Skip to main content

RNA Interference Technology in Plants: Mechanisms and Applications in Crop Improvement

  • Chapter
  • First Online:
Plant Genomics for Sustainable Agriculture

Abstract

Scientific breakthroughs in recent times have brought major advances in fundamental research, which eventually lead to their utilization for human welfare. One such discovery is of RNA interference (RNAi), in which double-stranded RNA (dsRNA) hinders gene expression, usually by binding to messenger RNA (mRNA) and triggering its degradation. Among the various biotechnological tools currently available, RNAi has been playing a significant role in crop improvement as it guarantees greater accuracy and fidelity to plant improvement. The invention of this phenomenon has changed it into a potent tool of genetic engineering and functional genomics. RNAi technology gives us an explicit methodology for downregulation of gene of interest without inhibiting the expression of any other gene in the plant. RNAi has been successfully applied in different plants to bring about modifications of numerous desirable traits. Nutritional improvements have led to the activation of defence mechanism against biotic and abiotic stresses. Alteration in morphology, reduced content of food allergens, crafting male sterility, enhanced secondary metabolite synthesis and production of seedless plant varieties are some of the other advantages of RNAi. In spite of these advantages, crop plants developed by RNAi strategy may generate biosafety risks. So, there is a need for risk assessment of genetically modified crops in order to make RNAi a better tool to develop crops probably with less biosafety issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aly R, Cholakh H, Joel DM, Leibman D, Steinitz B, Zelcer A, Naglis A, Yarden O, Gal-On A (2009) Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnol J 7:487–498

    Article  CAS  PubMed  Google Scholar 

  • Andika IB, Kondo H, Tamada T (2005) Evidence that RNA silencing mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. Mol Plant-Microbe Interact 18:194–204

    Article  CAS  PubMed  Google Scholar 

  • Angaji SA, Hedayati SS, Hoseinpoor R, Samadpoor S, Shiravi S, Madani S (2010) Application of RNA interference in plants. Plant Omics J 3:77–84

    CAS  Google Scholar 

  • Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgio JF (2009) RNA interference (RNAi) technology: a promising tool for medicinal plant research. J Med Plant Res 3:1176–1183

    CAS  Google Scholar 

  • Bosher JM, Labouesse M (2000) RNA interference: genetic wand and genetic watchdog. Nat Cell Biol 2(2):E31

    Article  CAS  PubMed  Google Scholar 

  • Bucher E, Lohius D, van Poppel PM, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:697–701

    Article  CAS  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Wu Z, Jiang F, Zhou R, Yang Z (2014) Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics 15:1130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choubey A, Rajam MV (2017) Transcriptome response and developmental implications of RNAimediated ODC knockdown in tobacco. Funct Integr Genomics. https://doi.org/10.1007/s10142-016-0539-3

  • Chuck GS, Tobias C, Sun L, Kraemer F, Li C, Dibble D, Arora R, Bragg JN, Vogel JP, Singh S, Simmons BA, Pauly M, Hake S (2011) Overexpression of the maize corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proc Natl Acad Sci U S A 108:17,550–17,555

    Article  CAS  Google Scholar 

  • Da-Hong L, Hui L, Yan-li Y, Ping-ping Z, Jian-sheng L (2009) Down regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci 16:14–20

    Article  Google Scholar 

  • Davuluri GR, Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowle C (2005) Fruit-specific RNAimediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  CAS  PubMed  Google Scholar 

  • De Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 5:160–170

    Article  CAS  Google Scholar 

  • Denna DW (1973) Effect of genetic parthenocarpy and gynoecious flowering habit on fruit production and growth of cucumber, Cucumis sativus L. J Am Soc Hortic Sci 98:602–604

    Google Scholar 

  • Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM (2008) Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotech J 6:135–145

    Article  CAS  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38(2):258–263

    Article  CAS  PubMed  Google Scholar 

  • Duvick DN (1999) Heterosis: feeding people and protecting natural resources. In: Coors JG, Pandey S (eds) Genetics and exploitation of heterosis in crops. American Society of Agronomy/Crop Science Society of America, Madison, pp 19–29

    Google Scholar 

  • Eck JV, Conlin B, Garvin DF, Mason H, Navarre DA, Brown CR (2007) Enhanced beta-carotene content in potato via RNAi silencing of the beta-carotene hydroxylase gene. Am J Potato Res 84:11,331–11,342

    Google Scholar 

  • Enrique R, Siciliano F, Favaro MA, Gerhardt N, Roeschlin R, Rigano L, Sendin L, Castagnaro A, Vojnov A, Marano MR (2011) Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. Citri Plant Biotechnol J 9:394–407

    Article  CAS  PubMed  Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    Article  CAS  PubMed  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98(23):13,437–13,442

    Article  CAS  Google Scholar 

  • Escobar MA, Leslie CA, McGranahan GH, Dandekar AM (2002) Silencing crown gall disease in walnut ( Juglans regia L.). Plant Sci 163:591–597

    Article  CAS  Google Scholar 

  • Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Falavigna A, Soressi GP (1987) Influence of the pat-sha gene on plant and fruit traits in tomato (L. esculentum Mill.). In: Modern trends in tomato genetics and breeding, p 128. Proceedings of the 10th meeting of the EUCARPIA tomato working group FAO (2000). The state of food insecurity in the world 2000. FAO, Rome

    Google Scholar 

  • Feldmann KA (2006) Steroid regulation improves crop yield. Nat Biotechnol 24:46–47

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391:806–881

    Article  CAS  PubMed  Google Scholar 

  • Flores T, Karpova O, Su X, Zeng P, Bilyeu K, Sleper DA, Nguyen HT, Zhang ZJ (2008) Silencing of GmFAD3 gene by siRNA leads to low alpha-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 17:839–850

    Article  CAS  PubMed  Google Scholar 

  • Fujii N, Inui T, Iwasa K, Morishige T, Sato F (2007) Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res 16:363–375

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Zhang M, Zhao Y, He X, Ding C, Wang S, Feng Y, Song X, Li P, Wang B (2017) Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Front Plant Sci 8:1–13

    Google Scholar 

  • Fukusaki E, Kawasaki K, Kajiyama S, An CI, Suzuki K, Tanaka Y, Kobayashi A (2004) Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J Biotechnol 111:229–240

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie F, Zhang B (2016) A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep 6:19,736

    Article  CAS  Google Scholar 

  • Gavilano LB, Coleman NP, Burnley L, Bowman M, Kalengamaliro N, Hayes A, Bush LP, Siminszky B (2006) Genetic engineering of Nicotiana tabacum for reduced nornicotine content. J Agric Food Chem 54:9071–9078

    Article  CAS  PubMed  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014) Host induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J 12(5):541–553

    Article  CAS  PubMed  Google Scholar 

  • Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92

    Article  CAS  PubMed  Google Scholar 

  • Gilissen LJ, Bolhaar ST, Matos CI, Rouwendal GJ, Boone MJ, Krens FA, Zuidmeer L, Van Leeuwen A, Akkerdaas J, Hoffmann Sommergruber K, Knulst AC, Bosch D, Van de Weg WE, Van Ree R (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 119:384–390

    Google Scholar 

  • Gupta OP, Meena NL, Sharma I, Sharma P (2014) Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Mol Biol Rep 41:4623–4629

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  • Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N (2016) MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns 20:88–98

    Article  CAS  PubMed  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Hecht SS (1998) Biochemistry, biology and carcinogenicity of tobacco specific N-nitrosamines. Chem Res Toxicol 11:559–603

    Article  CAS  PubMed  Google Scholar 

  • Herman EM, Helm RM, Jung R, Kinney AJ (2003) Genetic modification removes an immunodominant allergen from soybean. Plant Physiol 132:36–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez I, Chacon O, Rodriguez R, Portieles R, Pujol YLM, Borras-Hidalgo O (2009) Black shank resistant tobacco by silencing of glutathione S-transferase. Biochem Biophys Res Commun 387:300–304

    Article  CAS  PubMed  Google Scholar 

  • Hily JM, Ravelonandro M, Damsteegt V, Basset C, Petri C, Liu Z, Scorza R (2007) Plum pox virus coat protein gene intron-hairpin-RNA (ihpRNA) constructs provide resistance to plum pox virus in Nicotiana benthamiana and Prunus domestica. J Am Soc Hortic Sci 132:850–858

    Article  CAS  Google Scholar 

  • Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313

    Article  CAS  Google Scholar 

  • Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, Barakat A, Sunkar R (2016) Characterization of drought- and heat-responsive microRNAs in switchgrass. Plant Sci 242:214–223

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103:14,302–14,306

    Article  CAS  Google Scholar 

  • Husken A, Baumert A, Milkowski C, Becker HC, Strack D, Mollers C (2005) Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Genet 111:1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161:1202–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen K, Bak S, Busk PK, Sorensen C, Olsen CE, Puonti-Kaerlas J, Moller BL (2005) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Plant Physiol 139:363–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamachi S, Mochizuki A, Nishiguchi M, Tabei Y (2007) Transgenic Nicotiana benthamiana plants resistant to cucumber green mottle mosaic virus based on RNA silencing. Plant Cell Rep 26:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas JA, Zhu J, Staskawicz BJ, Jin H (2007) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103:47–52

    Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera FA, Holton T, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Guo-Qing Tao S, Nehra N, Chin-Yi Lu K, Dyson B, Tsuda S, Ashikari T, Kusumi TG, Mason J, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating Delphinidin. Plant Cell Physiol 48(11):1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Ketting RF (2011) The many faces of RNAi. Dev Cell 20:148–161

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Lee YH, Kim HS, Kim MS, Hahn KW, Ko JH, Joung H, Jeon JH (2008) Development of patatin knockdown potato tubers using RNA interference (RNAi) technology, for the production of human-therapeutic glycoproteins. BMC Biotechnol 8:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S, Srinivasan R, Jain PK (2014) Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS One 9:e108851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krubphachaya P, Jurˇícˇek M, Kertbundit S (2007) Induction of RNAmediated resistance to papaya ring spot virus type W. J Biochem Mol Biol 40:401–411

    Google Scholar 

  • Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169:1664–1672

    Article  CAS  PubMed  Google Scholar 

  • Kumar RR, Pathak H, Sharma SK, Kala YK, Nirjal MK, Singh GP, Goswami S, Rai RD (2015) Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Funct Integr Genomics 15:323–348

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Mundiyara R, Jitarwal RC (2017) RNA interference: new approach of gene silencing in plants. Int J Pure Appl Biosci 5(3):421–425

    Article  Google Scholar 

  • Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T (2003) Low glutelin content 1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le LQ, Mahler V, Lorenz Y, Scheurer S, Biemelt S, Vieths S, Sonnewald U (2006) Reduced allergenicity of tomato fruits harvested from Lyc e 1-silenced transgenic tomato plants. J Allergy Clin Immunol 118:1176–1183

    Article  CAS  PubMed  Google Scholar 

  • Li JC, Guo JB, Xu WZ, Ma M (2007) RNA interference-mediated silencing of phytochelatin synthase gene reduces cadmium accumulation in rice seeds. J Integr Plant Biol 49:1032–1037

    Article  CAS  Google Scholar 

  • Li J, Wu LQ, Zheng WY, Wang RF, Yang LX (2015) Genome-wide identification of microRNAs responsive to high temperature in rice (Oryza sativa) by high-throughput deep sequencing. J Agron Crop Sci 201:379–388

    Article  CAS  Google Scholar 

  • Li C, Li Y, Bai L, He C, Yu X (2016) Dynamic expression of miRNAs and their targets in the response to drought stress of grafted cucumber seedlings. Hortic Plant J 2:41–49

    Article  Google Scholar 

  • Liu S, Geng S, Li A, Mao Y, Mao L (2021) RNAi technology for plant protection and its application in wheat. aBIOTECH. https://doi.org/10.1007/s42994-021-00036-3

  • Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63:163–175

    Article  CAS  PubMed  Google Scholar 

  • Mangrauthia SK, Bhogireddy S, Agarwal S, Prasanth VV, Voleti SR, Neelamraju S, Subrahmanya D (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68:2399–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A (2010) Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc Natl Acad Sci U S A 107:2413–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    Article  CAS  Google Scholar 

  • Mittal D, Sharma N, Sharma V, Sopory SK, Sanan-Mishra N (2016) Role of microRNAs in rice plant under salt stress. Ann Appl Biol 168:2–18

    Article  CAS  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Ann Rev Plant Biol 61:443–462

    Article  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz-ul-Rehman MS, Mansoor S, Khan AA, Zafar Y, Briddon RW (2007) RNAi-mediated male sterility of tobacco by silencing TA29. Mol Biotechnol 36:159–165

    Article  CAS  PubMed  Google Scholar 

  • Nishihara M, Nakatsuka T, Yamamura S (2005) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett 579:6074–6078

    Article  CAS  PubMed  Google Scholar 

  • Nishihara M, Nakatsuka T, Hosokawa K, Yokoi T, Abe Y, Mishiba K, Yamamura S (2006) Dominant inheritance of white-flowered and herbicide-resistant traits in transgenic gentian plants. Plant Biotechol 23:25–31

    Article  CAS  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H (2003) RNA interference: producing decaffeinated coffee plants. Nature 423:823

    Article  CAS  PubMed  Google Scholar 

  • Ogita S, Uefuji H, Morimoto M, Sano H (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931–941

    Article  CAS  PubMed  Google Scholar 

  • Pooggin M, Shivaprasad PV, Veluthambi K, Hohn T (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132

    Article  CAS  PubMed  Google Scholar 

  • Rajam MV (2012) Host induced silencing of fungal pathogen genes: an emerging strategy for disease control in crop plants. Cell Dev Biol 1:1

    Article  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2013) Identification and characterization of salt-responsive microRNAs in Populus tomentosa by high-throughput sequencing. Biochimie 95:743–750

    Article  CAS  PubMed  Google Scholar 

  • Riechen J (2007) Establishment of broad-spectrum resistance against Blumeria graminis f. sp. tritici in Triticum aestivum by RNAi mediated knock-down of MLO. J Verbr Leb 2:120

    Article  Google Scholar 

  • Rodoni BC, Dale JL, Harding RM (1999) Characterization and expression of the coat protein-coding region of the banana bract mosaic potyvirus, development of diagnostic assays and detection of the virus in banana plants from five countries in Southeast Asia. Arch Virol 144:1725–1737

    Article  CAS  PubMed  Google Scholar 

  • Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 22:3343–3353

    Article  Google Scholar 

  • Rubinelli PM, Chuck G, Li X, Meilan R (2013) Constitutive expression of the corn-grass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass Bioenergy 54:312–321

    Article  CAS  Google Scholar 

  • Saha K, Mishra S (2018) RNA interference technology: a novel approach for fruit and vegetable crop improvement. Res J Agri Sci 10(1):01–07

    CAS  Google Scholar 

  • Sano T, Matsuura Y (2004) Accumulation of short interfering RNAs characteristic of RNA silencing precedes recovery of tomato plants from severe symptoms of potato spindle tuber viroid infection. J Gen Plant Pathol 70:50–53

    Article  CAS  Google Scholar 

  • Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239:543-5641-297

    Article  CAS  Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395

    Article  CAS  Google Scholar 

  • Shimizu T, Yoshii M, Wei T, Hirochika H, Omura T (2009) Silencing by RNAi of the gene for Pns12, a viroplasm matrix protein of Rice dwarf virus, resulted in strong resistance of transgenic rice plants to the virus. Plant Biotechnol J 7:24–32

    Article  CAS  PubMed  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:8173389–8173817

    Article  Google Scholar 

  • Sicherer SH, Sampson HA (2010) Food allergy. J Allergy Clin Immunol 125:116–125

    Article  Google Scholar 

  • Simon-Mateo C, Garcia JA (2011) Antiviral strategies in plants based on RNA silencing. Biochim Biophys Acta 1809:722–731

    Article  CAS  PubMed  Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Rajam MV (2013) RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility. Plant Mol Biol 82:169–180

    Article  CAS  PubMed  Google Scholar 

  • Spencer PS, Roy DN, Ludolph A, Hugon J, Dwivedi MP, Schaumburg HH (1986) Lathyrism: evidence for role of the neuroexcitatory aminoacid BOAA. Lancet 2:1066–1067

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated micro RNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10:5350–5369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tehseen M, Imran M, Hussain M, Irum S, Ali S, Mansoor S, Zafar Y (2010) Development of male sterility by silencing Bcp1 gene of Arabidopsis through RNA interference. Afr J Biotechnol 9:2736–2741

    CAS  Google Scholar 

  • Tenllado F, Martínez-García B, Vargas M, Díaz-Ruíz JR (2003) Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol 3:3–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tomes DT (1997) Seedless hopes bode well for winter vegetables. Nat Biotechnol 15:1344–1345

    Article  CAS  PubMed  Google Scholar 

  • Tucker G (2003) Nutritional enhancement of plants. Curr Opin Biotechnol 14:221–225

    Article  CAS  PubMed  Google Scholar 

  • Van Uyen N (2006) Novel approaches in plants breeding RNAi technology. Proceedings of International Workshop on Biotechnology in Agriculture 12–16

    Google Scholar 

  • Vanderschuren H, Alder A, Zhang P, Gruissem W (2009) Dose dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 64:549–557

    Article  CAS  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2003) Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc Natl Acad Sci U S A 100:9632–9636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358

    Article  CAS  PubMed  Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang Q, Zhang B (2013) Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 530:26–32

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Graham WMB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13,959–13,964

    Article  CAS  Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) Biotechnology and ecology-the ecological risks and benefits of genetically engineered plants. Science 290:2088–2093

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Stewart CN, Taki FA, He Q, Liu H, Zhang B (2014) High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnol J 12:354–366

    Article  CAS  PubMed  Google Scholar 

  • Xiong A, Yao Q, Peng R, Li X, Han P, Fan H (2005) Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23:639–646

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Liu N, Mao W, Hu Q, Wang G, Gong Y (2016) Identification of chilling-responsive microRNAs and their targets in vegetable soybean (Glycine max L.). Sci Rep 6:26,619

    Article  CAS  Google Scholar 

  • Yang X, Zhao Y, Xie D, Sun Y, Zhu X, Esmaeili N, Yang Z, Wang Y, Yin G, Lv S, Nie L, Tang Z, Zhao F, Li W, Mishra N, Sun L, Zhu W, Fang W (2016) Identification and functional analysis of microRNAs involved in the anther development in cotton genic male sterile line Yu98-8A. Int J Mol Sci 17:1677

    Article  PubMed Central  CAS  Google Scholar 

  • Yang S, Dai Y, Chen Y, Yang J, Yang D, Liu Q, Jian H (2019) A novel G16B09-like effector from Heterodera avenae suppresses plant defenses and promotes parasitism. Front Plant Sci 10:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Jing F, Li F, Li M, Wang Y, Wang G, Sun X, Tang K (2009) Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol Appl Biochem 52:199–207

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Yang J, Wang Z, Wen Y, Wang J, He W, Liu B, Si H, Wang D (2014) Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS One 9(4):e95489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Luo X, Zhou Y, Xie J (2016a) Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.). Biotechnol Lett 38:711–721

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xie Y, Xu L, Wang Y, Zhu X, Wang R, Zhang Y, Muleke EM, Liu L (2016b) Identification of microRNAs and their target genes explores miRNA-mediated regulatory network of cytoplasmic male sterility occurrence during anther development in radish (Raphanus sativus L.). Front Plant Sci 7:1054

    PubMed  PubMed Central  Google Scholar 

  • Zhao MM, An DR, Zhao J, Huang G, He Z, Chen J (2006) Transiently expressed short hairpin RNA targeting 126 kDa protein of tobacco mosaic virus interferes with virus infection. Acta Biochim Biophys Sin 38:22–28

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Deng XW (2012) A non-coding RNA locus mediates environment-conditioned male sterility in rice. Cell Res 22:791–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuidmeer L, Goldhahn K, Rona RJ, Gislason D, Madsen C, Summers C, Sodergren E, Dahlstrom J, Lindner T, Sigurdardottir ST, McBride D, Keil T (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121:1210–1218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Priyanka Gautam acknowledges financial support from University of Allahabad, Allahabad, India in the form of UGC- CRET research fellowship. All the authors also acknowledge DST-FIST and UGC-SAP facility of the Department of Biochemistry, University of Allahabad, Prayagraj, India.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, P., Kumar, R., Feroz, Z., Vijayaraghavalu, S., Kumar, M. (2022). RNA Interference Technology in Plants: Mechanisms and Applications in Crop Improvement. In: Singh, R.L., Mondal, S., Parihar, A., Singh, P.K. (eds) Plant Genomics for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-16-6974-3_10

Download citation

Publish with us

Policies and ethics