Skip to main content

Applications of CRISPR/Cas System in Plants

  • Chapter
  • First Online:
The CRISPR/Cas Tool Kit for Genome Editing

Abstract

Over decades, success of genetic engineering has been proved by provision of several solutions to the problems related to biotic or abiotic stress, growth, yield, nutrition, and quality of the plants. Value addition and aesthetic improvement have also been addressed by genetic engineering techniques. Last decades witness a steeply development and progress in genetic engineering of plants using genome editing tools with more precision and accuracy. CRISPR/Cas, being an advanced genome editing tool, has been used more frequently for this purpose owing to its simplicity, designing, ease in cloning, and high modularity with low cost and high adaptability. Several plant parameters have been modified and improved using CRISPR technology. CRISPR toolbox has a variety of tools for gene editing/modification such as Cas9, Cas12, Cas13, base editors, prime editors, etc. Along with gene modifications, CRISPR/Cas has also been successfully deployed for gene regulation using CRISPRi and CRISPRa and epigenetic modifications using epigenetic modifiers such as LSD, TET1, etc. Moreover, multiplexing feature of CRISPR/Cas9 has given this technology an advantage over all other contemporary gene editing technologies to effectively target genomes. This chapter encompasses applications of CRISPR technology in several plant species for genetic improvement of multiple traits. We describe potential applications of CRISPR system in model as well as horticultural, legumes, and tree species. Finally, we discussed biosafety rules, regulations, and prospects of CRISPR technology in plant genome engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

AGPase:

ADP-glucose pyrophosphorylase

BAC:

Bacterial artificial chromosome

cDNA:

Complementary DNA

CL:

Coumarate ligase

Cpf1:

CRISPR from Prevotella and Francisella

cr RNA:

CRISPR RNA

CRISPR:

Clustered regularly interspaced short palindromic repeats

CRISPRa:

CRISPR activation

CRISPRi:

CRISPR interference

dCas9:

Deactivated nuclease

DNA:

Deoxyribonucleic acid

DREB:

Dehydration-responsive element-binding protein

ERF:

Ethylene response factor

GBSS:

Granule-bound starch synthase

GenEd:

Genome editing

GEOs:

Genome edited organisms

GFP:

Green fluorescent protein

GM:

Genetically modified

GMOs:

Genetically modified organisms

gRNA:

Guided RNA

HDR:

Homology directed repair

KO:

Knockout

KRAB:

Kruppel-associated box

LSD:

Lysergic acid diethylamide

MDH:

Malate dehydrogenase

nGM:

Novel genetic modification techniques

NHEJ:

Non-homologous end joining

PAM:

Protospacer adjacent motif

PDS:

Phytoene desaturase

PEPC:

Phosphoenolpyruvate carboxylase

RGEN:

RNA-guided endonuclease

RNA:

Ribonucleic acid

RNAi:

RNA interference

RNP:

Ribonucleoprotein

SgRNA:

Single guided RNA

SSNs:

Sequence-specific nucleases

TALEN:

Transcription activator-like effector nucleases

TCA:

Tricarboxylic acid cycle

TILLING:

Targeting induced local lesions in genomes

tracrRNA:

Trans-activating CRISPR RNA

USDA:

United States Department of Agriculture

WDV:

Wheat dwarf virus

ZFN:

Zinc finger nucleases

References

  • Afzal S, Sirohi P, Singh NK (2020) A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement. Biotechnol Lett 42(9):1611–1632. https://doi.org/10.1007/s10529-020-02950-w

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Turesson H, Olsson N, Fält A-S, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164(4):378–384. https://doi.org/10.1111/ppl.12731

    Article  CAS  PubMed  Google Scholar 

  • Badhan S, Ball AS, Mantri N (2021) First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int J Mol Sci 22(1):396

    Article  CAS  PubMed Central  Google Scholar 

  • Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287(8):663–678. https://doi.org/10.1007/s00438-012-0707-7

    Article  CAS  PubMed  Google Scholar 

  • Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, Liu B, Sun J, Yang M, Yang L, Wang D, Song S, Guan Y (2020) Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol J 18(3):721–731. https://doi.org/10.1111/pbi.13239

    Article  CAS  PubMed  Google Scholar 

  • Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S (2019) CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol 19(1):1–12

    Article  CAS  Google Scholar 

  • Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7(1):1–6

    Article  CAS  Google Scholar 

  • Bewg WP, Ci D, Tsai CJ (2018) Genome editing in trees: from multiple repair pathways to long-term stability. Front Plant Sci 9:1732

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Song H, Gao C, Voytas DF, Kagale S (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 8(1):1–0

    Article  CAS  Google Scholar 

  • Bhowmik SS, Cheng AY, Long H, Tan GZH, Hoang TML, Karbaschi MR, Williams B, Higgins TJV, Mundree SG (2019) Robust genetic transformation system to obtain non-chimeric transgenic chickpea. Front Plant Sci 10:524

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhowmik P, Konkin D, Polowick P, Hodgins CL, Subedi M, Xiang D, Yu B, Patterson N, Rajagopalan N, Babic V, Ro DK (2021) CRISPR/Cas9 gene editing in legume crops: opportunities and challenges. Legum Sci 3:e96

    Article  CAS  Google Scholar 

  • Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132(3):1283–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L) using sequence-specific nucleases. Front Plant Sci 7:1045. https://doi.org/10.3389/fpls.2016.01045

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Chen L, Sun S, Wu C, Yao W, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated deletion of large genomic fragments in soybean. Int J Mol Sci 19(12):3835

    Article  PubMed Central  Google Scholar 

  • Cai L, Chen C, Wang W, Gao X, Kuang X, Jiang Y, Li L, Wu G (2020a) Acid-free epoxidation of soybean oil with hydrogen peroxide to epoxidized soybean oil over titanium silicalite-1 zeolite supported cadmium catalysts. J Ind Eng Chem 91:191–200

    Article  CAS  Google Scholar 

  • Cai Y, Chen L, Zhang Y, Yuan S, Su Q, Sun S, Wu C, Yao W, Han T, Hou W (2020b) Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnol J 18(10):1996–1998. https://doi.org/10.1111/pbi.13386

    Article  PubMed Central  Google Scholar 

  • Cai Y, Wang L, Chen L, Wu T, Liu L, Sun S, Wu C, Yao W, Jiang B, Yuan S, Han T, Hou W (2020c) Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J 18(1):298–309. https://doi.org/10.1111/pbi.13199

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Wu Y, Zheng Z, Song F (2005) Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant Pathol 67(3–5):202–211. https://doi.org/10.1016/j.pmpp.2006.01.004

    Article  CAS  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaw S-M, Liu Y-C, Wu Y-W, Wang H-Y, Lin C-YI, Wu C-S, Ke H-M, Chang L-Y, Hsu C-Y, Yang H-T (2019) Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat Plants 5(1):63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7(1):1–7

    Google Scholar 

  • Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV–CRISPR–Cas9 and its host response. Nat Methods 13(10):868–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyranoski D (2015) CRISPR tweak may help gene-edited crops bypass biosafety regulation. Nature News

    Google Scholar 

  • Dalla Costa L, Malnoy M, Gribaudo I (2017) Breeding next generation tree fruits: technical and legal challenges. Hortic Res 4(1):1–11

    Article  Google Scholar 

  • Dalla Costa L, Piazza S, Pompili V, Salvagnin U, Cestaro A, Moffa L et al (2020) Strategies to produce T-DNA free CRISPRed fruit trees via Agrobacterium tumefaciens stable gene transfer. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Das A, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 6(2):21

    Article  PubMed Central  Google Scholar 

  • Do PT, Nguyen CX, Bui HT, Tran LT, Stacey G, Gillman JD, Zhang ZJ, Stacey MG (2019) Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol 19(1):1–4

    Article  CAS  Google Scholar 

  • Eckerstorfer MF, Dolezel M, Heissenberger A, Miklau M, Reichenbecher W, Steinbrecher RA, Waßmann F (2019a) An EU perspective on biosafety considerations for plants developed by genome editing and other new genetic modification techniques (nGMs). Front Bioeng Biotechnol 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H (2019b) Plants developed by new genetic modification techniques—comparison of existing regulatory frameworks in the EU and non-EU countries. Front Bioeng Biotechnol 7:26

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H (2020) Principles, applications, and biosafety of plant genome editing using CRISPR-Cas9. Front Plant Sci 11:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Elorriaga E, Klocko AL, Ma C, Strauss SH (2018) Variation in mutation spectra among CRISPR/Cas9 mutagenized poplars. Front Plant Sci 9:594

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6(1):1–9

    Article  Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5(1):1–7

    CAS  Google Scholar 

  • Fan Y, Xin S, Dai X, Yang X, Huang H, Hua Y (2020) Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Ind Crop Prod 146:112146

    Article  CAS  Google Scholar 

  • Fauser F, Schiml S, Puchta H (2014) Both CRISPR/C as-based nucleases and nickases can be used efficiently for genome engineering in A rabidopsis thaliana. Plant J 79(2):348–359

    Article  CAS  PubMed  Google Scholar 

  • Fernandez i Marti A, Dodd RS (2018) Using CRISPR as a gene editing tool for validating adaptive gene function in tree landscape genomics. Front Ecol Evol 6:76

    Article  Google Scholar 

  • Gao W, Long L, Tian X, Xu F, Liu J, Singh PK, Botella JR, Song C (2017) Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci 8:1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Pineda JG, Gómez-Pineda JG (2019) The natural interest rate in Latin America. Borradores de Economía, No. 1067

    Google Scholar 

  • Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25(22):4650–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Chen L, Chen H, Yang H, You Q, Bao A, Chen S, Hao Q, Huang Y, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Jiao Y, Tran L-SP, Zhou X, Cao D (2020) Overexpression of GmWRI1b in soybean stably improves plant architecture and associated yield parameters, and increases total seed oil production under field conditions. Plant Biotechnol J 18(8):1639–1641. https://doi.org/10.1111/pbi.13324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall SJ, Russell AE, A’lece RM (2019) Do corn-soybean rotations enhance decomposition of soil organic matter? Plant and Soil 444(1):427–442

    Article  CAS  Google Scholar 

  • Hess GT, Tycko J, Yao D, Bassik MC (2017) Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell 68(1):26–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Wang C, Liu Q, Fu Y, Wang K (2017) Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics 44(1):71–73

    Article  PubMed  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15(1):1–10

    Article  CAS  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985. https://doi.org/10.3389/fpls.2018.00985

    Article  PubMed  PubMed Central  Google Scholar 

  • Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol Biol 94(4):349–360

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wang N (2015) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9(4):e93806

    Article  Google Scholar 

  • Jiang Y, Guo L, Ma X, Zhao X, Jiao B, Li C, Luo K (2017) The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. Tree Physiol 37(5):665–675

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanazashi Y, Hirose A, Takahashi I, Mikami M, Endo M, Hirose S, Toki S, Kaga A, Naito K, Ishimoto M (2018) Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Rep 37(3):553–563

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Velasco R, Kim J-S, Viola R (2015) Non-GMO genetically edited crop plants. Trends Biotechnol 33(9):489–491

    Article  CAS  PubMed  Google Scholar 

  • Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B (2017) CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci 8:1635. https://doi.org/10.3389/fpls.2017.01635

    Article  PubMed  PubMed Central  Google Scholar 

  • Kearns NA, Genga RM, Enuameh MS, Garber M, Wolfe SA, Maehr R (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development 141(1):219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8(1):1–7

    Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh J-RJ, Aryee MJ, Joung JK (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485. https://doi.org/10.1038/nature14592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37(4):575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klösgen RB, Gierl A, Schwarz-Sommer Z, Saedler H (1986) Molecular analysis of the waxy locus of Zea mays. Mol Gen Genet 203(2):237–244. https://doi.org/10.1007/BF00333960

    Article  Google Scholar 

  • Kumar R, Kaur A, Pandey A, Mamrutha HM, Singh GP (2019) CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Mol Biol Rep 46(3):3557–3569. https://doi.org/10.1007/s11033-019-04761-3

    Article  CAS  PubMed  Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56(1):479–512. https://doi.org/10.1146/annurev-phyto-080417-050158

    Article  CAS  PubMed  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16(1):1–3

    Article  Google Scholar 

  • Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim Y, Lee K, Jung I, Kim D, Kim S, Kim J-S (2018) Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 9(1):3048. https://doi.org/10.1038/s41467-018-05477-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei J, Dai P, Li J, Yang M, Li X, Zhang W, Zhou G, Liu X (2021) Tissue-specific CRISPR/Cas9 system of cotton pollen with GhPLIMP2b and GhMYB24 promoters. J Plant Biol 64(1):13–21

    Article  CAS  Google Scholar 

  • Lemgo GNY, Sabbadini S, Pandolfini T, Mezzetti B (2013) Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock. Transgenic Res 22(6):1073–1088

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Su X, Zhang B, Huang Q, Zhang X, Huang R (2009) Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance. Tree Physiol 29(2):273–279

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhou Z, Liang L, Song Z, Hu Y, Cui J, Chen W, Hu K, Cheng J (2020) Genome-wide identification and analysis of highly specific CRISPR/Cas9 editing sites in pepper (Capsicum annuum L.). PLoS One 15(12):e0244515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu Y, Wang Y, Fang J, Liu D, Songyang Z, Zhou C, Huang J (2017) Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 8(11):811–822. https://doi.org/10.1007/s13238-017-0475-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Anderson-Teixeira KJ, Lai J, Mi X, Ren H, Ma K (2016) Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant and Soil 409(1):435–446

    Article  CAS  Google Scholar 

  • Ling H-Q, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C et al (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557(7705):424–428. https://doi.org/10.1038/s41586-018-0108-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhang M, Feng F, Tian Z (2020a) Toward a “Green Revolution” for Soybean. Mol Plant 13(5):688–697

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou G-A, Zhang H, Liu Z, Shi M (2020b) Pan-genome of wild and cultivated soybeans. Cell 182(1):162–176

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10(3):523–525

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7(1):1–18

    Article  Google Scholar 

  • McCourt P, Benning C (2010) Arabidopsis: a rich harvest 10 years after completion of the genome sequence. Plant J 61(6):905–908. https://doi.org/10.1111/j.1365-313X.2010.04176.x

    Article  CAS  PubMed  Google Scholar 

  • McMurray LS, Preston C, Vandenberg A, Mao D, Oldach KH, Meier KS, Paull JG (2019) Development of high levels of metribuzin tolerance in lentil. Weed Sci 67(1):83–90

    Article  Google Scholar 

  • Meng Y, Hou Y, Wang H, Ji R, Liu B, Wen J, Niu L, Lin H (2017) Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Rep 36(2):371–374. https://doi.org/10.1007/s00299-016-2069-9

    Article  CAS  PubMed  Google Scholar 

  • Murovec J, Pirc Ž, Yang B (2017) New variants of CRISPR RNA-guided genome editing enzymes. Plant Biotechnol J 15(8):917–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murovec J, Guček K, Bohanec B, Avbelj M, Jerala R (2018) DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9:1594

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L (2019) Research progress and perspective on drought stress in legumes: a review. Int J Mol Sci 20(10):2541. https://doi.org/10.3390/ijms20102541

    Article  CAS  PubMed Central  Google Scholar 

  • Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, Yamamoto T et al (2017) CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One 12(5):e0177966

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6(1):1–8

    Article  Google Scholar 

  • Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:1780

    Article  PubMed  PubMed Central  Google Scholar 

  • Panchamoorthy PS, Kannan RR (2021) Enhanced saccharfication of pomegranate peel by Trichoderma Reesei and statiscal optimization of medium composition by response surface methodology. https://doi.org/10.21203/rs.3.rs-226555/v1

  • Parsons J, MacKay J (2018) The theory and applications of CRISPR in plant and tree improvement. CAB Rev 13(07)

    Google Scholar 

  • Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci 93(10):5055–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Y (2018) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. In: Plant and animal genome XXVI conference, 13–17 Jan 2018

    Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6(1):1–9

    Article  CAS  Google Scholar 

  • Sakuma T, Yamamoto T (2017) Magic wands of CRISPR—lots of choices for gene knock-in. Cell Biol Toxicol 33(6):501–505

    Article  PubMed  Google Scholar 

  • Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell 173(2):321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankar P, Zachariah B, Vickneshwaran V, Jacob SE, Sridhar MG (2015) Amelioration of oxidative stress and insulin resistance by soy isoflavones (from Glycine max) in ovariectomized Wistar rats fed with high fat diet: the molecular mechanisms. Exp Gerontol 63:67–75. https://doi.org/10.1016/j.exger.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  • Schmidt C, Fransz P, Rönspies M, Dreissig S, Fuchs J, Heckmann S, Houben A, Puchta H (2020) Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat Commun 11(1):1–8

    Article  Google Scholar 

  • Sant’Ana RR, Caprestano CA, Nodari RO, Agapito-Tenfen SZ (2020) PEG-delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts. Gene 11(9):1029

    Article  Google Scholar 

  • Schwarz K, Fragkias M, Boone CG, Zhou W, McHale M, Grove JM, O’Neil-Dunne J, McFadden JP, Buckley GL, Childers D (2015) Trees grow on money: urban tree canopy cover and environmental justice. PLoS One 10(4):e0122051

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013a) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6(4):1365–1368. https://doi.org/10.1093/mp/sss162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J, Qiu J-L, Gao C (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688. https://doi.org/10.1038/nbt.2650

    Article  CAS  PubMed  Google Scholar 

  • Shu H, Luo Z, Peng Z, Wang J (2020) The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation. BMC Plant Biol 20(1):1–5

    Article  Google Scholar 

  • Singh VK, Jain M (2015) Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean. Front Plant Sci 6:918

    Article  PubMed  PubMed Central  Google Scholar 

  • Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Zhang L, Van Eck J, Jiménez-Gómez JM, Lippman ZB (2017) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49(1):162–168

    Article  CAS  PubMed  Google Scholar 

  • Strauss SH, Costanza A, Séguin A (2015) Genetically engineered trees: paralysis from good intentions. Science 349(6250):794–795

    Article  CAS  PubMed  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7(1):1–7

    Article  Google Scholar 

  • Tan C, Zhou H, Wang X, Mai K, He G (2019) Resveratrol attenuates oxidative stress and inflammatory response in turbot fed with soybean meal based diet. Fish Shellfish Immunol 91:130–135. https://doi.org/10.1016/j.fsi.2019.05.030

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7(1):1–2

    Article  Google Scholar 

  • Tsai C-J, Xue L-J (2015) CRISPRing into the woods. GM Crops Food 6(4):206–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3: genes, genomes. Genetics 3(12):2233–2238

    Google Scholar 

  • van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E, Huang Z, Keyhaninejad N, Mu Q, Sun L, Wang Y, Wu S (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    PubMed  PubMed Central  Google Scholar 

  • Van Zeijl A, Wardhani TA, Seifi Kalhor M, Rutten L, Bu F, Hartog M, Linders S, Fedorova EE, Bisseling T, Kohlen W (2018) CRISPR/Cas9-mediated mutagenesis of four putative symbiosis genes of the tropical tree Parasponia andersonii reveals novel phenotypes. Front Plant Sci 9:284

    Article  PubMed  PubMed Central  Google Scholar 

  • Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nature Publishing Group, London

    Book  Google Scholar 

  • Wang Y, Li Z, Xu J, Zeng B, Ling L, You L, Chen Y, Huang Y, Tan A (2013) The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res 23(12):1414–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y-G, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Mao Y, Lu Y, Tao X, Zhu JK (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10(7):1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Simmonds J, Pan Q, Davidson D, He F, Battal A, Akhunova A, Trick HN, Uauy C, Akhunov E (2018a) Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theor Appl Genet 131(11):2463–2475. https://doi.org/10.1007/s00122-018-3166-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wang S, Li D, Zhang Q, Li L, Zhong C et al (2018b) Optimized paired-sgRNA/Cas9 cloning, and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnol J 16(8):1424–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Zhang H, Zhu H (2019a) CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic Res 6(1):1–13. https://doi.org/10.1038/s41438-019-0159-x

    Article  Google Scholar 

  • Wang X, Yong H, Gao L, Li L, Jin M, Liu J (2019b) Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll 89:56–66

    Article  CAS  Google Scholar 

  • Wang L, Sun S, Wu T, Liu L, Sun X, Cai Y, Li J, Jia H, Yuan S, Chen L (2020) Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J 18(9):1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson LOW, O’Brien AR, Bauer DC (2018) The current state and future of CRISPR-Cas9 gRNA design tools. Front Pharmacol 9:749. https://doi.org/10.3389/fphar.2018.00749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue LJ, Tsai CJ (2015) AGEseq: analysis of genome editing by sequencing. Mol Plant 8(9):1428–1430

    Article  CAS  PubMed  Google Scholar 

  • Yao Y-X, Li M, Liu Z, You C-X, Wang D-M, Zhai H, Hao Y-J (2009) Molecular cloning of three malic acid related genes MdPEPC, MdVHA-A, MdcyME and their expression analysis in apple fruits. Sci Hortic 122(3):404–408. https://doi.org/10.1016/j.scienta.2009.05.033

    Article  CAS  Google Scholar 

  • Ye J, Wang X, Hu T, Zhang F, Wang B, Li C, Yang T, Li H, Lu Y, Giovannoni JJ, Zhang Y, Ye Z (2017) An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. Plant Cell 29(9):2249–2268. https://doi.org/10.1105/tpc.17.00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin H-C, Coe RA, Kretzschmar T (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36(5):745–757

    Article  CAS  PubMed  Google Scholar 

  • Yubing HE, Min ZHU, Lihao W, Junhua WU, Qiaoyan W, Rongchen W, Yunde Z (2019) Improvements of TKC technology accelerate isolation of transgene-free CRISPR/Cas9-edited rice plants. Rice Sci 26(2):109–117

    Article  Google Scholar 

  • Zaidi SS-A, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22(7):550–553. https://doi.org/10.1016/j.tplants.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Leblanc C, Irish VF, Jacob Y (2017) Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Rep 36:1883–1887. https://doi.org/10.1007/s00299-017-2202-4

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Wang Z, Kang H, Li J, Zhang S, Han C, Huang A (2018) Fully bio-based soybean adhesive in situ cross-linked by interactive network skeleton from plant oil-anchored fiber. Ind Crop Prod 122:366–374

    Article  CAS  Google Scholar 

  • Zheng N, Li T, Dittman JD, Su J, Li R, Gassmann W, Peng D, Whitham SA, Liu S, Yang B (2020) CRISPR/Cas9-based gene editing using egg cell-specific promoters in Arabidopsis and soybean. Front Plant Sci 11:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ (2015) Exploiting SNP s for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208(2):298–301

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang G, Liu Z (2018) Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnol J 16(11):1868–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S.H. et al. (2022). Applications of CRISPR/Cas System in Plants. In: Ahmad, A., Khan, S.H., Khan, Z. (eds) The CRISPR/Cas Tool Kit for Genome Editing. Springer, Singapore. https://doi.org/10.1007/978-981-16-6305-5_9

Download citation

Publish with us

Policies and ethics