Skip to main content

Nanocellulose-Based (Bio)composites for Optoelectronic Applications

  • Living reference work entry
  • First Online:
Handbook of Biopolymers
  • 23 Accesses

Abstract

Electronic devices frequently include flexible circuit boards, and soon the substrate of picture displays will be composed of flexible materials as well. Due to their innate flexibility and optical properties, plastics are potential choices; however, they also have significant thermal expansion. To prevent damage during the thermal cycles required in the production of the display, the substrate’s expansion needs to be compatible with that of the active layers that have been placed on it. Reinforcing plastics with nanofibers is one method of lowering the thermal expansion of those materials without significantly reducing transparency. In nature, the primary source of cellulose is plants and animals which is the major source of nanofibers. Here are some of the researches to produce optically transparent composites based on natural nanofibers for use in flexible displays are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • K. Abe, S. Iwamoto, H. Yano, Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10), 3276–3278 (2007)

    Article  CAS  Google Scholar 

  • M.S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 40(3), 353–366 (2005)

    Article  Google Scholar 

  • R.H. Atalla, D.L. Vanderhart, Native cellulose: a composite of two distinct crystalline forms. Science 223(4633), 283–285 (1984)

    Article  CAS  Google Scholar 

  • H.S. Barud, J.M. Caiut, J. Dexpert-Ghys, Y. Messaddeq, S.J. Ribeiro, Transparent bacterial cellulose–boehmite–epoxi-siloxane nanocomposites. Compos. A: Appl. Sci. Manuf. 43(6), 973–977 (2012)

    Article  CAS  Google Scholar 

  • Q.K. Beg, B. Bhushan, M. Kapoor, G.S. Hoondal, Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzym. Microb. Technol. 27(7), 459–466 (2000)

    Article  CAS  Google Scholar 

  • C. Boisset, C. Fraschini, Martin Schülein, Bernard Henrissat, and Henri Chanzy., Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl. Environ. Microbiol. 66(4), 1444–1452 (2000)

    Article  CAS  Google Scholar 

  • B. Deepa, E. Abraham, N. Cordeiro, M. Mozetic, A.P. Mathew, K. Oksman, M. Faria, S. Thomas, L.A. Pothan, Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose 22(2), 1075–1090 (2015)

    Article  CAS  Google Scholar 

  • S. Demirci, A. Celebioglu, T. Uyar, Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr. Polym. 113, 200–207 (2014)

    Article  CAS  Google Scholar 

  • W.K. Dodds, D.A. Gudder, The ecology of Cladophora. J. Phycol. 28(4), 415–427 (1992)

    Article  Google Scholar 

  • D. Dupeyre, M.R. Vignon, Fibres from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 14(3), 251–260 (1998)

    Article  Google Scholar 

  • S.J. Eichhorn, C.A. Baillie, N. Zafeiropoulos, L.Y. Mwaikambo, M.P. Ansell, A.A. Dufresne, K.M. Entwistle, P.J. Herrera-Franco, G.C. Escamilla, L. Groom, M. Hughes, Current international research into cellulosic fibres and composites. J. Mater. Sci. 36(9), 2107–2131 (2001)

    Article  CAS  Google Scholar 

  • S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45(1), 1–33 (2010)

    Article  CAS  Google Scholar 

  • S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428(6986), 911–918 (2004)

    Article  CAS  Google Scholar 

  • S. Fujisawa, T. Ikeuchi, M. Takeuchi, T. Saito, A. Isogai, Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13(7), 2188–2194 (2012)

    Article  CAS  Google Scholar 

  • H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, A. Isogai, Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1), 162–165 (2009)

    Article  CAS  Google Scholar 

  • N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32(8-9), 876–921 (2007)

    Article  CAS  Google Scholar 

  • Y. Habibi, Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014)

    Article  CAS  Google Scholar 

  • Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)

    Article  CAS  Google Scholar 

  • L.A. Hanic, J.S. Craigie, Studies on the algal cuticle 1. J. Phycol. 5(2), 89–102 (1969)

    Article  CAS  Google Scholar 

  • Y.I. Hayakawa, T. Ogawa, S. Yoshikawa, K. Ohki, M. Kamiya, Genetic and ecophysiological diversity of Cladophora (Cladophorales, Ulvophyceae) in various salinity regimes. Phycol. Res. 60(2), 86–97 (2012)

    Article  Google Scholar 

  • A.D. Haywood, V.A. Davis, Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films. Cellulose 24(2), 705–716 (2017)

    Article  CAS  Google Scholar 

  • S.N. Higgins, S.Y. Malkin, E. Todd Howell, S.J. Guildford, L. Campbell, V. Hiriart-Baer, R.E. Hecky, An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great Lakes 1. J. Phycol. 44(4), 839–854 (2008)

    Article  Google Scholar 

  • H.E. Hofmann, E.W. Reid, Cellulose acetate lacquers. Ind. Eng. Chem. 21(10), 955–965 (1929)

    Article  CAS  Google Scholar 

  • F. Horii, A. Hirai, R. Kitamaru, CP/MAS carbon-13 NMR spectra of the crystalline components of native celluloses. Macromolecules 20(9), 2117–2120 (1987)

    Article  CAS  Google Scholar 

  • P. Huang, W. Min, S. Kuga, D. Wang, W. Dayong, Y. Huang, One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 5(12), 2319–2322 (2012)

    Article  CAS  Google Scholar 

  • J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, L. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano 7(3), 2106–2113 (2013)

    Article  CAS  Google Scholar 

  • S. Ifuku, M. Nogi, K. Abe, K. Handa, F. Nakatsubo, H. Yano, Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8(6), 1973–1978 (2007)

    Article  CAS  Google Scholar 

  • T. Imai, C. Boisset, M. Samejima, K. Igarashi, J. Sugiyama, Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Lett. 432(3), 113–116 (1998)

    Article  CAS  Google Scholar 

  • S. Iwamoto, A.N. Nakagaito, H. Yano, M. Nogi, Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A 81(6), 1109–1112 (2005)

    Article  CAS  Google Scholar 

  • S. Iwamoto, A.N. Nakagaito, H.J. Yano, Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A 89(2), 461–466 (2007)

    Article  CAS  Google Scholar 

  • S. Iwamoto, K. Abe, H. Yano, The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9(3), 1022–1026 (2008)

    Article  CAS  Google Scholar 

  • Y.-S. Jeon, A.V. Lowell, R.A. Gross, Studies of starch esterification: reactions with alkenylsuccinates in aqueous slurry systems. Starch-Stärke 51(2-3), 90–93 (1999)

    Article  CAS  Google Scholar 

  • H.A. Khalil, A.H. Bhat, A.I. Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87(2), 963–979 (2012)

    Article  Google Scholar 

  • H.J. Kim, H.J. Kwon, S. Jeon, J.W. Park, J. Sunthornvarabhas, K. Sriroth, Electrical and optical properties of nanocellulose films and its nanocomposites, in Handbook of Polymer Nanocomposites. Processing, Performance and Application, (Springer, Berlin/Heidelberg, 2015), pp. 395–432

    Chapter  Google Scholar 

  • D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011)

    Article  CAS  Google Scholar 

  • H.J. Lee. Aminosilane Treatment of Bacterial Cellulose and Its Application to Improve Electrical Conductivity. Doctoral dissertation (n.d.). 서울대학교 대학원

    Google Scholar 

  • Q. Li, J. Zhou, L. Zhang, Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J. Polym. Sci. B Polym. Phys. 47(11), 1069–1077 (2009)

    Article  CAS  Google Scholar 

  • S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, S. Ramakrishna, Biomimetic electrospun nanofibers for tissue regeneration. Biomed. Mater. 1(3), R45 (2006)

    Article  CAS  Google Scholar 

  • T. Liebert, T. Heinze, Interaction of ionic liquids with polysaccharides. 5. Solvents and reaction media for the modification of cellulose. Bioresources 3(2), 576–601 (2008)

    Google Scholar 

  • Y.J. Lin, Q. Cai, L. Li, Q.F. Li, X.P. Yang, R.G. Jin, Co-electrospun composite nanofibers of blends of poly [(amino acid ester) phosphazene] and gelatin. Polym. Int. 59(5), 610–616 (2010)

    Article  CAS  Google Scholar 

  • J. Lisperguer, P. Perez, S. Urizar, Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J. Chil. Chem. Soc. 54(4), 460–463 (2009)

    Article  CAS  Google Scholar 

  • H. Liu, Y.-L. Hsieh, Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. B Polym. Phys. 40(18), 2119–2129 (2002)

    Article  CAS  Google Scholar 

  • R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review. Struct. Prop. Nanocompos. (2011)

    Google Scholar 

  • P. Morand, X. Briand, Excessive growth of macroalgae: a symptom of environmental disturbance. Bot. Mar. 39 (1996)

    Google Scholar 

  • G. Nair, A.D. Kalaprasad, A. Gandini, M.N. Belgacem, Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6), 1835–1842 (2003)

    Article  CAS  Google Scholar 

  • A.N. Nakagaito, M. Nogi, H. Yano, Displays from transparent films of natural nanofibers. MRS Bull. 35(3), 214–218 (2010)

    Article  CAS  Google Scholar 

  • M. Nogi, H. Yano, Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 20(10), 1849–1852 (2008)

    Article  CAS  Google Scholar 

  • M. Nogi, H. Yano, Optically transparent nanofiber sheets by deposition of transparent materials: a concept for a roll-to-roll processing. Appl. Phys. Lett. 94(23), 233117 (2009)

    Article  Google Scholar 

  • M. Nogi, S. Ifuku, K. Abe, K. Handa, A.N. Nakagaito, H. Yano, Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl. Phys. Lett. 88(13), 133124 (2006)

    Article  Google Scholar 

  • M. Nogi, S. Iwamoto, A.N. Nakagaito, H. Yano, Optically transparent nanofiber paper. Adv. Mater. 21(16), 1595–1598 (2009)

    Article  CAS  Google Scholar 

  • Y. Okahisa, A. Yoshida, S. Miyaguchi, H. Yano, Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos. Sci. Technol. 69(11–12), 1958–1961 (2009)

    Article  CAS  Google Scholar 

  • Y. Okahisa, K. Abe, M. Nogi, A.N. Nakagaito, T. Nakatani, H. Yano, Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos. Sci. Technol. 71(10), 1342–1347 (2011)

    Article  CAS  Google Scholar 

  • K. Oksman, A.P. Mathew, D. Bondeson, I. Kvien, Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol. 66(15), 2776–2784 (2006)

    Article  CAS  Google Scholar 

  • X.-w. Peng, J.-l. Ren, R.-c. Sun, Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromolecules 11(12), 3519–3524 (2010)

    Article  CAS  Google Scholar 

  • R. Qu, W. Zhang, N. Liu, Q. Zhang, Y. Liu, X. Li, Y. Wei, L. Feng, Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: dynamic catalysis under natural light. ACS Sustain. Chem. Eng. 6(6), 8019–8028 (2018)

    Article  CAS  Google Scholar 

  • M. Rajinipriya, M. Nagalakshmaiah, M. Robert, S. Elkoun, Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain. Chem. Eng. 6(3), 2807–2828 (2018)

    Article  CAS  Google Scholar 

  • R.H. Reuss, B.R. Chalamala, A. Moussessian, M.G. Kane, A. Kumar, D.C. Zhang, J.A. Rogers, M. Hatalis, D. Temple, G. Moddel, B.J. Eliasson, Macroelectronics: perspectives on technology and applications. Proc. IEEE 93(7), 1239–1256 (2005)

    Article  CAS  Google Scholar 

  • T. Saito, Y. Nishiyama, J.-L. Putaux, M. Vignon, A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6), 1687–1691 (2006)

    Article  CAS  Google Scholar 

  • T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8), 2485–2491 (2007)

    Article  CAS  Google Scholar 

  • M. Schlesinger, W.Y. Hamad, M.J. MacLachlan, Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11(23), 4686–4694 (2015)

    Article  CAS  Google Scholar 

  • T.P. Schultz, C.J. Biermann, G.D. McGinnis, Steam explosion of mixed hardwood chips as a biomass pretreatment. Ind. Eng. Chem. Prod. Res. Dev. 22(2), 344–348 (1983)

    Article  CAS  Google Scholar 

  • B. Schyrr, S. Pasche, G. Voirin, C. Weder, Y.C. Simon, E.J. Foster, Biosensors based on porous cellulose nanocrystal–poly (vinyl alcohol) scaffolds. ACS Appl. Mater. Interfaces 6(15), 12674–12683 (2014)

    Article  CAS  Google Scholar 

  • J. Sethi, M. Farooq, S. Sain, M. Sain, J.A. Sirviö, M. Illikainen, K. Oksman, Water resistant nanopapers prepared by lactic acid modified cellulose nanofibers. Cellulose 25(1), 259–268 (2018)

    Article  CAS  Google Scholar 

  • S. Sharma, Y. Deng, Dual mechanism of dry strength improvement of cellulose nanofibril films by polyamide-epichlorohydrin resin cross-linking. Ind. Eng. Chem. Res. 55(44), 11467–11474 (2016)

    Article  CAS  Google Scholar 

  • M.L. Soriano, M.J. Dueñas-Mas, Promising sensing platforms based on nanocellulose. Carbon-Based Nanosens. Technol., 273–301 (2018)

    Google Scholar 

  • J. Sugiyama, R. Vuong, H. Chanzy, Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14), 4168–4175 (1991)

    Article  CAS  Google Scholar 

  • C. Tan, J. Peng, W. Lin, Y. Xing, X. Kai, W. Jiancheng, M. Chen, Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocomposites. Eur. Polym. J. 62, 186–197 (2015)

    Article  CAS  Google Scholar 

  • C. Tang, H. Liu, Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Compos. A: Appl. Sci. Manuf. 39(10), 1638–1643 (2008)

    Article  Google Scholar 

  • C. Tang, W. Meiyu, W. Yiqiong, H. Liu, Effects of fiber surface chemistry and size on the structure and properties of poly (vinyl alcohol) composite films reinforced with electrospun fibers. Compos. A: Appl. Sci. Manuf. 42(9), 1100–1109 (2011)

    Article  Google Scholar 

  • B.M. Trinh, T. Mekonnen, Hydrophobic esterification of cellulose nanocrystals for epoxy reinforcement. Polymer 155, 64–74 (2018)

    Article  CAS  Google Scholar 

  • C. Vaca-Garcia, S. Thiebaud, M.-E. Borredon, G. Gozzelino, Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N, N-dimethylacetamide medium. J. Am. Oil Chem. Soc. 75(2), 315–319 (1998)

    Article  CAS  Google Scholar 

  • D.L. VanderHart, R.H. Atalla, Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17(8), 1465–1472 (1984)

    Article  CAS  Google Scholar 

  • B.A. Whitton, Biology of Cladophora in freshwaters. Water Res. 4(7), 457–476 (1970)

    Article  Google Scholar 

  • H. Yano, J. Sugiyama, A.N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, K. Handa, Optically transparent composites reinforced with networks of bacterial nanofibers. Adv. Mater. 17(2), 153–155 (2005)

    Article  CAS  Google Scholar 

  • S.H. Yoon, H.J. Jin, M.C. Kook, Y.R. Pyun, Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7(4), 1280–1284 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roy, R., Eldhose, M., George, C., Joseph, A. (2023). Nanocellulose-Based (Bio)composites for Optoelectronic Applications. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-16-6603-2_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6603-2_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6603-2

  • Online ISBN: 978-981-16-6603-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics