Skip to main content

Optical Imaging of Epileptic Seizures

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Epilepsy is a diverse group of brain disorders mainly defined by recurrent seizures. Precise localization of epileptic activity in the cerebral cortex and subcortical structures is a complex problem that usually requires a host of methods such as electroencephalography (EEG), magnetic resonance imaging (MRI), and positron emission tomography (PET) in clinical studies. From the end of the previous century, optical imaging methods have yielded revolutionary results when applied to all parts of the brain. In this chapter we cover intrinsic optical imaging and voltage-sensitive dye imaging, as well as several other techniques. All optical imaging techniques reflect various physiological processes in brain tissue which are indissolubly related with neuronal processes. While all the discussed imaging methods are applicable to animal models, several of them can also be used in human medicine for clinical studies and diagnostics. The basic principles of optical imaging of intrinsic signal, voltage-sensitive dye imaging, functional near-infrared spectroscopy, photoacoustic and their variations are described, followed by examples of cutting-edge epileptic studies where they have been utilized. In contrast to PET and fMRI, the main limitation of optical imaging is the limited penetration of photons, which allows us to only image cortical structures no deeper than a few tenths of a millimeter. Advantages include high spatial (up to microns) and temporal (up to milliseconds) resolution and relatively low costs. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells, and blood vessels. In this chapter we present an overview of the current optical approaches used for the in vivo imaging of epileptic seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-NBDG:

2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose

4-AP:

4-aminopyridine

AAV:

adeno-associated virus

ADK:

adenosine kinase

BCC:

bicuculline

CCD-camera:

charge-coupled device

CT:

computed tomography

DIOSI:

dynamic intrinsic optical signal imaging

EEG:

electroencephalogram

fMRI:

functional magnetic resonance imaging

fNIRS:

Functional near-infrared spectroscopy

GABA:

gamma-aminobutyric acid

GEVI:

Genetically encoded fluorescence indicators

IOS:

Intrinsic optical signal

MRI:

magnetic resonance imaging

OCT:

Optical coherence tomography

OMAG:

optical micro-angiography

PAT:

Photoacoustic imaging

PCX:

picrotoxin

PET:

positron emission tomography

PMT:

photomultipliers

PTZ:

pentylenetetrazol

SPECT:

single photon emission tomography

VSDi:

Voltage-sensitive dye imaging

References

  1. Weissinger, F., et al.: Dentate gyrus autonomous ictal activity in the status epilepticus rat model of epilepsy. Brain Res. 1658, 1–10 (2017). https://doi.org/10.1016/j.brainres.2016.12.030

    Article  Google Scholar 

  2. Lapalme-Remis, S., Cascino, G.D.: Imaging for adults with seizures and epilepsy. Contin. Lifelong Learn. Neurol. 22(5), 1451–1479 (2016). https://doi.org/10.1212/CON.0000000000000370

    Article  Google Scholar 

  3. Lenkov, D.N., Volnova, A.B., Pope, A.R.D., Tsytsarev, V.: Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models. J. Neurosci. Methods. 212(2) (2013). https://doi.org/10.1016/j.jneumeth.2012.10.018

  4. Yoo, P.E., et al.: 7T-fMRI: faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution. NeuroImage. 164, 214–229 (2018). https://doi.org/10.1016/j.neuroimage.2017.03.002

    Article  Google Scholar 

  5. Glover, G.H.: Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 22(2). NIH Public Access, 133–139 (2011). https://doi.org/10.1016/j.nec.2010.11.001

    Article  Google Scholar 

  6. Shi, Y., Zhang, X., Yang, C., Ren, J., Li, Z., Wang, Q.: A review on epileptic foci localization using resting-state functional magnetic resonance imaging. Math. Biosci. Eng. 17(3), 2496–2515 (2020). https://doi.org/10.3934/mbe.2020137

    Article  MATH  Google Scholar 

  7. Ghaffari-Rafi, A., Leon-Rojas, J.: Investigatory pathway and principles of patient selection for epilepsy surgery candidates: a systematic review. BMC Neurol. 20(1) (2020). https://doi.org/10.1186/s12883-020-01680-w

  8. Hill, D.K., Keynes, R.D.: Opacity changes in stimulated nerve. J. Physiol. 108(3), 278–281 (1949). https://doi.org/10.1113/jphysiol.1949.sp004331

    Article  Google Scholar 

  9. Zijlmans, M., Zweiphenning, W., van Klink, N.: Changing concepts in presurgical assessment for epilepsy surgery. Nat. Rev. Neurol. 15(10), 594–606 (2019). https://doi.org/10.1038/s41582-019-0224-y

    Article  Google Scholar 

  10. Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D., Wiesel, T.N.: Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature. 324(6095), 361–364 (1986). https://doi.org/10.1038/324361a0

    Article  Google Scholar 

  11. Gratton, G., Chiarelli, A.M., Fabiani, M.: From brain to blood vessels and back: a noninvasive optical imaging approach. Neurophotonics. 4(3), 031208 (2017). https://doi.org/10.1117/1.NPh.4.3.031208

    Article  Google Scholar 

  12. Grinvald, A., et al.: In-vivo optical imaging of cortical architecture and dynamics. In: Modern Techniques in Neuroscience Research, pp. 893–969. Springer, Berlin/Heidelberg (1999)

    Google Scholar 

  13. Lieke, E.E., Frostig, R.D., Arieli, A., Ts’o, D.Y., Hildesheim, R., Grinvald, A.: Optical imaging of cortical activity: real-time imaging using extrinsic dye-signals and high resolution imaging based on slow intrinsic-signals. Annu. Rev. Physiol. 51(1), 543–559 (1989). https://doi.org/10.1146/annurev.ph.51.030189.002551

    Article  Google Scholar 

  14. Frostig, R.D., Lieke, E.E., Ts’o, D.Y., Grinvald, A.: Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. U. S. A. 87(16), 6082–6086 (1990). https://doi.org/10.1073/pnas.87.16.6082

    Article  Google Scholar 

  15. Grinvald, A., Shoham, D., Shmuel, A., Glaser, D., Vanzetta, I., Shtoyerman, E., Slovin, H., Sterkin, A., Wijnbergen, C., Hildesheim, R., Arieli, A.: In vivo optical imaging of cortical architecture and dynamics. The Grodetsky Center for Research of Higher Brain Functions, The Weizmann Institute of Science Technical Report GC-AG/99-6

    Google Scholar 

  16. Guevara, E., Pouliot, P., Nguyen, D.K., Lesage, F.: Optical imaging of acute epileptic networks in mice. J. Biomed. Opt. 18(7), 076021 (2013). https://doi.org/10.1117/1.JBO.18.7.076021

    Article  Google Scholar 

  17. Zhao, M., Ma, H., Suh, M., Schwartz, T.H.: Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex. J. Neurosci. 29(9), 2814–2823 (2009). https://doi.org/10.1523/JNEUROSCI.4667-08.2009

    Article  Google Scholar 

  18. Ma, H., Zhao, M., Suh, M., Schwartz, T.H.: Hemodynamic surrogates for excitatory membrane potential change during interictal epileptiform events in rat neocortex. J. Neurophysiol. 101(5), 2550–2562 (2009). https://doi.org/10.1152/jn.90694.2008

    Article  Google Scholar 

  19. Ma, H., et al.: Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. Neurophotonics. 1(1), 015003 (2014). https://doi.org/10.1117/1.NPh.1.1.015003

    Article  Google Scholar 

  20. Wang, R.K., Subhash, H.M.: Optical microangiography: theory and application. In: Leahy, M.J. (ed.) Microcirculation Imaging. Wiley-VCH Verlag GmbH & Co. KGaA (2012). https://doi.org/10.1002/9783527651238. ISBN:9783527328949

  21. Chander, B.S., Chakravarthy, V.S.: A computational model of neuro-glio-vascular loop interactions. PLoS One. 7(11), e48802 (2012). https://doi.org/10.1371/journal.pone.0048802

  22. Shen, H.-Y., et al.: Overexpression of adenosine kinase in cortical astrocytes and focal neocortical epilepsy in mice. J. Neurosurg. 120(3), 628–638 (2014). https://doi.org/10.3171/2013.10.JNS13918

    Article  Google Scholar 

  23. Jia, Y., Grafe, M.R., Gruber, A., Alkayed, N.J., Wang, R.K.: In vivo optical imaging of revascularization after brain trauma in mice. Microvasc. Res. 81(1), 73–80 (2011). https://doi.org/10.1016/j.mvr.2010.11.003

    Article  Google Scholar 

  24. Sirpal, P., Kassab, A., Pouliot, P., Nguyen, D.K., Lesage, F.: fNIRS improves seizure detection in multimodal EEG-fNIRS recordings. J. Biomed. Opt. 24(05), 1 (2019). https://doi.org/10.1117/1.JBO.24.5.051408

    Article  Google Scholar 

  25. Rizki, E.E., et al.: Determination of epileptic focus side in mesial temporal lobe epilepsy using long-term noninvasive fNIRS/EEG monitoring for presurgical evaluation. Neurophotonics. 2(2), 025003 (2015). https://doi.org/10.1117/1.nph.2.2.025003

    Article  Google Scholar 

  26. Pouliot, P., et al.: Nonlinear hemodynamic responses in human epilepsy: a multimodal analysis with fNIRS-EEG and fMRI-EEG. J. Neurosci. Methods. 204(2), 326–340 (2012). https://doi.org/10.1016/j.jneumeth.2011.11.016

    Article  Google Scholar 

  27. Yang, H., Zhang, T., Zhou, J., Carney, P.R., Jiang, H.: In vivo imaging of epileptic foci in rats using a miniature probe integrating diffuse optical tomography and electroencephalographic source localization. Epilepsia. 56(1), 94–100 (2015). https://doi.org/10.1111/epi.12880

    Article  Google Scholar 

  28. Taraschenko, O., et al.: A mouse model of seizures in anti- N -methyl- d -aspartate receptor encephalitis. Epilepsia. 60(3), 452–463 (2019). https://doi.org/10.1111/epi.14662

    Article  Google Scholar 

  29. Bai, R., Stewart, C.V., Plenz, D., Basser, P.J.: Assessing the sensitivity of diffusion MRI to detect neuronal activity directly. Proc. Natl. Acad. Sci. 113(12), E1728–E1737 (2016). https://doi.org/10.1073/pnas.1519890113

    Article  Google Scholar 

  30. Wang, X., Xie, X., Ku, G., Wang, L.V., Stoica, G.: Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 11(2), 024015 (2006). https://doi.org/10.1117/1.2192804

    Article  Google Scholar 

  31. Xia, J., Yao, J., Wang, L.V.: Photoacoustic tomography: principles and advances. Electromagn. Waves (Cambridge, Mass.). 147, 1–22 (2014). Accessed 02 Dec 2018. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/25642127

    Article  Google Scholar 

  32. Yao, J., Maslov, K.I., Shi, Y., Taber, L.A., Wang, L.V.: In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt. Lett. 35(9), 1419 (2010). https://doi.org/10.1364/ol.35.001419

    Article  Google Scholar 

  33. van den Berg, P.J., Daoudi, K., Steenbergen, W.: Review of photoacoustic flow imaging: its current state and its promises. Photoacoustics. 3(3). Elsevier GmbH, 89–99 (2015). https://doi.org/10.1016/j.pacs.2015.08.001

    Article  Google Scholar 

  34. Wang, L.V., Gao, L.: Photoacoustic microscopy and computed tomography: from bench to bedside. Annu. Rev. Biomed. Eng. 16(1), 155–185 (2014). https://doi.org/10.1146/annurev-bioeng-071813-104553

    Article  Google Scholar 

  35. Ning, B., et al.: Ultrasound-aided multi-parametric photoacoustic microscopy of the mouse brain. Sci. Rep. 5(1), 18775 (2015). https://doi.org/10.1038/srep18775

    Article  Google Scholar 

  36. Tsytsarev, V., Rao, B., Maslov, K.I., Li, L., Wang, L.V.: Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J. Neurosci. Methods. 216(2), 142–145 (2013). https://doi.org/10.1016/j.jneumeth.2013.04.001

    Article  Google Scholar 

  37. Gottschalk, S., Fehm, T.F., Deán-Ben, X.L., Razansky, D.: Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography. J. Cereb. Blood Flow Metab. 35(4), 531–535 (2015). https://doi.org/10.1038/jcbfm.2014.249

    Article  Google Scholar 

  38. Baba, H., et al.: Auditory cortical field coding long-lasting tonal offsets in mice. Sci. Rep. 6(1), 34421 (2016). https://doi.org/10.1038/srep34421

    Article  Google Scholar 

  39. Xi, L., Jin, T., Zhou, J., Carney, P., Jiang, H.: Hybrid photoacoustic and electrophysiological recording of neurovascular communications in freely-moving rats. NeuroImage. 161, 232–240 (2017). https://doi.org/10.1016/j.neuroimage.2017.08.037

    Article  Google Scholar 

  40. Satomura, Y., Seki, J., Ooi, Y., Yanagida, T., Seiyama, A.: In vivo imaging of the rat cerebral microvessels with optical coherence tomography. Clin. Hemorheol. Microcirc. 31(1), 31–40 (2004). Accessed 08 Dec 2018. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15272151

    Google Scholar 

  41. Aguirre, A.D., Chen, Y., Fujimoto, J.G., Ruvinskaya, L., Devor, A., Boas, D.A.: Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography. Opt. Lett. 31(23), 3459–3461 (2006). Accessed 08 Dec 2018. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/17099749

    Article  Google Scholar 

  42. Guo, H., et al.: Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography. J. Innov. Opt. Health Sci., 1850030 (2018). https://doi.org/10.1142/S179354581850030X

  43. Leitgeb, R.A., Werkmeister, R.M., Blatter, C., Schmetterer, L.: Doppler optical coherence tomography. Prog. Retin. Eye Res. 41(100), 26–43 (2014). https://doi.org/10.1016/j.preteyeres.2014.03.004

    Article  Google Scholar 

  44. Carmignoto, G., Haydon, P.G.: Astrocyte calcium signaling and epilepsy. Glia. 60(8), 1227–1233 (2012). https://doi.org/10.1002/glia.22318

    Article  Google Scholar 

  45. Gómez-Gonzalo, M., et al.: Ictal but not interictal epileptic discharges activate astrocyte endfeet and elicit cerebral arteriole responses. Front. Cell. Neurosci. 5 (2011). https://doi.org/10.3389/fncel.2011.00008

  46. Mazhar, F., Malhi, S.M., Simjee, S.U.: Comparative studies on the effects of clinically used anticonvulsants on the oxidative stress biomarkers in pentylenetetrazole-induced kindling model of epileptogenesis in mice. J. Basic Clin. Physiol. Pharmacol. 28(1), 31–42 (2017). https://doi.org/10.1515/jbcpp-2016-0034

    Article  Google Scholar 

  47. Haglund, M.M., Ojemann, G.A., Hochman, D.W.: Optical imaging of epileptiform and functional activity in human cerebral cortex. Nature. 358(6388), 668–671 (1992). https://doi.org/10.1038/358668a0

    Article  Google Scholar 

  48. Zhang, C., et al.: Astrocytic endfoot Ca2+ correlates with parenchymal vessel responses during 4-AP induced epilepsy: an in vivo two-photon lifetime microscopy study. J. Cereb. Blood Flow Metab. 39(2), 260–271 (2019). https://doi.org/10.1177/0271678X17725417

    Article  Google Scholar 

  49. Folbergrová, J., Ingvar, M., Siesjö, B.K.: Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures. J. Neurochem. 37(5), 1228–1238 (1981). Accessed 21 May 2019. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/7299397

    Article  Google Scholar 

  50. Kim, J.H., Khan, R., Thompson, J.K., Ress, D.: Model of the transient neurovascular response based on prompt arterial dilation. J. Cereb. Blood Flow Metab. 33(9), 1429–1439 (2013). https://doi.org/10.1038/jcbfm.2013.90

    Article  Google Scholar 

  51. Zhao, M., Suh, M., Ma, H., Perry, C., Geneslaw, A., Schwartz, T.H.: Focal increases in perfusion and decreases in hemoglobin oxygenation precede seizure onset in spontaneous human epilepsy. Epilepsia. 48(11), 2059–2067 (2007). https://doi.org/10.1111/j.1528-1167.2007.01229.x

    Article  Google Scholar 

  52. Baird-Daniel, E., et al.: Glial calcium waves are triggered by seizure activity and not essential for initiating ictal onset or neurovascular coupling. Cereb. Cortex. 27(6), 3318–3330 (2017). https://doi.org/10.1093/cercor/bhx072

    Article  Google Scholar 

  53. Wylęgała, A.: Principles of OCTA and applications in clinical neurology. Curr. Neurol. Neurosci. Rep. 18(12), 96 (2018). https://doi.org/10.1007/s11910-018-0911-x

    Article  Google Scholar 

  54. Daniel, A.G.S., Laffont, P., Zhao, M., Ma, H., Schwartz, T.H.: Optical electrocorticogram (OECoG) using wide-field calcium imaging reveals the divergence of neuronal and glial activity during acute rodent seizures. Epilepsy Behav. 49, 61–65 (2015). https://doi.org/10.1016/j.yebeh.2015.04.036

    Article  Google Scholar 

  55. López-Bendito, G.: Development of the thalamocortical interactions: past, present and future. Neuroscience. 385, 67–74 (2018). https://doi.org/10.1016/j.neuroscience.2018.06.020

    Article  Google Scholar 

  56. Song, Y., et al.: Intraoperative optical mapping of epileptogenic cortices during non-ictal periods in pediatric patients. NeuroImage Clin. 11, 423–434 (2016). https://doi.org/10.1016/j.nicl.2016.02.015

    Article  Google Scholar 

  57. Sato, K., Nariai, T., Momose-Sato, Y., Kamino, K.: Intraoperative intrinsic optical imaging of human somatosensory cortex during neurosurgical operations. Neurophotonics. 4(3), 031205 (2016). https://doi.org/10.1117/1.NPh.4.3.031205

    Article  Google Scholar 

  58. Rayshubskiy, A., et al.: Direct, intraoperative observation of ∼0.1 Hz hemodynamic oscillations in awake human cortex: implications for fMRI. NeuroImage. 87, 323–331 (2014). https://doi.org/10.1016/j.neuroimage.2013.10.044

    Article  Google Scholar 

  59. Sobottka, S.B., et al.: Intraoperative optical imaging of intrinsic signals: a reliable method for visualizing stimulated functional brain areas during surgery. J. Neurosurg. 119(4), 853–863 (2013). https://doi.org/10.3171/2013.5.JNS122155

    Article  Google Scholar 

  60. Buxton, R.B., Uludağ, K., Dubowitz, D.J., Liu, T.T.: Modeling the hemodynamic response to brain activation. NeuroImage. 23, S220–S233 (2004). https://doi.org/10.1016/j.neuroimage.2004.07.013

    Article  Google Scholar 

  61. Buxton, R.B., Frank, L.R.: A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab. 17(1), 64–72 (1997). https://doi.org/10.1097/00004647-199701000-00009

    Article  Google Scholar 

  62. Devor, A., et al.: “Overshoot” of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31(38), 13676–13681 (2011). https://doi.org/10.1523/JNEUROSCI.1968-11.2011

    Article  Google Scholar 

  63. Cannestra, A.F., Pouratian, N., Forage, J., Bookheimer, S.Y., Martin, N.A., Toga, A.W.: Functional magnetic resonance imaging and optical imaging for dominant-hemisphere perisylvian arteriovenous malformations. Neurosurgery. 55(4), 804–814 (2004). https://doi.org/10.1227/01.NEU.0000137654.27826.71

    Article  Google Scholar 

  64. Toga, A.W., Cannestra, A.F., Black, K.L.: The temporal/spatial evolution of optical signals in human cortex. Cereb. Cortex. 5(6), 561–565 (1995). https://doi.org/10.1093/cercor/5.6.561

    Article  Google Scholar 

  65. Berwick, J., et al.: Fine detail of neurovascular coupling revealed by spatiotemporal analysis of the hemodynamic response to single whisker stimulation in rat barrel cortex. J. Neurophysiol. 99(2), 787–798 (2008). https://doi.org/10.1152/jn.00658.2007

    Article  Google Scholar 

  66. Ba, A.M., et al.: Multiwavelength optical intrinsic signal imaging of cortical spreading depression. J. Neurophysiol. 88(5), 2726–2735 (2002). https://doi.org/10.1152/jn.00729.2001

    Article  Google Scholar 

  67. Suh, M., Bahar, S., Mehta, A.D., Schwartz, T.H.: Blood volume and hemoglobin oxygenation response following electrical stimulation of human cortex. NeuroImage. 31(1), 66–75 (2006). https://doi.org/10.1016/j.neuroimage.2005.11.030

    Article  Google Scholar 

  68. Suh, M., Bahar, S., Mehta, A.D., Schwartz, T.H.: Temporal dependence in uncoupling of blood volume and oxygenation during interictal epileptiform events in rat neocortex. J. Neurosci. 25(1), 68–77 (2005). https://doi.org/10.1523/JNEUROSCI.2823-04.2005

    Article  Google Scholar 

  69. Bahar, S., Suh, M., Zhao, M., Schwartz, T.H.: Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’. Neuroreport. 17(5), 499–503 (2006). https://doi.org/10.1097/01.wnr.0000209010.78599.f5

    Article  Google Scholar 

  70. Hong, K.-S., Zafar, A.: Existence of initial dip for BCI: an illusion or reality. Front. Neurorobot. 12, 69 (2018). https://doi.org/10.3389/fnbot.2018.00069

    Article  Google Scholar 

  71. Hu, X., Yacoub, E.: The story of the initial dip in fMRI. NeuroImage. 62(2), 1103–1108 (2012). https://doi.org/10.1016/j.neuroimage.2012.03.005

    Article  Google Scholar 

  72. Sheth, S.A., et al.: Columnar specificity of microvascular oxygenation and volume responses: implications for functional brain mapping. J. Neurosci. 24(3), 634–641 (2004). https://doi.org/10.1523/JNEUROSCI.4526-03.2004

    Article  Google Scholar 

  73. Saito, T., et al.: Posterior quadrantectomy for infant with refractory epilepsy: a case report. No Shinkei Geka. 47(3), 349–356 (2019). https://doi.org/10.11477/mf.1436203943

    Article  Google Scholar 

  74. Dunn, A.K., et al.: Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt. Lett. 28(1), 28–30 (2003). Accessed 19 Sep 2018. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/12656525

    Article  Google Scholar 

  75. Vanzetta, I., Grinvald, A.: Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science. 286(5444), 1555–1558 (1999). Accessed 21 May 2019. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10567261

    Article  Google Scholar 

  76. Ances, B.M.: Coupling of changes in cerebral blood flow with neural activity: what must initially dip must come back up. J. Cereb. Blood Flow Metab. 24(1), 1–6 (2004). https://doi.org/10.1097/01.WCB.0000103920.96801.12

    Article  Google Scholar 

  77. Wang, Z., Hughes, S., Dayasundara, S., Menon, R.S.: Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation. J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007). https://doi.org/10.1038/sj.jcbfm.9600357

    Article  Google Scholar 

  78. Zaidi, A.D., et al.: Simultaneous epidural functional near-infrared spectroscopy and cortical electrophysiology as a tool for studying local neurovascular coupling in primates. NeuroImage. 120, 394–399 (2015). https://doi.org/10.1016/j.neuroimage.2015.07.019

    Article  Google Scholar 

  79. Lindauer, U., et al.: No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation. NeuroImage. 13(6), 988–1001 (2001). https://doi.org/10.1006/nimg.2000.0709

    Article  Google Scholar 

  80. Tian, P., et al.: Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proc. Natl. Acad. Sci. 107(34), 15246–15251 (2010). https://doi.org/10.1073/pnas.1006735107

    Article  Google Scholar 

  81. Takeshita, D., Bahar, S.: Synchronization analysis of voltage-sensitive dye imaging during focal seizures in the rat neocortex. Chaos. 21(4), 047506 (2011). https://doi.org/10.1063/1.3640043

    Article  Google Scholar 

  82. Graebenitz, S., et al.: Directional spread of activity in synaptic networks of the human lateral amygdala. Neuroscience. 349, 330–340 (2017). https://doi.org/10.1016/j.neuroscience.2017.03.009

    Article  Google Scholar 

  83. Kulkarni, R.U., Kramer, D.J., Pourmandi, N., Karbasi, K., Bateup, H.S., Miller, E.W.: Voltage-sensitive rhodol with enhanced two-photon brightness. Proc. Natl. Acad. Sci. 114(11), 2813–2818 (2017). https://doi.org/10.1073/pnas.1610791114

    Article  Google Scholar 

  84. Cappaert, N.L.M., Werkman, T.R., Benito, N., Witter, M.P., Baayen, J.C., Wadman, W.J.: Carbamazepine modulates the spatiotemporal activity in the dentate gyrus of rats and pharmacoresistant humans in vitro. Brain Behav. 6(6), e00463 (2016). https://doi.org/10.1002/brb3.463

    Article  Google Scholar 

  85. Proix, T., Jirsa, V.K., Bartolomei, F., Guye, M., Truccolo, W.: Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nat. Commun. 9(1) (2018). https://doi.org/10.1038/s41467-018-02973-y

  86. Huang, X., et al.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24(44), 9897–9902 (2004). https://doi.org/10.1523/JNEUROSCI.2705-04.2004

    Article  Google Scholar 

  87. Huang, X., Xu, W., Liang, J., Takagaki, K., Gao, X., Wu, J.: Spiral wave dynamics in neocortex. Neuron. 68(5), 978–990 (2010). https://doi.org/10.1016/j.neuron.2010.11.007

    Article  Google Scholar 

  88. Tang, Q., et al.: 3D mesoscopic imaging of neural connections in sensory and motor cortices. In: 2016 IEEE Photonics Conference, IPC 2016 (2017). https://doi.org/10.1109/IPCon.2016.7831020

    Chapter  Google Scholar 

  89. Tang, Q., Tsytsarev, V., Frank, A., Wu, Y., Chen, C.W., Erzurumlu, R.S., Chen, Y.: In vivo mesoscopic voltage-sensitive dye imaging of brain activation. Sci. Rep. 6, 25269 (2016). https://doi.org/10.1038/srep25269

  90. Shultz, S.R., O’Brien, T.J., Stefanidou, M., Kuzniecky, R.I.: Neuroimaging the epileptogenic process. Neurotherapeutics. 11(2), 347–357 (2014). https://doi.org/10.1007/s13311-014-0258-1

    Article  Google Scholar 

  91. Guo, Y., et al.: In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an 18F-fluorodeoxyglucose-small animal positron emission tomography study. Neuroscience. 162(4), 972–979 (2009). https://doi.org/10.1016/j.neuroscience.2009.05.041

    Article  Google Scholar 

  92. Tsytsarev, V., Maslov, K.I., Yao, J., Parameswar, A.R., Demchenko, A.V., Wang, L.V.: In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J. Neurosci. Methods. 203(1) (2012). https://doi.org/10.1016/j.jneumeth.2011.09.005

  93. Yao, J., et al.: Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. In: Photons Plus Ultrasound: Imaging and Sensing Progress in Biomedical Optics and Imaging – Proceedings of SPIE, vol. 8581. SPIE, Bellingham (2013). https://doi.org/10.1117/12.2005645

    Chapter  Google Scholar 

  94. Santhakumar, H., et al.: Real time imaging and dynamics of hippocampal Zn2+ under epileptic condition using a ratiometric fluorescent probe. Sci. Rep. 8(1), 9069 (2018). https://doi.org/10.1038/s41598-018-27029-5

    Article  MathSciNet  Google Scholar 

  95. Rossi, L.F., Kullmann, D.M., Wykes, R.C.: The enlightened brain: novel imaging methods focus on epileptic networks at multiple scales. Front. Cell. Neurosci. 12, 82 (2018). https://doi.org/10.3389/fncel.2018.00082

    Article  Google Scholar 

  96. Takao, T., et al.: Transcranial imaging of audiogenic epileptic foci in the cortex of DBA/2J mice. Neuroreport. 17(3), 267–271 (2006). https://doi.org/10.1097/01.wnr.0000201505.61373.42

    Article  Google Scholar 

  97. Suh, M., Shariff, S., Bahar, S., Mehta, A.D., Schwartz, T.H.: Intrinsic optical signal imaging of normal and abnormal physiology in animals and humans--seeing the invisible. Clin. Neurosurg. 52, 135–149 (2005). Accessed 07 July 2018. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16626065

    Google Scholar 

  98. Kitaura, H., Kakita, A.: Optical imaging of human epileptogenic tissues in vitro. Neuropathology. 33(4), 469–474 (2013). https://doi.org/10.1111/neup.12017

    Article  Google Scholar 

  99. Michael, N., Bischof, H.-J., Löwel, S.: Flavoprotein autofluorescence imaging of visual system activity in zebra finches and mice. PLoS One. 9(1), e85225 (2014). https://doi.org/10.1371/journal.pone.0085225

    Article  Google Scholar 

  100. Kwon, S.E., Tsytsarev, V., Erzurumlu, R.S., O’Connor, D.H.: Organization of orientation-specific whisker deflection responses in layer 2/3 of mouse somatosensory cortex. Neuroscience. 368, 46–56 (2018). https://doi.org/10.1016/J.NEUROSCIENCE.2017.07.067

    Article  Google Scholar 

  101. Tsukano, H., Horie, M., Takahashi, K., Hishida, R., Takebayashi, H., Shibuki, K.: Independent tonotopy and thalamocortical projection patterns in two adjacent parts of the classical primary auditory cortex in mice. Neurosci. Lett. 637, 26–30 (2017). https://doi.org/10.1016/j.neulet.2016.11.062

    Article  Google Scholar 

  102. Tohmi, M., Takahashi, K., Kubota, Y., Hishida, R., Shibuki, K.: Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J. Neurochem. 109, 3–9 (2009). https://doi.org/10.1111/j.1471-4159.2009.05926.x

  103. Nakai, J., Ohkura, M., Imoto, K.: A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat. Biotechnol. 19(2), 137–141 (2001). https://doi.org/10.1038/84397

    Article  Google Scholar 

  104. Miyawaki, A., et al.: Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin. Nature. 388(6645), 882–887 (1997). https://doi.org/10.1038/42264

    Article  Google Scholar 

  105. Lin, M.Z., Schnitzer, M.J.: Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19(9), 1142–1153 (2016). https://doi.org/10.1038/nn.4359

    Article  Google Scholar 

  106. Peterka, D.S., Takahashi, H., Yuste, R.: Imaging voltage in neurons. Neuron. 69(1), 9–21 (2011). https://doi.org/10.1016/j.neuron.2010.12.010

    Article  Google Scholar 

  107. Yang, H.H., St-Pierre, F.: Genetically encoded voltage indicators: opportunities and challenges. J. Neurosci. 36(39), 9977–9989 (2016). https://doi.org/10.1523/JNEUROSCI.1095-16.2016

  108. Grienberger, C., Konnerth, A.: Imaging calcium in neurons. Neuron. 73(5), 862–885 (2012). https://doi.org/10.1016/j.neuron.2012.02.011

    Article  Google Scholar 

  109. Paredes, J.M., et al.: Synchronous bioimaging of intracellular pH and chloride based on LSS fluorescent protein. ACS Chem. Biol. 11(6), 1652–1660 (2016). https://doi.org/10.1021/acschembio.6b00103

    Article  Google Scholar 

  110. Kannan, M., Vasan, G., Pieribone, V.A.: Optimizing strategies for developing genetically encoded voltage indicators. Front. Cell. Neurosci. 13. Frontiers Media S.A., 1–17 (2019). https://doi.org/10.3389/fncel.2019.00053

    Article  Google Scholar 

  111. Sepehri Rad, M., et al.: Voltage and calcium imaging of brain activity. Biophys. J. 113(10), 2160–2167 (2017). https://doi.org/10.1016/j.bpj.2017.09.040

    Article  Google Scholar 

  112. Bando, Y., Grimm, C., Cornejo, V.H., Yuste, R.: Genetic voltage indicators. BMC Biol. 17(1), 1–12 (2019). https://doi.org/10.1186/s12915-019-0682-0

    Article  Google Scholar 

  113. Storace, D., Sepehri Rad, M., Kang, B., Cohen, L.B., Hughes, T., Baker, B.J.: Toward better genetically encoded sensors of membrane potential. Trends Neurosci. 39(5), 277–289 (2016). https://doi.org/10.1016/j.tins.2016.02.005

    Article  Google Scholar 

  114. Madisen, L., et al.: Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron. 85(5), 942–958 (2015). https://doi.org/10.1016/j.neuron.2015.02.022

    Article  Google Scholar 

  115. Barretto, R.P.J., Schnitzer, M.J.: In vivo optical microendoscopy for imaging cells lying deep within live tissue. Cold Spring Harb. Protoc. (10), pdb.top071464 (2012, 2012). https://doi.org/10.1101/pdb.top071464

  116. Barretto, R.P.J., et al.: Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 17(2), 223–228 (2011). https://doi.org/10.1038/nm.2292

    Article  Google Scholar 

  117. Flusberg, B.A., et al.: High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods. 5(11), 935–938 (2008). https://doi.org/10.1038/nmeth.1256

    Article  Google Scholar 

  118. Tang, Q., Tsytsarev, V., Liang, C.-P., Akkentli, F., Erzurumlu, R.S., Chen, Y.: In vivo voltage-sensitive dye imaging of subcortical brain function. Sci. Rep. 5, 17325 (2015). https://doi.org/10.1038/srep17325

  119. Raimondo, J.V., et al.: Tight coupling of astrocyte pH dynamics to epileptiform activity revealed by genetically encoded pH sensors. J. Neurosci. 36(26), 7002–7013 (2016). https://doi.org/10.1523/JNEUROSCI.0664-16.2016

    Article  Google Scholar 

  120. Mcallister, A.K.: Biolistic transfection of neurons materials recipes notes and remarks references introduction. Plasmid. 3524, 1–13 (2000). https://doi.org/10.1126/stke.2000.51.pl1

    Article  Google Scholar 

  121. Cela, E., et al.: An optogenetic kindling model of neocortical epilepsy. Sci. Rep. 9(1), 1–12 (2019). https://doi.org/10.1038/s41598-019-41533-2

    Article  Google Scholar 

  122. Löscher, W.: Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 20(5), 359–368 (2011). https://doi.org/10.1016/j.seizure.2011.01.003

    Article  Google Scholar 

  123. Stafstrom, C.E., Moshé, S.L., Swann, J.W., Nehlig, A., Jacobs, M.P., Schwartzkroin, P.A.: Models of pediatric epilepsies: strategies and opportunities. Epilepsia. 47(8), 1407–1414 (2006). https://doi.org/10.1111/j.1528-1167.2006.00674_1.x

    Article  Google Scholar 

  124. Kandratavicius, L., et al.: Animal models of epilepsy: use and limitations. Neuropsychiatr. Dis. Treat. 10, 1693–1705 (2014). https://doi.org/10.2147/NDT.S50371

    Article  Google Scholar 

  125. Turrini, L., et al.: Optical mapping of neuronal activity during seizures in zebrafish. Sci. Rep. 7(1), 3025 (2017). https://doi.org/10.1038/s41598-017-03087-z

    Article  Google Scholar 

  126. Wenzel, M., Hamm, J.P., Peterka, D.S., Yuste, R.: Reliable and elastic propagation of cortical seizures in vivo. Cell Rep. 19(13), 2681–2693 (2017). https://doi.org/10.1016/j.celrep.2017.05.090

    Article  Google Scholar 

  127. Abraham, T., Feng, J.: Evolution of brain imaging instrumentation. Semin. Nucl. Med. 41(3), 202–219 (2011). https://doi.org/10.1053/j.semnuclmed.2010.12.001

    Article  Google Scholar 

  128. Lo, F.-S., Erzurumlu, R.S.: Insulin receptor sensitization restores neocortical excitation/inhibition balance in a mouse model of autism. Mol. Autism. 9(1), 13 (2018). https://doi.org/10.1186/s13229-018-0196-6

    Article  Google Scholar 

  129. Pavone, P., Striano, P., Falsaperla, R., Pavone, L., Ruggieri, M.: Infantile spasms syndrome, West syndrome and related phenotypes: what we know in 2013. Brain Dev. 36(9), 739–751 (2014). https://doi.org/10.1016/j.braindev.2013.10.008

    Article  Google Scholar 

  130. Ho, A.L., Salib, A.-M.N., Pendharkar, A.V., Sussman, E.S., Giardino, W.J., Halpern, C.H.: The nucleus accumbens and alcoholism: a target for deep brain stimulation. Neurosurg. Focus. 45(2), E12 (2018). https://doi.org/10.3171/2018.5.FOCUS18157

    Article  Google Scholar 

  131. Miyakawa, N., Yazawa, I., Sasaki, S., Momose-Sato, Y., Sato, K.: Optical analysis of acute spontaneous epileptiform discharges in the in vivo rat cerebral cortex. NeuroImage. 18(3), 622–632 (2003). Accessed 19 May 2019. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/12667839

    Article  Google Scholar 

  132. Serikawa, T., Mashimo, T., Kuramoto, T., Voigt, B., Ohno, Y., Sasa, M.: Advances on genetic rat models of epilepsy. Exp. Anim. 64(1), 1–17 (2015). https://doi.org/10.1538/expanim.14-0066

    Article  Google Scholar 

  133. Yang, F., Yang, L., Wataya-Kaneda, M., Teng, L., Katayama, I.: Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: a novel epilepsy model. PLoS One. 15(1), 1–18 (2020). https://doi.org/10.1371/journal.pone.0228204

    Article  Google Scholar 

  134. Chen, Y., et al.: Integrated optical coherence tomography (OCT) and fluorescence laminar optical tomography (FLOT) for depth-resolved subsurface cancer imaging. In: Biomedical Optics and 3-D Imaging, p. BSuD9 (2010). https://doi.org/10.1364/BIOMED.2010.BSuD9

    Chapter  Google Scholar 

  135. Chen, Y., Aguirre, A.D., Ruvinskaya, L., Devor, A., Boas, D.A., Fujimoto, J.G.: Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation. J. Neurosci. Methods. 178(1), 162–173 (2009). https://doi.org/10.1016/j.jneumeth.2008.11.026

    Article  Google Scholar 

  136. Obrenovitch, T.P., Chen, S., Farkas, E.: Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods. NeuroImage. 45(1), 68–74 (2009). https://doi.org/10.1016/j.neuroimage.2008.11.025

    Article  Google Scholar 

  137. Kalchenko, V., Sdobnov, A., Meglinski, I., Kuznetsov, Y., Molodij, G., Harmelin, A.: A robust method for adjustment of laser speckle contrast imaging during transcranial mouse brain visualization. Photonics. 6(3), 80 (2019). https://doi.org/10.3390/photonics6030080

    Article  Google Scholar 

  138. Kalchenko, V., Meglinski, I., Sdobnov, A., Kuznetsov, Y., Harmelin, A.: Combined laser speckle imaging and fluorescent intravital microscopy for monitoring acute vascular permeability reaction. J. Biomed. Opt. 24(06), 1 (2019). https://doi.org/10.1117/1.jbo.24.6.060501

    Article  Google Scholar 

  139. Hochbaum, D.R., et al.: All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods. 11(8), 825–833 (2014). https://doi.org/10.1038/nmeth.3000

    Article  Google Scholar 

  140. Zou, P., et al.: Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms5625

  141. Piatkevich, K.D., et al.: Population imaging of neural activity in awake behaving mice. Nature. 574(7778), 413–417 (2019). https://doi.org/10.1038/s41586-019-1641-1

    Article  Google Scholar 

  142. Bertrand, S.J., et al.: Transient neonatal sleep fragmentation results in long-term neuroinflammation and cognitive impairment in a rabbit model. Exp. Neurol. 327, 113212 (2020). https://doi.org/10.1016/j.expneurol.2020.113212

    Article  Google Scholar 

  143. Kannan, M., et al.: Fast, in vivo voltage imaging using a red fluorescent indicator. Nat. Methods. 15(12), 1108–1116 (2018). https://doi.org/10.1038/s41592-018-0188-7

    Article  Google Scholar 

  144. Abdelfattah, A.S., et al.: Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science. 365(6454), 699–704 (2019). https://doi.org/10.1126/science.aav6416

    Article  Google Scholar 

  145. Gong, Y., et al.: High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science (80-.). 350(6266), 1361–1366 (2015). https://doi.org/10.1126/science.aab0810

    Article  Google Scholar 

  146. Abdelfattah, A.S., et al.: A bright and fast red fluorescent protein voltage indicator that reports neuronal activity in organotypic brain slices. J. Neurosci. 36(8), 2458–2472 (2016). https://doi.org/10.1523/JNEUROSCI.3484-15.2016

    Article  Google Scholar 

  147. Akemann, W., Mutoh, H., Perron, A., Park, Y.K., Iwamoto, Y., Knöpfel, T.: Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. 108(8), 2323–2337 (2012). https://doi.org/10.1152/jn.00452.2012

    Article  Google Scholar 

  148. Lee, S., Geiller, T., Jung, A., Nakajima, R., Song, Y.K., Baker, B.J.: Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition. Sci. Rep. 7(1), 1–16 (2017). https://doi.org/10.1038/s41598-017-08731-2

    Article  Google Scholar 

  149. Han, Z., Jin, L., Platisa, J., Cohen, L.B., Baker, B.J., Pieribone, V.A.: Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics. PLoS One. 8(11), 1–9 (2013). https://doi.org/10.1371/journal.pone.0081295

    Article  Google Scholar 

  150. Villette, V., et al.: Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell. 179(7), 1590–1608.e23 (2019). https://doi.org/10.1016/j.cell.2019.11.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassiliy Tsytsarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tsytsarev, V. (2023). Optical Imaging of Epileptic Seizures. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_124

Download citation

Publish with us

Policies and ethics