Skip to main content

Ergonomics in Laparoscopic Surgery: An Appraisal of Evidence

  • Chapter
  • First Online:
Recent Concepts in Minimal Access Surgery

Abstract

Ergonomic considerations in laparoscopic surgery is different from open surgery as it requires increased physical and mental demands. The important arenas of consideration are as follows: (1) the laparoscopic vision which is primarily 2D as compared to 3D vision in open surgery and is an indirect viewing technique dependent on the assistant (2) uncommon body postures and prolonged static position in the postures leads to muscle fatigue and strains as also nerve compression and paresthesias (3) the lack of haptic feed back and inefficient designs in laparoscopic instruments coupled with limited degrees of freedom increases physical and mental strain. Certain critical adjustments in OT layout as also the designing and use of laparoscopic instruments can help in this regard and has been discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burlington DB. Human factors and the FDA’s goals: improved medical device design. Biomed Instrum Technol. 1996;30(2):107–9.

    CAS  PubMed  Google Scholar 

  2. Franasiak J, Ko EM, Kidd J, Secord AA, Bell M, Boggess JF, Gehrig PA. Physical strain and urgent need for ergonomic training among gynecologic oncologists who perform minimally invasive surgery. Gynecol Oncol. 2012;126(3):437–42. https://doi.org/10.1016/j.ygyno.2012.05.016.

    Article  PubMed  Google Scholar 

  3. Sari V, Nieboer TE, Vierhout ME, Stegeman DF, Kluivers KB. The operation room as a hostile environment for surgeons: physical complaints during and after laparoscopy. Minim Invasive Ther Allied Technol. 2010;19(2):105–9. https://doi.org/10.3109/13645701003643972.

    Article  PubMed  Google Scholar 

  4. Alleblas CC, Vleugels MP, Nieboer TE. Ergonomics of laparoscopic graspers and the importance of haptic feedback: the surgeons’ perspective. Gynecol Surg. 2016;13(4):379–84.

    Article  Google Scholar 

  5. Yurko YY, Scerbo MW, Prabhu AS, Acker CE, Stefanidis D. Higher mental workload is associated with poorer laparoscopic performance as measured by the NASA-TLX tool. Simul Healthc. 2010;5(5):267–71. https://doi.org/10.1097/SIH.0b013e3181e3f329.

    Article  PubMed  Google Scholar 

  6. Berguer R, Forkey DL, Smith WD. The effect of laparoscopic instrument working angle on surgeons’ upper extremity workload. Surg Endosc. 2001 Sep;15(9):1027–9.

    Article  CAS  Google Scholar 

  7. Matern U, Rückauer KD, Farthmann EH. Working posture of laparoscopy-practicing surgeons: ideal and reality. Zentralbl Chir. 2000;125(8):698–701.

    Article  CAS  Google Scholar 

  8. Lucas-Hernández M, Pagador JB, Pérez-Duarte FJ, Castelló P, Sánchez-Margallo FM. Ergonomics problems due to the use and design of dissector and needle holder: a survey in minimally invasive surgery. Surg Laparosc Endosc Percutan Tech. 2014;24(5):e170–7. https://doi.org/10.1097/SLE.0b013e3182937fe8.

    Article  PubMed  Google Scholar 

  9. Matern U. Ergonomic deficiencies in the operating room: examples from minimally invasive surgery. Work. 2009;33(2):165–8. https://doi.org/10.3233/WOR-2009-0862.

    Article  PubMed  Google Scholar 

  10. Supe AN, Kulkarni GV, Supe PA. Ergonomics in laparoscopic surgery. J Minim Access Surg. 2010;6(2):31–6. https://doi.org/10.4103/0972-9941.65161.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hemal AK, Srinivas M, Charles AR. Ergonomic problems associated with laparoscopy. J Endourol. 2001;15(5):499–503.

    Article  CAS  Google Scholar 

  12. Shepherd JM, Harilingam MR, Hamade A. Ergonomics in Laparoscopic Surgery--A Survey of Symptoms and Contributing Factors. Surg Laparosc Endosc Percutan Tech. 2016;26(1):72–7. https://doi.org/10.1097/SLE.0000000000000231.

    Article  PubMed  Google Scholar 

  13. Aitchison LP, Cui CK, Arnold A, Nesbitt-Hawes E, Abbott J. The ergonomics of laparoscopic surgery: a quantitative study of the time and motion of laparoscopic surgeons in live surgical environments. Surg Endosc. 2016;30(11):5068–76.

    Article  Google Scholar 

  14. Berguer R, Rab GT, Abu-Ghaida H, Alarcon A, Chung J. A comparison of surgeons’ posture during laparoscopic and open surgical procedures. Surg Endosc. 1997;11(2):139–42.

    Article  CAS  Google Scholar 

  15. Berguer R, Chen J, Smith WD. A comparison of the physical effort required for laparoscopic and open surgical techniques. Arch Surg. 2003;138(9):967–70.

    Article  Google Scholar 

  16. Berguer R, Smith WD, Chung YH. Performing laparoscopic surgery is significantly more stressful for the surgeon than open surgery. Surg Endosc. 2001;15(10):1204–7.

    Article  CAS  Google Scholar 

  17. Whelan RL. Introductory Remarks Concerning Operating RoomSetup, Patient Positioning, and Port Placement Chapters. In: Whelan RL, Fleshman JW, Fowler DL, editors. The SAGES Manual of Perioperative Care in Minimally Invasive Surgery. 1st ed. New York: Springer-Verlag; 2006. p. 41–7.

    Chapter  Google Scholar 

  18. Bartnicka J, Zietkiewicz AA, Kowalski GJ. An ergonomics study on wrist posture when using laparoscopic tools in four techniques in minimally invasive surgery. Int J Occup Saf Ergon. 2018;24(3):438–49. https://doi.org/10.1080/10803548.2018.1452666.

    Article  PubMed  Google Scholar 

  19. Kano N, Yamakawa T, Ishikawa Y, Miyajima N, Ohtaki S, Kasugai H. Prevention of laparoscopic surgeon’s thumb. Surg Endosc. 1995;9(6):738–9.

    Article  CAS  Google Scholar 

  20. Lee WJ, Chae YS. Superficial nerve damage of thumb of laparoscopic surgeon. Surg Laparosc Endosc Percutan Tech. 2001;11(3):207–8.

    Article  CAS  Google Scholar 

  21. Inaki N, Kanehira E, Kinoshita T, Komai K, Omura K, Watanabe G. Ringed silicon rubber attachment prevents laparoscopic surgeon’s thumb. Surg Endosc. 2007;21(7):1126–30.

    Article  CAS  Google Scholar 

  22. Berguer R, Forkey DL, Smith WD. Ergonomic problems associated with laparoscopic surgery. Surg Endosc. 1999;13(5):466–8.

    Article  CAS  Google Scholar 

  23. Alarcon A, Berguer R. A comparison of operating room crowding between open and laparoscopic operations. Surg Endosc. 1996;10(9):916–9.

    Article  CAS  Google Scholar 

  24. Klein M, Andersen LP, Alamili M, Gögenur I, Rosenberg J. Psychological and physical stress in surgeons operating in a standard or modern operating room. Surg Laparosc Endosc Percutan Tech. 2010;20(4):237–42. https://doi.org/10.1097/SLE.0b013e3181ed851d.

    Article  PubMed  Google Scholar 

  25. Matern U, Faist M, Kehl K, Giebmeyer C, Buess G. Monitor position in laparoscopic surgery. Surg Endosc. 2005;19(3):436–40.

    Article  CAS  Google Scholar 

  26. Berquer R, Smith WD, Davis S. An ergonomic study of the optimum operating table height for laparoscopic surgery. Surg Endosc. 2002;16(3):416–21.

    Article  CAS  Google Scholar 

  27. Kaur G. Role of OT table height on the task performance of minimal access surgery. World J Laparosc Surg. 2008;1(1):49–55.

    Article  Google Scholar 

  28. Manasnayakorn S, Cuschieri A, Hanna GB. Ergonomic assessment of optimum operating table height for hand-assisted laparoscopic surgery. Surg Endosc. 2009;23(4):783–9. https://doi.org/10.1007/s00464-008-0068-9.

    Article  PubMed  Google Scholar 

  29. Steinhilber B, Seibt R, Reiff F, Rieger MA, Kraemer B, Rothmund R. Effect of a laparoscopic instrument with rotatable handle piece on biomechanical stress during laparoscopic procedures. Surg Endosc. 2016;30(1):78–88. https://doi.org/10.1007/s00464-015-4164-3.

    Article  PubMed  Google Scholar 

  30. Sutton E, Irvin M, Zeigler C, Lee G, Park A. The ergonomics of women in surgery. Surg Endosc. 2014;28(4):1051–5.

    Article  Google Scholar 

  31. van Det MJ, Meijerink WJ, Hoff C, Totté ER, Pierie JP. Optimal ergonomics for laparoscopic surgery in minimally invasive surgery suites: a review and guidelines. Surg Endosc. 2009;23(6):1279–85. https://doi.org/10.1007/s00464-008-0148-x.

    Article  PubMed  Google Scholar 

  32. Walczak DA, Pawełczak D, Piotrowski P, Trzeciak PW, Jędrzejczyk A, Pasieka Z. Video display during laparoscopy - where should it be placed? Wideochir Inne Tech Maloinwazyjne. 2015;10(1):87–91. https://doi.org/10.5114/wiitm.2014.47434.

    Article  PubMed  Google Scholar 

  33. Seagull FJ, Sutton E, Lee T, Godinez C, Lee G, Park A. A validated subjective rating of display quality: the Maryland visual comfort scale. Surg Endosc. 2011;25(2):567–71. https://doi.org/10.1007/s00464-010-1220-x.

    Article  PubMed  Google Scholar 

  34. Rousek JB, Brown-Clerk B, Lowndes BR, Balogh BJ, Hallbeck MS. Optimizing integration of electrosurgical hand controls within a laparoscopic surgical tool. Minim Invasive Ther Allied Technol. 2012;21(3):222–33. https://doi.org/10.3109/13645706.2011.603340.

    Article  PubMed  Google Scholar 

  35. Kim FJ, Sehrt D, Molina WR, Pompeo A. Clinical use of a cordless laparoscopic ultrasonic device. JSLS. 2014;18(3):e2014.001153. https://doi.org/10.4293/JSLS.2014.001153.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Youssef Y, Lee G, Godinez C, Sutton E, Klein RV, George IM, Seagull FJ, Park A. Laparoscopic cholecystectomy poses physical injury risk to surgeons: analysis of hand technique and standing position. Surg Endosc. 2011;25(7):2168–74. https://doi.org/10.1007/s00464-010-1517-9.

    Article  PubMed  Google Scholar 

  37. Kramp KH, van Det MJ, Totte ER, Hoff C, Pierie JP. Ergonomic assessment of the French and American position for laparoscopic cholecystectomy in the MIS suite. Surg Endosc. 2014;28(5):1571–8. https://doi.org/10.1007/s00464-013-3353-1.

    Article  PubMed  Google Scholar 

  38. Liu S, Hemming D, Luo RB, Reynolds J, Delong JC, Sandler BJ, Jacobsen GR, Horgan S. Solving the surgeon ergonomic crisis with surgical exosuit. Surg Endosc. 2018;32(1):236–44. https://doi.org/10.1007/s00464-017-5667-x.

    Article  PubMed  Google Scholar 

  39. Berguer R. Surgical technology and the ergonomics of laparoscopic instruments. Surg Endosc. 1998;12(5):458–62.

    Article  CAS  Google Scholar 

  40. van Veelen MDW, Goossens RH, Snijders CJ. New ergonomic design criteria for handles of laparoscopic dissection forceps. J Laparoendosc Adv Surg Tech A. 2001;11(1):17–26. https://doi.org/10.1089/10926420150502896.

    Article  PubMed  Google Scholar 

  41. Susmitha WK, Mathew G, Devasahayam SR, Perakath B, Velusamy SK. Factors influencing forces during laparoscopic pinching: towards the design of virtual simulator. Int J Surg. 2015;18:211–5. https://doi.org/10.1016/j.ijsu.2015.04.078.

    Article  PubMed  Google Scholar 

  42. Westebring-van der Putten EP, Lysen WW, Henssen VD, Koopmans N, Goossens RH, van den Dobbelsteen JJ, Dankelman J, Jakimowcz J. Tactile feedback exceeds visual feedback to display tissue slippage in a laparoscopic grasper. Stud Health Technol Inform. 2009;142:420–5.

    CAS  PubMed  Google Scholar 

  43. Ulhaq N, Wadi H, Amlee T, Diesen D, Fey AM. Design and evaluation of haptic constraints for laparoscopic instrument handling. Conf Proc IEEE Eng Med Biol Soc. 2018;2018:961–4. https://doi.org/10.1109/EMBC.2018.8512421.

    Article  Google Scholar 

  44. Cartmill JA, Shakeshaft AJ, Walsh WR, Martin CJ. High pressures are generated at the tip of laparoscopic graspers. Aust N Z J Surg. 1999;69(2):127–30.

    Article  CAS  Google Scholar 

  45. van der Putten EP, van den Dobbelsteen JJ, Goossens RH, Jakimowicz JJDankelman J. The effect of augmented feedback on grasp force in laparoscopic grasp control. IEEE Trans Haptics. 2010;3(4):280–91.

    Article  Google Scholar 

  46. Quick NE, Gillette JC, Shapiro R, Adrales GL, Gerlach D, Park AE. The effect of using laparoscopic instruments on muscle activation patterns during minimally invasive surgical training procedures. Surg Endosc. 2003;17(3):462–5.

    Article  CAS  Google Scholar 

  47. Palanivelu C. Chapter 2, Instrumentation and imaging system in laparoscopy. In: Art of laparoscopic surgery, textbook and atlas, vol. vol 1. 1st ed. Coimbatore: Jaya Publications; 2005. p. 11–33.

    Google Scholar 

  48. Ahmed S, Hanna GB, Cuschieri A. Optimal angle between instrument shaft and handle for laparoscopic bowel suturing. Arch Surg. 2004;139(1):89–92.

    Article  Google Scholar 

  49. Matern U, Koneczny S, Tedeus M, Dietz K, Buess G. Ergonomic testing of two different types of handles via virtual reality simulation. Surg Endosc. 2005;19(8):1147–50.

    Article  CAS  Google Scholar 

  50. Santos-Carreras L, Hagen M, Gassert R, Bleuler H. Survey on surgical instrument handle design: ergonomics and acceptance. Surg Innov. 2012;19(1):50–9. https://doi.org/10.1177/1553350611413611.

    Article  PubMed  Google Scholar 

  51. Landsmeer JMF. Power grip and precision handling. Ann Rheum Dis. 962;21(2):164–70. https://doi.org/10.1136/ard.21.2.164.

  52. Ramani AP, Braasch M, Botnaru A, Lavers A, Herrera S, Nardi Pedro R, Monga M. Evaluation of efficacy of four laparoscopic needle drivers. JSLS. 2008;12(1):77–80.

    PubMed  PubMed Central  Google Scholar 

  53. Tung KD, Shorti RM, Downey EC, Bloswick DS, Merryweather AS. The effect of ergonomic laparoscopic tool handle design on performance and efficiency. Surg Endosc. 2015;29(9):2500–5. https://doi.org/10.1007/s00464-014-4005-9.

    Article  PubMed  Google Scholar 

  54. Berguer R, Gerber S, Kilpatrick G, Remler M, Beckley D. A comparison of forearm and thumb muscle electromyographic responses to the use of laparoscopic instruments with either a finger grasp or a palm grasp. Ergonomics. 1999;42(12):1634–45.

    Article  CAS  Google Scholar 

  55. Rossi J, Berton E, Grélot L, Barla C, Vigouroux L. Characterisation of forces exerted by the entire hand during the power grip: effect of the handle diameter. Ergonomics. 2012;55(6):682–92. https://doi.org/10.1080/00140139.2011.652195.

    Article  PubMed  Google Scholar 

  56. Oh S, Radwin RG. Pistol grip power tool handle and trigger size effects on grip exertions and operator preference. Hum Factors. 1993;35(3):551–69.

    Article  CAS  Google Scholar 

  57. Hasson HM. Rotational handle for laparoscopic instrumentation. J Reprod Med. 1993;38(7):494–6.

    CAS  PubMed  Google Scholar 

  58. Kraemer B, Seibt R, Stoffels AK, Rothmund R, Brucker SY, Rieger MA, Steinhilber B. An ergonomic field study to evaluate the effects of a rotatable handle piece on muscular stress and fatigue as well as subjective ratings of usability, wrist posture and precision during laparoscopic surgery: an explorative pilot study. Int Arch Occup Environ Health. 2018;91(8):1021–9. https://doi.org/10.1007/s00420-018-1344-1.

    Article  PubMed  Google Scholar 

  59. Leite M, Carvalho AF, Costa P, Pereira R, Moreira A, Rodrigues N, Laureano S, Correia-Pinto J, Vilaça JL, Leão P. Assessment of laparoscopic skills performance: 2D versus 3D vision and classic instrument versus new hand-held robotic device for laparoscopy. Surg Innov. 2016;23(1):52–61. https://doi.org/10.1177/1553350615585638.

    Article  PubMed  Google Scholar 

  60. Shakeshaft AJ, Cartmill JA, Walsh WR, Martin CJ. A curved edge moderates high pressure generated by a laparoscopic grasper. Surg Endosc. 2001;15(10):1232–4.

    Article  CAS  Google Scholar 

  61. Mårvik R, Nesbakken R, Langø T, Yavuz Y, Vanhauwaert Bjelland H, Ottermo MV, Stavdahl O. Ergonomic design criteria for a novel laparoscopic tool handle with tactile feedback. Minerva Chir. 2006;61(5):435–44.

    PubMed  Google Scholar 

  62. Ly HH, Tanaka Y, Fukuda T, Sano A. Grasper having tactile sensing function using acoustic reflection for laparoscopic surgery. Int J Comput Assist Radiol Surg. 2017;12(8):1333–43. https://doi.org/10.1007/s11548-017-1592-7.

    Article  PubMed  Google Scholar 

  63. Uchida K, Haruta N, Okajima M, Matsuda M, Yamamoto M. Multimedia article. The keys to the new laparoscopic world Thumbs up! knot and Tornado knot. Surg Endosc. 2005;19(6):859. https://doi.org/10.1007/s00464-004-6007-5.

    Article  CAS  PubMed  Google Scholar 

  64. Uchal M, Brogger J, Rukas R, Karlsen B, Bergamaschi R. In-line versus pistol-grip handles in a laparoscopic simulators. A randomized controlled crossover trial. Surg Endosc. 2002;16(12):1771–3. https://doi.org/10.1007/s00464-002-8816-8.

    Article  CAS  PubMed  Google Scholar 

  65. Joice P, Hanna GB, Cuschieri A. Ergonomic evaluation of laparoscopic bowel suturing. Am J Surg. 1998;176(4):373–8.

    Article  CAS  Google Scholar 

  66. Berguer R, Hreljac A. The relationship between hand size and difficulty using surgical instruments: a survey of 726 laparoscopic surgeons. Surg Endosc. 2004;18(3):508–12.

    Article  CAS  Google Scholar 

  67. Adams DM, Fenton SJ, Schirmer BD, Mahvi DM, Horvath K, Nichol P. One size does not fit all: current disposable laparoscopic devices do not fit the needs of female laparoscopic surgeons. Surg Endosc. 2008;22(10):2310–3. https://doi.org/10.1007/s00464-008-9986-9.

    Article  PubMed  Google Scholar 

  68. Li Z, Wang G, Tan J, Sun X, Lin H, Zhu S. Building a framework for ergonomic research on laparoscopic instrument handles. Int J Surg. 2016;30:74–82. https://doi.org/10.1016/j.ijsu.2016.04.027.

    Article  PubMed  Google Scholar 

  69. Nisky I, Huang F, Milstein A, Pugh CM, Mussa-Ivaldi FA, Karniel A. Perception of stiffness in laparoscopy - the fulcrum effect. Stud Health Technol Inform. 2012;173:313–9.

    PubMed  PubMed Central  Google Scholar 

  70. Emam TA, Hanna GB, Kimber C, Dunkley P, Cuschieri A. Effect of intracorporeal-extracorporeal instrument length ratio on endoscopic task performance and surgeon movements. Arch Surg. 2000;135(1):62–5; discussion 66.

    Article  CAS  Google Scholar 

  71. Rhee R, Fernandez G, Bush R, Seymour NE. The effects of viewing axis on laparoscopic performance: a comparison of non-expert and expert laparoscopic surgeons. Surg Endosc. 2014;28(9):2634–40. https://doi.org/10.1007/s00464-014-3515-9.

    Article  PubMed  Google Scholar 

  72. Holznecht C, Schmidt T, Gould J. The impact of training under different visual-spatial conditions on reverse-alignment laparoscopic skills development. Surg Endosc. 2012;26(1):120–3. https://doi.org/10.1007/s00464-011-1836-5.

    Article  PubMed  Google Scholar 

  73. Martinec DV, Gatta P, Zheng B, Denk PM, Swanström LL. The trade-off between flexibility and maneuverability: task performance with articulating laparoscopic instruments. Surg Endosc. 2009;23(12):2697–701. https://doi.org/10.1007/s00464-009-0462-y.

    Article  PubMed  Google Scholar 

  74. Zhang L, Cao CG. The effect of image orientation on a dynamic laparoscopic task. Proc Hum Factors Ergon Soc Annu Meet. 2010;54(11):774–8. https://doi.org/10.1177/154193121005401108.

    Article  Google Scholar 

  75. Honeck P, Wendt-Nordahl G, Rassweiler J, Knoll T. Three-dimensional laparoscopic imaging improves surgical performance on standardized ex-vivo laparoscopic tasks. J Endourol. 2012;26(8):1085–8. https://doi.org/10.1089/end.2011.0670.

    Article  PubMed  Google Scholar 

  76. Zhang L, Cao CG. Effect of automatic image realignment on visuomotor coordination in simulated laparoscopic surgery. Appl Ergon. 2012;43(6):993–1001. https://doi.org/10.1016/j.apergo.2012.02.001.

    Article  PubMed  Google Scholar 

  77. Bogdanova R, Boulanger P, Zheng B. Depth perception of surgeons in minimally invasive surgery. Surg Innov. 2016;23(5):515–24. https://doi.org/10.1177/1553350616639141.

    Article  PubMed  Google Scholar 

  78. Abodeely AA, Cheah YL, Ryder BA, Aidlen JT, Luks F. Eliminating the effects of paradoxic imaging during laparoscopic surgery. J Laparoendosc Adv Surg Tech A. 2010;20(1):31–4. https://doi.org/10.1089/lap.2009.0227.

    Article  PubMed  Google Scholar 

  79. Lin CJ, Cheng CF, Chen HJ, Wu KY. Training performance of laparoscopic surgery in two- and three-dimensional displays. Surg Innov. 2017;24(2):162–70. https://doi.org/10.1177/1553350617692638.

    Article  PubMed  Google Scholar 

  80. El Boghdady M, Ramakrishnan G, Alijani A. A study of the visual symptoms in two-dimensional versus three-dimensional laparoscopy. Am J Surg. 2018;216(6):1114–7. https://doi.org/10.1016/j.amjsurg.2018.07.051.

    Article  PubMed  Google Scholar 

  81. Hanna GB, Cuschieri A. Influence of the optical axis-to-target view angle on endoscopic task performance. Surg Endosc. 1999;13(4):371–5.

    Article  CAS  Google Scholar 

  82. Gao J, Liu S, Feng Q, Zhang X, Jiang M, Wang L, Zhang J, Zhang Q. Subjective and objective quantification of the effect of distraction on physician’s workload and performance during simulated laparoscopic surgery. Med Sci Monit. 2019;25:3127–32. https://doi.org/10.12659/MSM.914635.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Conrad C, Konuk Y, Werner PD, Cao CG, Warshaw AL, Rattner DW, Stangenberg L, Ott HC, Jones DB, Miller DL, Gee DW. A quality improvement study on avoidable stressors and countermeasures affecting surgical motor performance and learning. Ann Surg. 2012;255(6):1190–4. https://doi.org/10.1097/SLA.0b013e318250b332.

    Article  PubMed  Google Scholar 

  84. Oomens P, Fu VX, Kleinrensink GJ, Jeekel J. The effect of music on simulated surgical performance: a systematic review. Surg Endosc. 2019;33(9):2774–84. https://doi.org/10.1007/s00464-019-06868-x.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Oomens P, Fu VX, Kleinrensink VEE, Kleinrensink GJ, Jeekel J. The effects of preferred music on laparoscopic surgical performance: a randomized crossover study. World J Surg. 2020; https://doi.org/10.1007/s00268-020-05523-0.

  86. Tse MA, Masters RS, McManus AM, Lo CY, Patil NG. Trunk muscle training, posture fatigue, and performance in laparoscopic surgery. J Endourol. 2008;22(5):1053–8.

    Article  Google Scholar 

  87. Glassman D, Yiasemidou M, Ishii H, Somani BK, Ahmed K, Biyani CS. Effect of playing video games on laparoscopic skills performance: a systematic review. J Endourol. 2016;30(2):146–52. https://doi.org/10.1089/end.2015.0425.

    Article  PubMed  Google Scholar 

  88. Lee G, Sutton E, Clanton T, Park A. Higher physical workload risks with NOTES versus laparoscopy: a quantitative ergonomic assessment. Surg Endosc. 2011;25(5):1585–93. https://doi.org/10.1007/s00464-010-1443-x.

    Article  PubMed  Google Scholar 

  89. Montero PN, Acker CE, Heniford BT, Stefanidis D. Single incision laparoscopic surgery (SILS) is associated with poorer performance and increased surgeon workload compared with standard laparoscopy. Am Surg. 2011;77(1):73–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazrah, P., Sharma, D., Anand, G., Jassi, K.P.S. (2022). Ergonomics in Laparoscopic Surgery: An Appraisal of Evidence. In: Sharma, D., Hazrah, P. (eds) Recent Concepts in Minimal Access Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-16-5473-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5473-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5472-5

  • Online ISBN: 978-981-16-5473-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics