Skip to main content

Stem Cells in Wound Healing and Scarring

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Therapy
  • 82 Accesses

Abstract

Stem cells are cells with the ability for self-renewal and differentiation into a myriad of cellular lineages. Here, we discuss their potential in skin regeneration, focusing on traumatic and nontraumatic healing and scarring. We identify and elaborate on the various types involved, including embryonic stem cells (ESCs) and ESC-like cells, induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs). We discuss the role of iPSCs and MSCs in attenuating inflammation and fibrosis, thus promoting wound closure in models of defective wound healing and reducing both normal and aberrant scarring (i.e., keloids). In particular, we focus on MSCs and fibrotic changes, detailing their inhibitory function in TGFb/Smad signaling, and thus postinjury scar formation. Furthermore, we elaborate on ESCs and ESCs-like populations, discussing applications in normal skin appendage regeneration and recovery of nonhealing wounds, while ESCs-like cells function as a potential source of profibrotic keloid myofibroblasts. Although ESCs-like populations are implicated in scarring, the discussed studies posit that harnessing certain stem cell subpopulations could be an attractive strategy for rapid, scarless wound healing. This has implications in conditions of chronic inflammation and impaired healing and vascularity (e.g., diabetes) as well as traumatic conditions that necessitate rapid skin regeneration, such as burns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADMSCs:

Adipose tissue-derived MSCs

ADSCs:

Adipose-derived stem cells

AT:

Adipose tissue

BMP-2:

Bone-morphogenetic protein-2

CM:

Conditioned medium

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EMT:

Endothelial-to-mesenchymal transition

EPCs:

Endothelial progenitor cells

ESCs:

Embryonic stem cells

GDF:

Growth differentiation factor

HIF-1α:

Hypoxia-inducible factor

IFN:

Interferon

IL:

Interleukins

iPSCs:

Human-induced pluripotent stem cells

LIF:

Leukemia inhibitor factor

MMP:

Matrix metalloproteinase

MSCs:

Mesenchymal stem cells

NK:

Natural killer

PDGF:

Platelet-derived growth factor

PGE2:

Prostaglandin E2

SSEA:

Stage-specific embryonic antigen

TGF-b:

Transforming growth factor

TNF-a:

Tumor necrosis factor-a

VEGF:

Vascular endothelial growth factor

References

  • Aasen T, Raya A, Barrero MJ et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Abe R, Donnelly SC, Peng T et al (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    Article  CAS  PubMed  Google Scholar 

  • Aberdam D (2004) Derivation of keratinocyte progenitor cells and skin formation from embryonic stem cells. Int J Dev Biol 48(2–3):203–206

    Article  CAS  PubMed  Google Scholar 

  • Açikgoz G, Devrim Ä°, Özdamar Åž (2004) Comparison of keratinocyte proliferation in diabetic and non-diabetic inflamed gingiva. J Periodontol 75(7):989–994

    Article  PubMed  Google Scholar 

  • Aggarwal S, Pittenger M (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Ahmed RPH, Haider K, Buccini S, Shujia J, Ashraf M (2011a) Reprogramming of skeletal myoblasts for induction of pluripotency for tumor free cardiomyogenesis in the infarcted hear. Circ Res 109:60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed RPH, Ashraf M, Buccini S, Shujia J, Haider KH (2011b) Cardiac tumorigenic potential of induced pluripotent stem cells in immunocompetent host: a note of caution. Regen Med 6:171–178

    Article  CAS  PubMed  Google Scholar 

  • Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci U S A 100:11830–11835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altun G, Loring JF, Laurent LC (2010) DNA methylation in embryonic stem cells. J Cell Biochem 109(1):1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2(5):643–653

    Article  CAS  PubMed  Google Scholar 

  • Azari O, Babaei H, Derakhshanfar SN et al (2011) Effects of transplanted mesenchymal stem cells isolated from Wharton’s jelly of caprine umbilical cord on cutaneous wound healing; histopathological evaluation. Vet Res Commun 15:211–222

    Article  Google Scholar 

  • Badiavas EV, Abedi M, Butmar J et al (2003) Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 196(2):245–250

    Article  CAS  PubMed  Google Scholar 

  • Bagabir R, Byers RJ, Chaudhry IH et al (2012) Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br J Dermatol 167:1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Baharlou R, Ahmadi-Vasmehjani A, Faraji F et al (2017) Human adipose tissue-derived mesenchymal stem cells in rheumatoid arthritis: regulatory effects on peripheral blood mononuclear cells activation. Int Immunopharmacol 47:59–69

    Article  CAS  PubMed  Google Scholar 

  • Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 84:2302–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedel A, Beliveau F, Lamrissi-Garcia I et al (2017) Preventing pluripotent cell teratoma in regenerative medicine applied to hematology disorders. Stem Cells Transl Med 6(2):382–393

    Article  CAS  PubMed  Google Scholar 

  • Biernaski J, Paris M, Morozova O et al (2009) SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5(6):610–623

    Article  CAS  Google Scholar 

  • Bongso A, Fong CY (2013) The therapeutic potential, challenges, and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev 9:226–240

    Article  CAS  Google Scholar 

  • Broughton G, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr Surg 117:1–32

    Article  CAS  Google Scholar 

  • Bucala R, Spiegel LA, Chesney J et al (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buccini S, Haider KH, Ahmed RPH, Jiang S, Ashraf M (2012) Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 107(6):301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12(9):432–438

    Article  CAS  PubMed  Google Scholar 

  • Cagavi E, Akgul Caglar T, Soztekin GI, Haider KH (2018) Patient-specific induced pluripotent stem cells for cardiac disease modelling. In: Haider KH, Aziz S (eds) Stem cells: from hype to real hope, Medicine and life sciences. De Gruyter, Berlin

    Google Scholar 

  • Capla JM, Grogan RH, Callaghan MJ et al (2007) Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Reconstr Surg 119(1):59

    Article  CAS  PubMed  Google Scholar 

  • Casqueiro J, Casqueiro J, Alves C (2012) Infections in patients with diabetes mellitus: a review of pathogenesis. Indian J Endocrinol Metab 16(Suppl 1):S27–S36

    PubMed  PubMed Central  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864

    Article  CAS  PubMed  Google Scholar 

  • Cha J, Falanga V (2007) Stem cells in cutaneous wound healing. Clin Dermatol 25(1):73–78

    Article  PubMed  Google Scholar 

  • Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cherubino M, Rubin JP, Miljkovic N et al (2011) Adipose-derived stem cells for wound healing applications. Ann Plast Surg 66(2):210–215

    Article  CAS  PubMed  Google Scholar 

  • Choi EW, Seo MK, Woo EY et al (2018) Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts. Exp Dermatol 27:1170–1172

    Article  CAS  PubMed  Google Scholar 

  • Cianfarani F, Toietta G, Di Rocco G et al (2013) Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen 21(4):545–553

    Article  PubMed  Google Scholar 

  • Clark AT, Rodriguez RT, Bodnar MS et al (2004) Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma. Stem Cells 22:169–179

    Article  CAS  PubMed  Google Scholar 

  • Clayton ZE, Tan RP, Miravet MM et al (2018) Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model. Biosci Rep 38:4

    Article  Google Scholar 

  • Corliss BA, Azimi MS, Munson J et al (2016) Macrophages: an inflammatory link between angiogenesis and lymphangiogenesis. Microcirculation 23(2):95–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Li J, Li J et al (2007) Skin epithelial cells in mice from umbilical cord blood mesenchymal stem cells. Burns 33(4):418–428

    Article  PubMed  Google Scholar 

  • Danisovic L, Varga I, Polak S et al (2009) Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen Physiol Biophys l28(1):56–62

    Article  Google Scholar 

  • de Wert G, Mummery C (2003) Human embryonic stem cells: research, ethics and policy. Hum Reprod 18(4):672–682

    Article  PubMed  Google Scholar 

  • Deng X-Y, Wang H, Wang T et al (2015) Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr Stem Cell Res Ther 10(2):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Ma Z, Shankowsky HA et al (2013) Deep dermal fibroblast profibrotic characteristics are enhanced by bone marrow-derived mesenchymal stem cells. Wound Repair Regen 21:448–455

    Article  PubMed  Google Scholar 

  • Djouad F, Charbonnier LM, Bouffi C et al (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25:2025–2032

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  • Driskell RR, Giangreco A, Jensen KB et al (2009) Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136(16):2815–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Lv R, Yang X et al (2016) Hypoxic conditioned medium of placenta-derived mesenchymal stem cells protects against scar formation. Life Sci 149:51–57

    Article  CAS  PubMed  Google Scholar 

  • Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525

    Article  CAS  PubMed  Google Scholar 

  • Falanga V, Iwamoto S, Chartier M et al (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13(6):1299–1312

    Article  CAS  PubMed  Google Scholar 

  • Fathke C, Wilson L, Hutter J et al (2004) Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22(5):812–822

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira ADF, Gomes DA (2018) Stem cell extracellular vesicles in skin repair. Bioengineering 6:4

    Article  PubMed Central  CAS  Google Scholar 

  • Finnerty CC, Jeschke MG, Branski LK et al (2016) Hypetrophic scarring: the greatest unmet challenge following burn injury. Lancet 388(10052):1427–1436

    Article  PubMed  PubMed Central  Google Scholar 

  • Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 43(4):268–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180(2):273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galkowska H, Wojewodzka U, Olszewski WL (2006) Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regen 14(5):558–565

    Article  PubMed  Google Scholar 

  • Gat U, DasGupta R, Degenstein L, Fuchs E (1998) De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95(5):605–614

    Article  CAS  PubMed  Google Scholar 

  • Gauthaman K, Fong CY, Suganya CA et al (2012) Extra-embryonic human Wharton’s jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reprod Biomed Online 24:235–246

    Article  PubMed  Google Scholar 

  • Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gledhill K, Guo Z, Umegaki-Arao N et al (2015) Melanin transfer in human 3D skin equivalents generated exclusively from induced pluripotent stem cells. PLoS One 10(8):e0136713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez ACO, Costa TF, Andrade ZA et al (2016) Wound healing – a literature review. An Bras Dermatol 91(5):614–620

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorecka J, Kostiuk V, Fereydooni A et al (2019) The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther 10(1):87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottrup F (2004) Oxygen in wound healing and infection. World J Surg 28(3):312–315

    Article  PubMed  Google Scholar 

  • Grant C, Chudakova DA, Itinteang T et al (2016) Expression of embryonic stem cell marker in keloid-associated lymphoid tissue. J Clin Pathol 69:643–646.0

    Article  CAS  PubMed  Google Scholar 

  • Green H (1991) Cultured cells for the treatment of disease. Sci Am 265(5):96–102

    Article  CAS  PubMed  Google Scholar 

  • Green H (2008) The birth of therapy with cultured cells. BioEssays 30:897–903

    Article  PubMed  Google Scholar 

  • Grenier G, Scime A, Le Grand F et al (2007) Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells 25(12):3101–3110

    Article  CAS  PubMed  Google Scholar 

  • Haridhasapavalan KK, Borgohain MP, Dey C et al (2019) An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 686:146–159

    Article  CAS  PubMed  Google Scholar 

  • Hentze H, Soong PL, Wang ST et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2(3):198–210

    Article  PubMed  Google Scholar 

  • Hong WX, Hu MS, Esquivel M et al (2014) The role of hypoxia-inducible factor in wound healing. Adv Wound Care 3(5):390–399

    Article  Google Scholar 

  • Hu MS-M, Rennert RC, McArdle A et al (2014) The role of stem cells during scarless skin wound healing. Adv Wound Care 3(4):304–314

    Article  Google Scholar 

  • Hu MS, Borrelli MR, Lorenz HP et al (2018) Mesenchymal stromal cells and cutaneous wound healing: a comprehensive review of the background, role, and therapeutic potential. Stem Cells Int 2018:6901983

    PubMed  PubMed Central  Google Scholar 

  • Hutchings G, Janowicz K, Moncrieff L et al (2020) The proliferation and differentiation of adipose-derived stem cells in neovascularization and angiogenesis. Int J Mol Sci 21(11):3790

    Article  CAS  PubMed Central  Google Scholar 

  • Hyldig K, Riis S, Pennisi CP et al (2017) Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies. Int J Mol Sci 18:1167

    Article  PubMed Central  CAS  Google Scholar 

  • Ibrahim AY, Mehdi Q, Abbas AO, Alashkar A, Haider HK (2016) Induced pluripotent stem cells: next generation cells for tissue regeneration. J Biomed Sci Eng 9(4):226–244

    Article  CAS  Google Scholar 

  • Inagaki Y, Higashi K, Kushida M et al (2008) Hepatocyte growth factor suppresses profibrogenic signal transduction via nuclear export of Smad3 with galectin-7. Gastroenterology 134:1180–1190

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Cotsarelis G (2008) Is the hair follicle necessary for normal wound healing? J Invest Dermatol 128(5):1059–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Liu Y, Yang Z et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Jackson WM, Nesti LJ, Tuan RS (2012) Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 3(3):20

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs SA, Pinxteren J, Roobrouck VD et al (2013) Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses. Cell Transplant 22:1915–1928

    Article  PubMed  Google Scholar 

  • Jahoda CA, Reynolds AJ (2001) Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet 358(9291):445–448

    Article  Google Scholar 

  • Jamora C, DasGupta R, Kocieniewski P, Fuchs E (2003) Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422(6929):317–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvinen L, Badri L, Wettlaufer S et al (2008) Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol 181:4389–4396

    Article  CAS  PubMed  Google Scholar 

  • Kanemura H, Iimuro Y, Takeuchi M et al (2008) Hepatocyte growth factor gene transfer with naked plasmid DNA ameliorates dimethylnitrosamine-induced liver fibrosis in rats. Hepatol Res 38:930–939

    Article  CAS  PubMed  Google Scholar 

  • Kanji S, Das H (2017) Advances of stem cell therapeutics in cutaneous wound healing. Mediat Inflamm 2017:5217967

    Article  CAS  Google Scholar 

  • Kellner JC, Coulombe PA (2009) SKPing a hurdle: Sox2 and adult dermal stem cells. Cell Stem Cell 5(6):569–570

    Article  CAS  PubMed  Google Scholar 

  • Kim KL, Song SH, Choi KS, Suh W (2013) Cooperation of endothelial and smooth muscle cells derived from human induced pluripotent stem cells enhances neovascularization in dermal wounds. Tissue Eng Part A 19(21–22):2478–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105(3):369–377

    Article  CAS  PubMed  Google Scholar 

  • Kwon DS, Gao X, Liu YB et al (2008) Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J 5(3):453–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Larouche J, Sheoran S, Maruyama K et al (2018) Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Adv Wound Care 7:209–231

    Article  Google Scholar 

  • Lee JH, Fisher DE (2014) Melanocyte stem cells as potential therapeutics in skin disorders. Expert Opin Biol Ther 14(11):1569–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Jeong SK, Ahn SK (2006) An update of the defensive barrier function of skin. Yonsei Med J 47:293–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EY, Xia Y, Kim WS et al (2009) Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen 17(4):540–547

    Article  PubMed  Google Scholar 

  • Lee WJ, Park JH, Shin JU et al (2015) Endothelial-to-mesenchymal transition induced by Wnt 3a in keloid pathogenesis. Wound Repair Regen 23:435–442

    Article  PubMed  Google Scholar 

  • Levy V, Lindon C, Harfe BD, Morgan BA (2005) Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 9(6):855–861

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang Y, Li Y et al (2008) Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl Int 21:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang S, Zhang Y et al (2009) Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep 36:725–731

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zheng YW, Sano Y, Taniguchi H (2011) Evidence for mesenchymal-epithelial transition associated with mouse hepatic stem cell differentiation. PLoS One 6(2):e17092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Yang A, Yin X et al (2018) Meschenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissue-engineered constructs via activating CXCR2-Src-PKL/Vav2-Rac1. FASEB J 32(4):2197–2211

    Article  CAS  PubMed  Google Scholar 

  • Lim KH, Itinteang T, Davis PF et al (2019) Stem cells in keloid lesions: a review. Plast Reconstr Surg Glob Open 7(5):e2228

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YL, Liu WH, Sun J et al (2014a) Mesenchymal stem cell-mediated suppression of hypertrophic scarring is p53 dependent in a rabbit ear model. Stem Cell Res Ther 5:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu L, Yu Y, Hou Y et al (2014b) Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of sever burned rats. PLoS One 9(2):e88348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lo DD, Zimmermann AS, Nauta A et al (2012) Scarless fetal skin wound healing update. Birth Defects Res C Embryo Today 96(3):237–247

    Article  CAS  PubMed  Google Scholar 

  • Longaker MT, Whitby DJ, Adzick NS et al (1990) Studies in fetal wound healing, VI. Second and early third trimester fetal wounds demonstrate rapid collagen deposition without scar formation. J Pediatr Surg 25(1):63–69

    Article  CAS  PubMed  Google Scholar 

  • Loomans CJM, de Konin EJP, Staal FJT et al (2004) Endothelial progenitor cell dysfunction. Diabetes 53(1):195–199

    Article  CAS  PubMed  Google Scholar 

  • Lowry WE, Blanpain C, Nowak JA et al (2005) Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 19(13):1596–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Yu M, Shen C et al (2014) Negligible immunogenicity of induced pluripotent stem cells derived from human skin fibroblasts. PLoS One 9(12):e114949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu H, Wang F, Mei H et al (2018) Human adipose mesenchymal stem cells show more efficient angiogenesis promotion on endothelial Colony-forming cells than umbilical cord and endometrium. Stem Cells Int 2018:7537589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacKay D (2003) Nutritional support for wound healing. Altern Med Rev 8(4):19

    Google Scholar 

  • Malik N, Rao MS et al (2013) A review of the methods for human iPSC derivation. Methods Mol Biol 997:23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansilla E, Marin GH, Sturla F et al (2005) Human mesenchymal stem cells are tolerized by mice and improve skin and spinal cord injuries. Transplant Proc 37(1):292–294

    Article  CAS  PubMed  Google Scholar 

  • Marfia G, Navone SE, Di Vito C et al (2015) Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds. Organogenesis 11:183–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez VG, Ontoria-Oviedo I, Ricardo CP et al (2017) Overexpression of hypoxia-inducible factor 1 alpha improves immunomodulation by dental mesenchymal stem cells. Stem Cell Res Ther 8:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruyuma K, Asai J, Li M et al (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170(4):1178–1191

    Article  Google Scholar 

  • Mast B (1992) The skin. In: Cohen K, Diegelmann I (eds) Wound healing. W. B. Saunders, Philadelphia, pp 344–355

    Google Scholar 

  • Mazini L, Rochette L, Malka G (2019) Growth differentiation factor 11 (GDF11)/transforming growth factor-β (TGF-β)/mesenchymal stem cells (MSCs) balance: a complicated partnership in skin rejuvenation. J Embryol Stem Cell Res 3:000122

    Google Scholar 

  • Mazini L, Rochette L, Admou B et al (2020) Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int J Mol Sci 21(4):1306

    Article  CAS  PubMed Central  Google Scholar 

  • Merrill BJ, Gat U, DasGupta R, Fuchs E (2001) Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 15(13):1688–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou S, Wang Q, Shi B et al (2009) Hepatocyte growth factor suppresses transforming growth factor-beta-1 and type III collagen in human primary renal fibroblasts. Kaohsiung J Med Sci 25:577–587

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Akita S, Fukui M et al (2005) Human mesenchymal stem cells successfully improve skin-substitute wound healing. Br J Dermatol 153(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Nakayama C, Fujita Y, Matsumura W et al (2018) The development of induced pluripotent stem cell-derived mesenchymal stem/stromal cells from normal human and RDEB epidermal keratinocytes. J Dermatol Sci 91(3):301–310

    Article  CAS  PubMed  Google Scholar 

  • Nasef A, Mazurier C, Bouchet S et al (2008) Leukemia inhibitory factor: role in human mesenchymal stem cells mediated immunosuppression. Cell Immunol 253(1–2):16–22

    Article  CAS  PubMed  Google Scholar 

  • Németh K, Leelahavanichkul A, Yuen PS et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  PubMed  CAS  Google Scholar 

  • Niemann C, Owens DM, Hulsken J et al (2001) Expression of DeltaNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129(1):95–109

    Article  Google Scholar 

  • Nijnik A, Woodbine L, Marchetti C et al (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447(7145):686–690

    Article  CAS  PubMed  Google Scholar 

  • Nowak JA, Polak L, Pasolli HA, Fuchs E (2008) Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell 3(1):33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusse R (1999) WNT targets. Repression and activation. Trends Genet 15(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Ohe S, Tanaka T, Yanai H et al (2015) Maintenance of sweat glands by stem cells located in the acral epithelium. Biochem Biophys Res Commun 466:333–338

    Article  CAS  PubMed  Google Scholar 

  • Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O (2015) Stem cells in skin regeneration, wound healing, and their clinical application. Int J Mol Sci 16(10):25476–25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  • Ono I, Yamashita T, Hida T et al (2004) Combined administration of basic fibroblast growth factor protein and the hepatocyte growth factor gene enhances the regeneration of dermis in acute incisional wounds. Wound Repair Regen 12(1):67–79

    Article  PubMed  Google Scholar 

  • Pachón-Peña G, Yu G, Tucker A et al (2011) Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles. J Cell Physiol 226:843–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plikus MV, Mayer JA, de la Cruz D et al (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451(7176):340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potten CS, Schofield R, Lajtha LG (1979) A comparison of cell replacement in bone marrow, testis and three regions of surface epithelium. Biochim Biophys Acta 560(2):281–299

    CAS  PubMed  Google Scholar 

  • Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20(1):14–20

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson I, Ringdén O, Sundbery B, Le Blanc K (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76(8):1208–1213

    Article  PubMed  Google Scholar 

  • Ren Y, Deng CL, Wan WD et al (2015) Suppressive effects of induced pluripotent stem cell-conditioned medium on in vitro hypertrophic scarring fibroblast activation. Mol Med Rep 11:2471–2476

    Article  CAS  PubMed  Google Scholar 

  • Reubinoff BE, Pera MF, Fong CY et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  CAS  PubMed  Google Scholar 

  • Rittié L (2016) Cellular mechanisms of skin repair in humans and other mammals. J Cell Commun Signal 10(2):103–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Rochat A, Kobayashi K, Barrandon Y (1994) Location of stem cells of human hair follicles by clonal analysis. Cell 76(6):1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Rodero MP, Khosrotehrani K (2010) Skin wound healing modulation by macrophages. Int J Clin Exp Pathol 3(7):643–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues M, Griffith LG, Wells A (2010) Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther 1:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rufaihah AJ, Haider KH, Heng BC, Ye L, Tan RS, Toh WS, Tian XF et al (2010) Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair. Regen Med 5:231–244

    Article  CAS  PubMed  Google Scholar 

  • Sabapathy V, Sundaram B, Sreelakshi VM et al (2014) Human Wharton’s jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS One 9:e93726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sackstein R (2004) The bone marrow is akin to skin: HCELL and the biology of hematopoietic stem cell homing. J Invest Dermatol 122(5):1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Schievenbusch S, Strack I, Scheffler M et al (2009) Profiling of anti-fibrotic signaling by hepatocyte growth factor in renal fibroblasts. Biochem Biophys Res Commun 385:55–61

    Article  CAS  PubMed  Google Scholar 

  • Selmani Z, Naji A, Zidi I et al (2008) Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 26(1):212–222

    Article  CAS  PubMed  Google Scholar 

  • Shah M, Foreman DM, Ferguson MW (1995) Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 108(3):985–1002

    Article  CAS  PubMed  Google Scholar 

  • Shannon DB, McKeown ST, Lundy FT, Irwin CR (2006) Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression. Wound Repair Regen 14:172–178

    Article  PubMed  Google Scholar 

  • Sheng H, Wang Y, Jin Y et al (2008) A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res 18(8):846–857

    Article  CAS  PubMed  Google Scholar 

  • Shukla MN, Rose JL, Ray R et al (2009) Hepatocyte growth factor inhibits epithelial to myofibroblast transition in lung cells via Smad7. Am J Respir Cell Mol Biol 40:643–653

    Article  CAS  PubMed  Google Scholar 

  • Shumakov VI, Onishchenko NA, Rasulov MF et al (2003) Mesenchymal bone marrow stem cells more effectively stimulate regeneration of deep burn wounds than embryonic fibroblasts. Bull Exp Biol Med 136(2):192–195

    Article  CAS  PubMed  Google Scholar 

  • Sivan-Loukianova E, Awad OA, Stepanovic V et al (2003) CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res 40(4):368–377

    Article  CAS  PubMed  Google Scholar 

  • Smith RE, Strieter RM, Phan SH et al (1998) TNF and IL-6 mediate MIP-1alpha expression in bleomycin-induced lung injury. J Leukoc Biol 64(4):528–536

    Article  CAS  PubMed  Google Scholar 

  • Stout RD (2010) Editorial: macrophage functional phenotypes: no alternatives in dermal wound healing? J Leukoc Biol 87:19–21

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Tepper OM, Galiano RD, Capla JM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786

    Article  PubMed  Google Scholar 

  • Tepper OM, Capla JM, Galiano RD et al (2005) Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105(3):1068–1077

    Article  CAS  PubMed  Google Scholar 

  • Thomas JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  Google Scholar 

  • Thompson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  Google Scholar 

  • Tolar J, Xia L, Riddle MJ et al (2011) Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 131(4):848–856

    Article  CAS  PubMed  Google Scholar 

  • Toma JG, McKenzie IA, Bagli D et al (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23(6):727–737

    Article  CAS  PubMed  Google Scholar 

  • Tracy LE, Minasian RA, Caterson EJ (2016) Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care 5(3):119–136

    Article  Google Scholar 

  • Ullah I, Subbaro RB, Rho GJ (2015) Human mesenchymal stem cells – current trends and future perspectives. Biosci Rep 35(2):e00191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Veer WM, Bloemen MC, Ulrich MMW et al (2009) Potential cellular and molecular causes of hypertrophic scar formation. Burns 35(1):15–29

    Article  PubMed  Google Scholar 

  • Van Zant G, Liang Y (2003) The role of stem cells in aging. Exp Hematol 31(8):659–672

    Article  PubMed  CAS  Google Scholar 

  • Varin A, Gordon S (2009) Alternative activation of macrophages: immune function and cellular biology. Immunobiology 214:630–641

    Article  CAS  PubMed  Google Scholar 

  • Vasa M, Fichtlscherer S, Aicher A et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7

    Article  CAS  PubMed  Google Scholar 

  • Vojtassak J, Danisovic L, Kubes M et al (2006) Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett 27(2):134–137

    PubMed  Google Scholar 

  • Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15(11):1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Wettstein R, Savic M, Pierer G et al (2014) Progenitor cell therapy for sacral pressure sore: a pilot study with a novel human chronic wound model. Stem Cell Res Ther 5(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77:509–528

    Article  CAS  PubMed  Google Scholar 

  • Wong VW, Levi B, Rajadas J et al (2012) Stem cell niches for skin regeneration. Int J Biomater 2012:926059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Huang S, Enhe J et al (2014) Bone marrow-derived mesenchymal stem cell attenuates skin fibrosis development in mice. Int Wound J 11:701–710

    Article  PubMed  Google Scholar 

  • Xue M, Jackson CJ (2015) Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care 4(3):119–136

    Article  Google Scholar 

  • Yamanishi H, Fujiwara S, Soma T (2012) Perivascular localization of dermal stem cells in human scalp. Exp Dermatol 21(1):78–80

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917

    Article  CAS  PubMed  Google Scholar 

  • Yu W-Y, Sun W, Yu D-J et al (2018) Adipose-derived stem cells improve neovascularization in ischemic flaps in diabetes mellitus through HIF-1α/VEGF pathway. Eur Rev Med Pharmacol Sci 22(1):10–16

    PubMed  Google Scholar 

  • Zanone MM, Favaro E, Miceli I et al (2010) Human mesenchymal stem cells modulate cellular immune response to islet antigen glutamic acid decarboxylase in type 1 diabetes. J Clin Endocrinol Metab 95:3788–3797

    Article  CAS  PubMed  Google Scholar 

  • Zhang GY, Li X, Chen XL et al (2009a) Contribution of epidermal stem cells to hypertrophic scars pathogenesis. Med Hypotheses 73:332–333

    Article  PubMed  Google Scholar 

  • Zhang Q, Yamaza T, Kelly AP et al (2009b) Tumor-like stem cells derived from human keloid are governed by the inflammatory niche driven by IL-17/IL-6 axis. PLoS One 4:e7798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang QZ, Su WR, Shi H et al (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of M2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10):1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Guan J, Niu X et al (2015a) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q, Liu LN, Yong Q et al (2015b) Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res Ther 6:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou P, Byrne C, Jacobs J, Fuchs E (1995) Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev 9:700–713

    Article  CAS  PubMed  Google Scholar 

  • Zouboulis CC, Adijaye J, Akamatsu H et al (2008) Human skin stem cells and the ageing process. Exp Gerontol 43(11):986–997

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Jeschke .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vinaik, R., Jeschke, M.G. (2022). Stem Cells in Wound Healing and Scarring. In: Haider, K.H. (eds) Handbook of Stem Cell Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6016-0_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6016-0

  • Online ISBN: 978-981-16-6016-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics