ren S, Bojdys MJ, Dawson R, Laybourn A, Khimyak YZ, Adams DJ, Cooper AI (2012) Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 24(17):2357–2361

    Article  CAS  PubMed  Google Scholar 

  23. Campbell NL, Clowes R, Ritchie LK, Cooper AI (2009) Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 21(2):204–206

    Article  CAS  Google Scholar 

  24. Ji W, Guo Y-S, Xie H-M, Wang X, Jiang X, Guo D-S (2020) Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water. J Hazard Mater 397:122793

    Google Scholar 

  25. Yang S-T, Kim J, Cho H-Y, Kim S, Ahn W-S (2012) Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv 2(27):10179–10181

    Article  CAS  Google Scholar 

  26. Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R (2013) Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc 135(14):5328–5331

    Article  CAS  PubMed  Google Scholar 

  27. Mu M, Wang Y, Qin Y, Yan X, Li Y, Chen L (2017) Two-Dimensional imine-linked covalent organic frameworks as a platform for selective oxidation of olefins. ACS Appl Mater Interfaces 9(27):22856–22863

    Article  CAS  PubMed  Google Scholar 

  28. Bai L, Phua SZF, Lim WQ, Jana A, Luo Z, Tham HP, Zhao L, Gao Q, Zhao Y (2016) Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem Commun 52(22):4128–4131

    Article  CAS  Google Scholar 

  29. Dinari M, Hatami M (2019) Novel N-riched crystalline covalent organic framework as a highly porous adsorbent for effective cadmium removal. J Environ Chem Eng 7(1):102907

    Google Scholar 

  30. Wang P-L, Ding S-Y, Zhang Z-C, Wang Z-P, Wang W (2019) Constructing robust covalent organic frameworks via multicomponent reactions. J Am Chem Soc 141(45):18004–18008

    Article  CAS  PubMed  Google Scholar 

  31. Acharjya A, Longworth-Dunbar L, Roeser J, Pachfule P, Thomas A (2020) Synthesis of vinylene-linked covalent organic frameworks from acetonitrile: combining cyclotrimerization and aldol condensation in one pot. J Am Chem Soc 142(33):14033–14038

    Article  CAS  PubMed  Google Scholar 

  32. Wang K, Jia Z, Bai Y, Wang X, Hodgkiss SE, Chen L, Chong SY, Wang X, Yang H, Xu Y, Feng F, Ward JW, Cooper AI (2020) Synthesis of stable thiazole-linked covalent organic frameworks via a multicomponent reaction. J Am Chem Soc 142(25):11131–11138

    Article  CAS  PubMed  Google Scholar 

  33. Lin G, Gao C, Zheng Q, Lei Z, Geng H, Lin Z, Yang H, Cai Z (2017) Room-temperature synthesis of core–shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins. Chem Commun 53(26):3649–3652

    Article  CAS  Google Scholar 

  34. He S, Zeng T, Wang S, Niu H, Cai Y (2017) Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets. ACS Appl Mater Interfaces 9(3):2959–2965

    Article  CAS  PubMed  Google Scholar 

  35. Wang R, Chen Z (2017) A covalent organic framework-based magnetic sorbent for solid phase extraction of polycyclic aromatic hydrocarbons, and its hyphenation to HPLC for quantitation. Microchim Acta 184(10):3867–3874

    Article  CAS  Google Scholar 

  36. Lim H, Cha MC, Chang JY (2012) Preparation of microporous polymers based on 1,3,5-Triazine units showing high CO2 adsorption capacity. Macromol Chem Phys 213(13):1385–1390

    Article  CAS  Google Scholar 

  37. Xiong S, Fu X, Xiang L, Yu G, Guan J, Wang Z, Du Y, Xiong X, Pan C (2014) Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO2 uptake. Polym Chem 5(10):3424–3431

    Article  CAS  Google Scholar 

  38. (a) Tian Y, Meng X, Duan J-y, Shi L (2012) A novel application of methanesulfonic acid as catalyst for the alkylation of olefins with aromatics. Ind Eng Chem Res 51(42):13627–13631; (b) Gernon MD, Wu M, Buszta T, Janney P (1999) Environmental benefits of methanesulfonic acid . comparative properties and advantages. Green Chem 1(3):127–140

    Google Scholar 

  39. Ren S, Dawson R, Laybourn A, Jiang J-X, Khimyak Y, Adams DJ, Cooper AI (2012) Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine. Polym Chem 3(4):928–934

    Article  CAS  Google Scholar 

  40. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98(1):199–218

    Article  CAS  PubMed  Google Scholar 

  41. Kaleeswaran D, Antony R, Sharma A, Malani A, Murugavel R (2017) Catalysis and CO2 capture by palladium-incorporated covalent organic frameworks. ChemPlusChem 82(10):1253–1265

    Article  CAS  PubMed  Google Scholar 

  42. Tahir N, Wang G, Onyshchenko I, De Geyter N, Leus K, Morent R, Van Der Voort P (2019) High-nitrogen containing covalent triazine frameworks as basic catalytic support for the Cu-catalyzed Henry reaction. J Catal 375:242–248

    Article  CAS  Google Scholar 

  43. Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18(4):309–318

    Article  CAS  PubMed  Google Scholar 

  44. Balasubramanian P, Balamurugan TST, Chen S-M, Chen T-W (2019) Simplistic synthesis of ultrafine CoMnO3 nanosheets: an excellent electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in environmental water samples. J Hazard Mater 361:123–133

    Article  CAS  PubMed  Google Scholar 

  45. Ansari A, Badhe RA, Garje SS (2019) Preparation of CdS–TiO2-based palladium heterogeneous nanocatalyst by solvothermal route and its catalytic activity for reduction of nitroaromatic compounds. ACS Omega 4(12):14937–14946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan M, Wang WD, Zhu Y, Sun X, Zhang F, Dong Z (2019) Palladium clusters confined in triazinyl-functionalized COFs with enhanced catalytic activity. Appl Catal B 257:117942

    Google Scholar 

  47. Yadav D, Awasthi SK (2020) A Pd confined hierarchically conjugated covalent organic polymer for hydrogenation of nitroaromatics: catalysis, kinetics, thermodynamics and mechanism. Green Chem 22(13):4295–4303

    Article  CAS  Google Scholar 

  48. Zhang J, Han X, Wu X, Liu Y, Cui Y (2017) Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis. J Am Chem Soc 139(24):8277–8285

    Article  CAS  PubMed  Google Scholar 

  49. Ma H-C, Kan J-L, Chen G-J, Chen C-X, Dong Y-B (2017) Pd NPs-loaded homochiral covalent organic framework for heterogeneous asymmetric catalysis. Chem Mater 29(15):6518–6524

    Article  CAS  Google Scholar 

  50. Zhang J, Han X, Wu X, Liu Y, Cui Y (2019) Chiral DHIP- and pyrrolidine-based covalent organic frameworks for asymmetric catalysis. ACS Sustain Chem Eng 7(5):5065–5071

    Article  CAS  Google Scholar 

  51. Siriwardane RV, Shen M-S, Fisher EP (2003) Adsorption of CO2, N2, and O2 on natural zeolites. Energy Fuels 17(3):571–576

    Article  CAS  Google Scholar 

  52. Lenden P, Ylioja PM, González-Rodríguez C, Entwistle DA, Willis MC (2011) Replacing dichloroethane as a solvent for rhodium-catalysed intermolecular alkyne hydroacylation reactions: the utility of propylene carbonate. Green Chem 13(8):1980–1982

    Article  CAS  Google Scholar 

  53. (a) Decortes A, Castilla AM, Kleij AW (2014) Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew Chem Int Ed 49(51):9822–9837; (b) Kim SH, Ahn D, Go MJ, Park MH, Kim M, Lee J, Kim Y (2014) Dinuclear aluminum complexes as catalysts for cycloaddition of CO2 to epoxides. Organometallics 33(11):2770–2775

    Google Scholar 

  54. (a) Huang J-W, Shi M (2003) Chemical fixation of carbon dioxide by NaI/PPh3/PhOH. J Org Chem 68(17):6705–6709; (b) Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) Mg–Al mixed oxides as highly active acid–base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc 121(18):4526–4527; (c) Yasuda H, He L-N, Takahashi T, Sakakura T (2006) Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions. Appl Catal A 298:177–180; (d) Kim HS, Kim JJ, Lee SD, Lah MS, Moon D, Jang HG (2003) New mechanistic insight into the coupling reactions of CO2 and epoxides in the presence of zinc complexes. Chem Eur J 9(3):678–686

    Google Scholar 

  55. Verma S, Kumar G, Ansari A, Kureshy RI, Khan N-UH (2017) A nitrogen rich polymer as an organo-catalyst for cycloaddition of CO2 to epoxides and its application for the synthesis of polyurethane. Sustain Energy Fuels 1(7):1620–1629

    Article  CAS  Google Scholar 

  56. Liu T-T, Xu R, Yi J-D, Liang J, Wang X-S, Shi P-C, Huang Y-B, Cao R (2018) Imidazolium-based cationic covalent triazine frameworks for highly efficient cycloaddition of carbon dioxide. ChemCatChem 10(9):2036–2040

    Article  CAS  Google Scholar 

  57. Ramón DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed 44(11):1602–1634

    Article  Google Scholar 

  58. Zare E, Rafiee Z (2020) Magnetic chitosan supported covalent organic framework/copper nanocomposite as an efficient and recoverable catalyst for the unsymmetrical hantzsch reaction. J Taiwan Inst Chem Eng 116:205–214

    Article  CAS  Google Scholar 

  59. Yao B-J, Wu W-X, Ding L-G, Dong Y-B (2021) Sulfonic acid and ionic liquid functionalized covalent organic framework for efficient catalysis of the Biginelli reaction. J Org Chem 86(3):3024–3032

    Article  CAS  PubMed  Google Scholar 

  60. Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y (2014) 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew Chem 126(11):2922–2926

    Article  Google Scholar 

  61. Sun Q, Aguila B, Ma S (2017) A bifunctional covalent organic framework as an efficient platform for cascade catalysis. Mater Chem Front 1(7):1310–1316

    Article  CAS  Google Scholar 

  62. Kundu SK, Bhaumik A (2015) A triazine-based porous organic polymer: a novel heterogeneous basic organocatalyst for facile one-pot synthesis of 2-amino-4H-chromenes. RSC Adv 5(41):32730–32739

    Article  CAS  Google Scholar 

  63. Cui Y, Du J, Liu Y, Yu Y, Wang S, Pang H, Liang Z, Yu J (2018) Design and synthesis of a multifunctional porous N-rich polymer containing s-triazine and Tröger’s base for CO2 adsorption, catalysis and sensing. Polym Chem 9(19):2643–2649

    Article  CAS  Google Scholar 

  64. Yadav D, Awasthi S-K (2021) Ni nanoparticle-immobilized imine-linked microspherical covalent organic polymer for degradation studies of organic dyes. ACS Appl Polym Mater 3(11):5460–5469

    Google Scholar 

  65. Xu N, Wang R-L, Li D-P, Meng X, Mu J-L, Zhou Z-Y, Su Z-M (2018) A new triazine-based covalent organic polymer for efficient photodegradation of both acidic and basic dyes under visible light. Dalton Trans 47(12):4191–4197

    Article  CAS  PubMed  Google Scholar 

  66. Xu C, Xie Q, Zhang W, Xiong S, Pan C, Tang J, Yu G (2020) A vinylene-bridged conjugated covalent triazine polymer as a visible-light-active photocatalyst for degradation of methylene blue. Macromol Rapid Commun 41(7):2000006

    Article  CAS  Google Scholar 

  67. Zhi Y, Li Z, Feng X, Xia H, Zhang Y, Shi Z, Mu Y, Liu X (2017) Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. J Mater Chem A 5(44):22933–22938

    Article  CAS  Google Scholar 

  68. Yang Y, Niu H, Xu L, Zhang H, Cai Y (2020) Triazine functionalized fully conjugated covalent organic framework for efficient photocatalysis. Appl Catal B 269:118799

    Google Scholar 

  69. Ma W, Yu P, Ohsaka T, Mao L (2015) An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochem commun 52:53–57

    Article  CAS  Google Scholar 

  70. Yao C-L, Li J-C, Gao W, Jiang Q (2018) An integrated design with new metal-functionalized covalent organic frameworks for the effective electroreduction of CO2. Chem Eur J 24(43):11051–11058

    Article  CAS  PubMed  Google Scholar 

  71. Royuela S, Martínez-Periñán E, Arrieta MP, Martínez JI, Ramos MM, Zamora F, Lorenzo E, Segura JL (2020) Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chem Commun 56(8):1267–1270

    Article  CAS  Google Scholar 

  72. (a) Vardhan H, Hou L, Yee E, Nafady A, Al-Abdrabalnabi MA, Al-Enizi AM, Pan Y, Yang Z, Ma S (2019) Vanadium docked covalent-organic frameworks: an effective heterogeneous catalyst for modified Mannich-type reaction. ACS Sustain Chem Eng 7 (5):4878–4888; (b) Vardhan H, Verma G, Ramani S, Nafady A, Al-Enizi AM, Pan Y, Yang Z, Yang H, Ma S (2019) Covalent organic framework decorated with vanadium as a new platform for Prins reaction and sulfide oxidation. ACS Appl Mater Interfaces 11(3):3070–3079

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subodh, Masram, D.T. (2022). Recent Advances in the Synthesis of Covalent Organic Frameworks for Heterogeneous Catalysis. In: Gulati, S. (eds) Metal-Organic Frameworks (MOFs) as Catalysts. Springer, Singapore. https://doi.org/10.1007/978-981-16-7959-9_11

Download citation

Publish with us

Policies and ethics