Skip to main content

Abstract

Flexible circuit boards are ubiquitous components in electronic products, and eventually the substrate of image displays will soon be made of flexible materials as well. Plastics are prospective candidates due to their inherent flexibility and optical qualities, but they also present large thermal expansion. The expansion of the substrate has to be compatible with those of the active layers deposited on it, to avoid damages during the thermal cycles involved in the display manufacture. One way to reduce the thermal expansion of plastics is to reinforce them with nanofibers, without significant loss of transparency. Nanofibers are available in large amounts in the form of cellulose in nature, being produced by plants and animals. Here some of the researches to produce optically transparent composites based on natural nanofibers for use in flexible displays are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDonald BA, Rollins K, MacKerron D, Rakos K, Eveson R, Hashimoto K, Rustin B (2005) Engineered films for display technologies. In: Crawford GP (ed) Flexible flat panel displays. Wiley, Society for Information Display, New York, pp 11–34

    Chapter  Google Scholar 

  2. Gordon JE (1976) The new science of strong materials. Princeton University Press, New Jersey, p 201

    Google Scholar 

  3. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33:1647

    Article  ADS  Google Scholar 

  4. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153

    Article  Google Scholar 

  5. Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix. Appl Phys Lett 87:243110

    Article  ADS  Google Scholar 

  6. Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H (2006) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88:133124

    Article  ADS  Google Scholar 

  7. Nogi M, Abe K, Handa K, Nakatsubo F, Ifuku S, Yano H (2006) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89:233123

    Article  ADS  Google Scholar 

  8. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973

    Article  Google Scholar 

  9. Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849

    Article  Google Scholar 

  10. Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A Mater Sci Process 81:1109

    Article  ADS  Google Scholar 

  11. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276

    Article  Google Scholar 

  12. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461

    Article  ADS  Google Scholar 

  13. Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022

    Article  Google Scholar 

  14. Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958

    Article  Google Scholar 

  15. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687

    Article  Google Scholar 

  16. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 10:162

    Article  Google Scholar 

  17. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595

    Article  Google Scholar 

  18. Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A (2012) Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules 13:2188

    Article  Google Scholar 

  19. Liu HQ, Hsieh HL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys 40:2119

    Article  ADS  Google Scholar 

  20. Tang C, Liu HQ (2008) Cellulose nanofiber reinforced poly(vinyl alcohol) composite film with high visible light transmittance. Compos Part A 39:1638

    Article  Google Scholar 

  21. Tang C, Wu M, Wu Y, Liu HQ (2011) Effects of fibers surface chemistry and size on the structure and properties of poly(vinyl alcohol) composite films reinforced with electrospun fibers. Compos Part A 42:1100

    Article  Google Scholar 

  22. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168

    Article  ADS  Google Scholar 

  23. Nogi M, Yano H (2009) Optically transparent nanofiber sheets by deposition of transparent materials: A concept for a roll-to-roll processing. Appl Phys Lett 94:233117

    Article  ADS  Google Scholar 

  24. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80:155

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Norio Nakagaito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakagaito, A.N., Takagi, H. (2015). Optically Transparent Nanocomposites. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_68

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics