Skip to main content

Potential of Nanotechnology in Food Analysis and Quality Improvement

  • Chapter
  • First Online:
Nanosensing and Bioanalytical Technologies in Food Quality Control

Abstract

Nanotechnology has reformed the food sector with producing better-quality food products through its contribution in functional foods development, food nanopackaging, and nanodevices for food analysis. The existing techniques such as culture-based techniques, sensory analysis, and GC techniques for food analysis are time consuming, cumbersome, and labour intensive. To overcome these drawbacks, nanotechnology is nowadays applied to develop techniques that show more accurate and precise results, which is important for maintaining food quality. Nanotechnology in food analysis is used to detect toxins, adulterants, pathogens, sugar, and antioxidants using nanodevices like nanosensors. Furthermore, nanotechnology can also be applied in food packaging and processing domain to sense food spoilage as well as improve food quality. This chapter delivers comprehensive information about the value and potential of nanotechnology for food analysis, packaging, and quality improvement in the food processing domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abaee A, Mohammadian M, Jafari SM (2017) Whey and soy protein-based hydrogels and nanohydrogels as bioactive delivery systems. Trends Food Sci Technol 70:69–81

    Article  CAS  Google Scholar 

  • Afonso AS, Pérez-López B, Faria RC, Mattoso LH, Hernández-Herrero M, Roig-Sagués AX, Maltez-da Costa M, Merkoçi A (2013) Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron 40(1):121–126

    Article  CAS  PubMed  Google Scholar 

  • Akhavan S, Assadpour E, Katouzian I, Jafari SM (2018) Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 74:132–146

    Article  CAS  Google Scholar 

  • Al-onazi WA, Alarfaj NA, El-Tohamy MF, Al-Malki NA (2020) Facile dual enhanced modes of nanoparticles/sodium dodecyl sulfate for luminescent detection of vitamin C in commercial fruit juices. J Anal Chem 75(10):1285–1294

    Article  Google Scholar 

  • Anirudhan TS, Athira VS, Sekhar VC (2018) Electrochemical sensing and nano molar level detection of Bisphenol-A with molecularly imprinted polymer tailored on multiwalled carbon nanotubes. Polymer 146:312–320

    Article  CAS  Google Scholar 

  • Antiochia R, Lavagnini I, Magno F (2004) Amperometric mediated carbon nanotube paste biosensor for fructose determination. Anal Lett 37(8):1657–1669

    Article  CAS  Google Scholar 

  • Antiochia R, Vinci G, Gorton L (2013) Rapid and direct determination of fructose in food: a new osmium-polymer mediated biosensor. Food Chem 140(4):742–747

    Article  CAS  PubMed  Google Scholar 

  • Arpagaus C, John P, Collenberg A, Rütti D (2017) Nanocapsules formation by nano spray drying. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, pp 346–401

    Chapter  Google Scholar 

  • Assadpour E, Jafari SM (2018) A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2018.1484687

  • Assadpour E, Jafari SM (2019) Nanoencapsulation. In: Amparo LR, Rovira MJ, Sanz MM, Gomez-Mascaraque LG (eds) . Nanomaterials for food applications, Elsevier, pp 35–61

    Google Scholar 

  • Baghizadeh A, Karimi-Maleh H, Khoshnama Z, Hassankhani A, Abbasghorbani M (2015) Voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal Methods 8:549–557

    Article  Google Scholar 

  • Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 26(4):1201–1214

    Article  CAS  PubMed  Google Scholar 

  • Brainina KZ, Bukharinova MA, Stozhko NY, Sokolkov SV, Tarasov AV, Vidrevich MB (2020, 1800) Electrochemical sensor based on a carbon veil modified by phytosynthesized gold nanoparticles for determination of ascorbic acid. Sensors 20(6)

    Google Scholar 

  • Brewster JD, Mazenko RS (1998) Filtration capture and immunoelectrochemical detection for rapid assay of Escherichia coli O157: H71. J Immunol Methods 211:1–8

    Article  CAS  PubMed  Google Scholar 

  • Brody AL (2007) Case studies on nanotechnologies for food packaging. Food Technol 61:102–107

    Google Scholar 

  • Bui MP, Ahmed S, Abbas A (2015) Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett 15(9):6239–6246

    Article  CAS  PubMed  Google Scholar 

  • Bülbül G, Hayat A, Andreescu S (2016) ssDNA-functionalized nanoceria: a redox-active aptaswitch for biomolecular recognition. Adv Healthc Mater 5(7):822–828

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Zhang D, Zhou R, Zhu R, Fei P, Zhu ZZ, Cheng SY, Ding WP (2021) Hydrophobic interface starch nanofibrous film for food packaging: From bioinspired design to self-cleaning action. J Agric Food Chem 69(17):5067–5075

    Article  CAS  PubMed  Google Scholar 

  • Carrillo-Carrión C, Nazarenus M, Paradinas SS, Carregal-Romero S, Almendral MJ, Fuentes M, Pelaz B, del Pino P, Hussain I, Clift MJ, Rothen-Rutishauser B (2014) Metal ions in the context of nanoparticles toward biological applications. CurrOpin Chem Eng 4:88–96

    Google Scholar 

  • Chaisiwamongkhol K, Labaidae S, Pon-in S, Pinsrithong S, Bunchuay T, Phonchai A (2020) Smartphone-based colorimetric detection using gold nanoparticles of sibutramine in suspected food supplement products. Microchem J 158:105273

    Article  CAS  Google Scholar 

  • Cheli F, Pinoti L, Campagnoli A, Fusi E, Rebuci R, Baldi A (2008) Mycotoxin analysis, mycotoxin producing fungi assays and mycotoxin toxicity bioassays in food mycotoxin monitoring and surveillance. Ital J Food Sci 20(4):447–462

    CAS  Google Scholar 

  • Chen Q, Zhang L, Chen G (2012) Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates. Anal Chem 84(1):171–178

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Qin X, Yuan C, Wang Y (2020) Switch on fluorescence mode for determination of L-cysteine with carbon quantum dots and Au nanoparticles as a probe. RSC Adv 10(4):1989–1994

    Article  CAS  Google Scholar 

  • Cho ES, Kim J, Tejerina B, Hermans TM, Jiang H, Nakanishi H, Yu M, Patashinski AZ, Glotzer SC, Stellacci F, Grzybowski BA (2012) Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nat Mater 11(11):978–985

    Article  CAS  PubMed  Google Scholar 

  • Coles R, McDowell D, Kirwan MJ (eds) (2003) Food packaging technology. CRC Press

    Google Scholar 

  • Dridi F, Marrakchi M, Gargouri M, Saulnier J, Jaffrezic-Renault N, Lagarde F (2017) Nanomaterial-based electrochemical biosensors for food safety and quality assessment. In: Grumezescu AM (ed) Nanobiosensors. Academic Press, pp 167–204

    Chapter  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    Article  CAS  PubMed  Google Scholar 

  • Ellis D, Goodacre R (2001) Rapid and quantitative detection ofthe microbial spoilage of muscle foods: current status and futuretrends. Trends Food Sci Technol 12:414–424

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Esfanjani AF, Assadpour E, Jafari SM (2018) Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci Technol 76:56–66

    Article  CAS  Google Scholar 

  • Evtugyn G, Porfireva A, Stepanova V, Kutyreva M, Gataulina A, Ulakhovich N, Evtugyn V, Hianik T (2013) Impedimetric aptasensor for ochratoxin A determination based on Au nanoparticles stabilized with hyper-branched polymer. Sensors 13(12):16129–16145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezati P, Bang YJ, Rhim JW (2021) Preparation of a shikonin-based pH-sensitive color indicator for monitoring the freshness of fish and pork. Food Chem 337:127995

    Article  CAS  PubMed  Google Scholar 

  • Fathi Achachlouei B, Zahedi Y (2018) Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr Polym 199:415–425

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2010). Available: http://www.fda.gov/Food/default.htm

  • Fu Z, Zhou X, Xing D (2013a) Rapid colorimetric gene-sensing of food pathogenic bacteria using biomodification-free gold nanoparticle. Sens Actuators B Chem 182:633–641

    Article  CAS  Google Scholar 

  • Fu Z, Zhou X, Xing D (2013b) Sensitive colorimetric detection of Listeria monocytogenes based on isothermal gene amplification and unmodified gold nanoparticles. Methods 64(3):260–266

    Article  CAS  PubMed  Google Scholar 

  • Gan T, Li K, Wu K (2008) Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I. Sens Actuators B Chem 132(1):134–139

    Article  CAS  Google Scholar 

  • Gharibzahedi SMT, Jafari SM (2017) Nanocapsule formation by cyclodextrins. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, pp 187–261

    Chapter  Google Scholar 

  • Ghasemi S, Jafari SM, Assadpour E, Khomeiri M (2017) Production of pectin-whey protein nanocomplexes as carriers of orange peel oil. Carbohydr Polym 177:369–377

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi S, Jafari SM, Assadpour E, Khomeiri M (2018) Nanoencapsulation of d-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocoll 77:152–162

    Article  CAS  Google Scholar 

  • Ghorani B, Alehosseini A, Tucker N (2017) Nanocapsule formation by electrospinning. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, pp 264–319

    Chapter  Google Scholar 

  • Gopalakrishnan A, Sha R, Vishnu N, Kumar R, Badhulika S (2018) Disposable, efficient and highly selective electrochemical sensor based on Cadmium oxide nanoparticles decorated screen-printed carbon electrode for ascorbic acid determination in fruit juices. Nano-Struct Nano-Objects 16:96–103

    Article  CAS  Google Scholar 

  • Goriushkina TB, Soldatkin AP, Dzyadevych SV (2009) Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. J Agric Food Chem 57(15):6528–6535

    Article  CAS  PubMed  Google Scholar 

  • Han JW, Ruiz-Garcia L, Qian JP, Yang XT (2018) Food packaging: a comprehensive review and future trends. Compr Rev Food Sci Food Saf 17:860–877

    Article  PubMed  Google Scholar 

  • Haratifar S, Guri A (2017) Nanocapsule formation by caseins. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, pp 140–164

    Chapter  Google Scholar 

  • He L, Wang F, Chen Y, Liu Y (2018) Rapid and sensitive colorimetric detection of ascorbic acid in food based on the intrinsic oxidase-like activity of MnO2 nanosheets. Luminescence 33(1):145–152

    Article  CAS  PubMed  Google Scholar 

  • Hosseini SM, Ghiasi F, Jahromi M (2017) Nanocapsule formation by complexation of biopolymers. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, pp 447–492

    Chapter  Google Scholar 

  • Hussain A, Sun DW, Pu H (2020) Bimetallic core shelled nanoparticles (Au@ AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Food Chem 317:126429

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Pu H, Hu B, Sun DW (2021) Au@ Ag-TGANPs based SERS for facile screening of thiabendazole and ferbam in liquid milk. Spectrochim Acta A Mol BiomolSpectrosc 245:118908

    Article  CAS  Google Scholar 

  • IFT (2004) Bacteria associated with foodborne diseases. A Scientific Status Summary of the Institute of Food Technologists, Chicago

    Google Scholar 

  • Jafari SM (2017a) An overview of nanoencapsulation techniques and their classification. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, pp 1–34

    Google Scholar 

  • Jafari SM (2017b) An Introduction to nanoencapsulation techniques for the food bioactive ingredients. In: Jafari SM (ed) Nanoencapsulation of food bioactive ingredients. Academic Press, pp 1–62

    Google Scholar 

  • Jafari SM, Paximada P, Mandala I, Assadpour E, Mehrnia MA (2017) Encapsulation by nanoemulsions. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, pp 36–73

    Chapter  Google Scholar 

  • Jha SN, Jaiswal P, Grewal MK, Gupta M, Bhardwaj R (2016) Detection of adulterants and contaminants in liquid foods—a review. Crit Rev Food Sci Nutr 56(10):1662–1684

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Beloglazova NV, Luo P, Guo P, Lin G, Wang X (2017) A dual-color quantum dots encoded frit-based immunoassay for visual detection of aflatoxin M1 and pirlimycin residues in milk. J Agric Food Chem 65(8):1822–1828

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Sun DW, Pu H, Wei Q (2019) Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta 197:151–158

    Article  CAS  PubMed  Google Scholar 

  • Kalpana R, Devasena T, Sudha S (2020) Optoelectronic method of test for melamine adulteration in milk using paranitroaniline modified silver nanoparticles. In: 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO), 29 July 2020

    Google Scholar 

  • Katouzian I, Jafari SM (2016) Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol 53:34–48

    Article  CAS  Google Scholar 

  • Khalkho BR, Kurrey R, Deb MK, Shrivas K, Thakur SS, Pervez S, Jain VK (2020) L-cysteine modified silver nanoparticles for selective and sensitive colorimetric detection of vitamin B1 in food and water samples. Heliyon 6(2):e03423

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Cha SH (2014) Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer-based nanocomposites for food packaging films: Effects of nanoclay loading. J Appl Polym Sci 131(11):40289

    Article  CAS  Google Scholar 

  • Kim HJ, Bennetto HP, Halablab MA, Choi C, Yoon S (2006) Performance of an electrochemical sensor with different types of liposomal mediators for the detection of hemolytic bacteria. Sens Actuators B Chem 119:143–149

    Article  CAS  Google Scholar 

  • Koubova V, Brynda E, Karasova L, Škvor J, Homola DJ, Tobiška P, Rošický J (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens Actuators B Chem 74:100–105

    Article  CAS  Google Scholar 

  • Kumar A, Purohit B, Maurya PK, Pandey LM, Chandra P (2019) Engineered nanomaterial assisted signal-amplification strategies for enhancing analytical performance of electrochemical biosensors. Electroanalysis 31(9):1615–1629

    Article  CAS  Google Scholar 

  • Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090

    Article  CAS  PubMed  Google Scholar 

  • Lerga TM, Skouridou V, Bermudo MC, Bashammakh AS, El-Shahawi MS, Alyoubi AO, O’Sullivan CK (2020) Gold nanoparticle aptamer assay for the determination of histamine in foodstuffs. Microchim Acta 187(8):1–9

    Article  CAS  Google Scholar 

  • Li T, Jin L, Feng K, Yang T, Yue X, Wu B, Ding S, Liang X, Huang G, Zhang J (2020) A novel low-field NMR biosensor based on dendritic superparamagnetic iron oxide nanoparticles for the rapid detection of Salmonella in milk. LWT 133:110149

    Article  CAS  Google Scholar 

  • Lin X, Ni Y, Kokot S (2013) Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal Chim Acta 765:54–62

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2(9):1825–1832

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Yang L, Su X, Li Y (2006) A nanoparticle amplificationbased quartz crystal microbalance DNA sensor for detection ofEscherichia coliO157:H7. BiosensBioelectron 21:1178–1185

    Article  CAS  Google Scholar 

  • Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 18(41):R635–R666

    Article  CAS  Google Scholar 

  • McClements D (2005) Food Emulsions: Principles, Practices, and Techniques. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • McClements DJ, Rao J (2011) Food-Grade Nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330

    Article  CAS  PubMed  Google Scholar 

  • Messaoud NB, Ghica ME, Dridi C, Ali MB, Brett CM (2017) Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens Actuators B Chem 253:513–522

    Article  CAS  Google Scholar 

  • Mokhtari S, Jafari SM, Assadpour E (2017) Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate. Food Chem 229:286–295

    Article  CAS  PubMed  Google Scholar 

  • Moshahary S, Mishra P (2021) Synthesis of silver nanoparticles (AgNPs) using culinary banana peel extract for the detection of melamine in milk. J Food Sci Tech 58(2):797–804

    Article  CAS  Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Tech 4:39–47

    Article  CAS  Google Scholar 

  • Oh SY, Lee MJ, Heo NS, Kim S, Oh JS, Lee Y, Jeon EJ, Moon H, Kim HS, Park TJ, Moon G (2019) Cuvette-type LSPR sensor for highly sensitive detection of melamine in infant formulas. Sensors 19(18):3839

    Article  CAS  PubMed Central  Google Scholar 

  • Oleyaei SA, Almasi H, Ghanbarzadeh B, Moayedi AA (2016) Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: thermal, mechanical and barrier properties. CarbohydrPolym 152:253–262

    CAS  Google Scholar 

  • Ozdemir C, Yeni F, Odaci D, Timur S (2010) Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 119(1):380–385

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127

    Article  CAS  Google Scholar 

  • Polo E, del Pino P, Pelaz B, Grazu V, Jesus M (2013) Plasmonic-driven thermal sensing: ultralow detection of cancer markers. Chem Commun 49(35):3676–3678

    Article  CAS  Google Scholar 

  • Primožič M, Knez Ž, Leitgeb M (2021) (Bio) Nanotechnology in food science—Food packaging. Nano 11(2):292

    Google Scholar 

  • Purohit B, Vernekar PR, Shetti NP, Chandra P (2020) Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors Int 1:100040

    Article  Google Scholar 

  • Rai M, Ingle A (2015) Role of nanotechnology in agriculture with special reference to management of insect pests. Applied MicrobiolBiot 94(2):287–293

    Google Scholar 

  • Raju, K. V. R., Yoshihisa, O (2002) Report of the APO. Seminar on Quality Control for Processed Food held in the Republic of China, 2002; 02-AG-GE-SEM-02

    Google Scholar 

  • Ran R, Sun Q, Baby T, Wibowo D, Middelberg APJ, Zhao CX (2017) Multiphase microfluidic synthesis of micro- and nanostructures for pharmaceutical applications. Chem Eng Sci 169:78–96

    Article  CAS  Google Scholar 

  • Rasooly A, Herold KE (2006) Biosensors for the analysis of food- and waterborne pathogens and their toxins. J AOAC Int 89:873–883

    Article  CAS  PubMed  Google Scholar 

  • Rattanata N, Klaynongsruang S, Leelayuwat C, Limpaiboon T, Lulitanond A, Boonsiri P, Chio-Srichan S, Soontaranon S, Rugmai S, Daduang J (2016) Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens. Int J Nanomedicine 11:3347–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol: Phys Chem 1(2):P72–P96

    Article  Google Scholar 

  • Rehman A, Jafari SM, Aadil RM, Assadpour E, Randhawa MA, Mahmood S (2020) Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci Technol 101:106–121

    Article  CAS  Google Scholar 

  • Robertson GL (2006) Food packaging: principles and practice. CRC Press, Boca Raton

    Google Scholar 

  • Roy S, Malode SJ, Shetti NP, Chandra P (2019) Modernization of biosensing strategies for the development of lab-on-chip integrated systems. In: Krishnaraj RN, Sani RK (eds) Bioelectrochemical interface engineering. John Wiley & Sons, pp 325–342

    Chapter  Google Scholar 

  • Sadeghi R, Mehryar L, Karimi M, Kokini J (2017) Nanocapsule formation by individual biopolymer nanoparticles. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press, pp 404–446

    Chapter  Google Scholar 

  • Saini A, Panesar PS, Bera MB (2019) Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour Bioprocess 6(1):1–2

    Article  Google Scholar 

  • Saini A, Panwar D, Panesar PS, Bera MB (2020) Encapsulation of functional ingredients in lipidic nanocarriers and antimicrobial applications: a review. Environ Chem Lett:1–28

    Google Scholar 

  • Sandros MG, Shete V, Benson DE (2006) Selective, reversible, reagentless maltose biosensing with core–shell semiconducting nanoparticles. Analyst 131(2):229–235

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan S, Raj S, Sonawane S, Sonawane S, Pinjari D, Pandit AB, Saudagar P (2019) Nanomaterial synthesis: chemical and biological route and applications. In: Pottathara YB, Thomas S, Kalarikkal N, Grohens Y, Kokol V (eds) Nanomaterials synthesis: design, fabrication and applications. Elsevier, pp 27–51

    Chapter  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. IJSAF 15(2):22–44

    Google Scholar 

  • Seddaoui N, Amine A (2020) A sensitive colorimetric immunoassay based on poly (dopamine) modified magnetic nanoparticles for meat authentication. LWT 122:109045

    Article  CAS  Google Scholar 

  • Selvakumar LS, Ragavan KV, Abhijith KS, Thakur MS (2013) Immunodipstick based gold nanosensor for vitamin B 12 in fruit and energy drinks. Anal Methods 5(7):1806–1810

    Article  CAS  Google Scholar 

  • Şenocak A (2020) Fast, simple and sensitive determination of coumaric acid in fruit juice samples by magnetite nanoparticles-zeolitic imidazolate framework material. Electroanalysis 32(10):2330–2339

    Article  CAS  Google Scholar 

  • Sharpe E, Frasco T, Andreescu D, Andreescu S (2013) Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac). Analyst 138(1):249–262

    Article  CAS  PubMed  Google Scholar 

  • Shrivas K, Naik W, Kumar D, Singh D, Dewangan K, Kant T, Yadav S, Jaiswal N (2021) Experimental and theoretical investigations for selective colorimetric recognition and determination of arginine and histidine in vegetable and fruit samples using bare-AgNPs. Microchem J 160:105597

    Article  CAS  Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782

    Article  CAS  Google Scholar 

  • Sonneville-Aubrun O, Simonnet JT, L'alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interf Sci 108:145–149

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Dev A, Karmakar S (2018) Nanosensors and nanobiosensors in food and agriculture. Environ Chem Lett 16(1):161–182

    Article  CAS  Google Scholar 

  • Steinvil A, Zhang YJ, Lee SY, Pang S, Waksman R, Chen SL, Garcia-Garcia HM (2016) Intravascular ultrasound-guided drug-eluting stent implantation: an updated meta-analysis of randomized control trials and observational studies. Int J Cardiol 216:133–139

    Article  PubMed  Google Scholar 

  • Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interf Sci 108:303–318

    Article  CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceeding of the International Conference on Production Engineering, Tokyo, pp 18–23

    Google Scholar 

  • Tapia-Hernández JA, Rodríguez-Félix F, Katouzian I (2017) Nanocapsule formation by electrospraying. In: Jafari SM (ed) . Nanoencapsulation technologies for the food and nutraceutical industries, Academic Press, pp 320–345

    Google Scholar 

  • Terzi F, Zanfrognini B, Ruggeri S, Dossi N, Casagrande GM, Piccin E (2017) Amperometric paper sensor based on Cu nanoparticles for the determination of carbohydrates. Sens Actuators B Chem 245:352–358

    Article  CAS  Google Scholar 

  • Thomas EJ, King RK, Burchak J, Gannon VP (1991) Sensitive and specific detection of Listeria monocytogenes in milk and ground beef with the polymerase chain reaction. Appl Environ Microbiol 57:2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga M, Nomura S, Taniguchi I (2009) D-Fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode. Biosens Bioelectron 24(5):1184–1188

    Article  CAS  PubMed  Google Scholar 

  • Tunesi MM, Kalwar N, Abbas MW, Karakus S, Soomro RA, Kilislioglu A, Abro MI, Hallam KR (2018) Functionalised CuO nanostructures for the detection of organophosphorus pesticides: a non-enzymatic inhibition approach coupled with nano-scale electrode engineering to improve electrode sensitivity. Sens Actuators B Chem 260:480–489

    Article  CAS  Google Scholar 

  • Vaisocherová-Lísalová H, Víšová I, Ermini ML et al (2016) Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens Bioelectron 80:84–90

    Article  PubMed  CAS  Google Scholar 

  • Valdés MG, González AC, Calzón JA, Díaz-García ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166(1–2):1–9

    Article  CAS  Google Scholar 

  • Valdivieso-Garcia A, Riche E, Abubakar O, Waddell TE, Brooks BW (2001) A double antibody sandwich enzyme-linked immunosorbent assay for the detection of Salmonella using biotinylated monoclonal antibodies. J Food Protect 64:1166–1171

    Article  CAS  Google Scholar 

  • Varshney M, Li Y (2007) Interdigitated array microelectrodebased impedance biosensor coupled with magnetic nanoparticle–antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron 22:2408–2414

    Article  CAS  PubMed  Google Scholar 

  • Vyas SS, Jadhav SV, Majee SB, Shastri JS, Patravale VB (2015) Development of immunochromatographic strip test using fluorescent, micellar silica nanosensors for rapid detection of B. abortus antibodies in milk samples. Biosens Bioelectron 70:254–260

    Article  CAS  PubMed  Google Scholar 

  • Walia N, Dasgupta N, Ranjan S, Ramalingam C, Gandhi M (2019) Methods for nanoemulsion and nanoencapsulation of food bioactives. Environ Chem Lett. https://doi.org/10.1007/s10311-019-00886-w

  • Wang JJ, Liu BH, Hsu YT, Yu FY (2011) Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control 22:964–969

    Article  CAS  Google Scholar 

  • Wang J, Wang Z, Liu J, Li H, Li QX, Li J, Xu T (2013) Nanocolloidal gold-based immuno-dip strip assay for rapid detection of Sudan red I in food samples. Food Chem 136(3-4):1478–1483

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wu X, Wang C, Rong Z, Ding H, Li H, Li S, Shao N, Dong P, Xiao R, Wang S (2016) Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl Mater Interfaces 8(31):19958–19967

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Hu L, Zhao K, Deng A, Li J (2018a) Multiple signal amplification electrochemiluminescent immunoassay for Sudan I using gold nanorods functionalized graphene oxide and palladium/aurum core-shell nanocrystallines as labels. Electrochim Acta 278:352–362

    Article  CAS  Google Scholar 

  • Wang Y, Zhang P, Fu W, Zhao Y (2018b) Morphological control of nanoprobe for colorimetric antioxidant detection. Biosens Bioelectron 122:183–188

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Liu T, Pu H, Sun DW (2020a) Development of a fluorescent microwave-assisted synthesized carbon dots/Cu2+ probe for rapid detection of tea polyphenols. J Food Process Eng 43(7):e13419

    Article  CAS  Google Scholar 

  • Wei S, Wang X, Pang B, Li H, Shi X, Zhao C, Li J, Wang J (2020b) Analyte-triggered autoacceleration of 4-mercaptophenylboronic acid-mediated aggregation of silver nanoparticles for facile and one-step ratiometric colorimetric method for detection of ascorbic acid. Microchem J 158:105122

    Article  CAS  Google Scholar 

  • WHO Global burden of foodborne diseases (2015)

    Google Scholar 

  • Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolorupconversion nanoparticles labels. Anal Chem 86(6):3100–3107

    Article  CAS  PubMed  Google Scholar 

  • Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ, Plaxco KW (2010) Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci 107(24):10837–10841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhou J, Zhang H, Gai P, Zhang X, Chen J (2013) Electrochemical evaluation of total antioxidant capacities in fruit juice based on the guanine/graphene nanoribbon/glassy carbon electrode. Talanta 106:206–211

    Article  CAS  PubMed  Google Scholar 

  • Yao DS, Wen SM, Liu DL, Xie CF, Bai Y, Ran YH (2004) The primary study on the detection of sterigmatocystin by biologic enzyme electrode modified with the multiwall carbon nanotubes. Sheng Wu Gong Cheng Xue Bao 20(4):601–606

    CAS  PubMed  Google Scholar 

  • Zamolo VA, Valenti G, Venturelli E, Chaloin O, Marcaccio M, Boscolo S, Castagnola V, Sosa S, Berti F, Fontanive G, Poli M (2012) Highly sensitive electrochemiluminescentnanobiosensor for the detection of palytoxin. ACS Nano 6(9):7989–7997

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yin AX, Jiang R, Rong J, Dong L, Zhao T, Sun LD, Wang J, Chen X, Yan CH (2013a) Time–Temperature indicator for perishable products based on kinetically programmable Ag overgrowth on Au nanorods. ACS Nano 7(5):4561–4568

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Lin M, Zhang S, Vardhanabhuti B (2013b) Detection of aflatoxin M1 in milk by dynamic light scattering coupled with superparamagnetic beads and gold nanoprobes. J Agric Food Chem 61(19):4520–4525

    Article  CAS  PubMed  Google Scholar 

  • Zhong M, Yang L, Yang H, Cheng C, Deng W, Tan Y, Xie Q, Yao S (2019) An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157: H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens Bioelectron 126:493–500

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, A., Panwar, D., Panesar, P.S., Chandra, P. (2022). Potential of Nanotechnology in Food Analysis and Quality Improvement. In: Chandra, P., Panesar, P.S. (eds) Nanosensing and Bioanalytical Technologies in Food Quality Control. Springer, Singapore. https://doi.org/10.1007/978-981-16-7029-9_8

Download citation

Publish with us

Policies and ethics