Skip to main content

Biogenic Nanomaterials Derived ROS for Cancer Therapy

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects
  • 40 Accesses

Abstract

The unique physicochemical properties of nanoparticles due to very high surface energy lead to the alternation of miscellaneous biological functions, specifically the generation of reactive oxygen species (ROS). The nanoparticle’s size, shape, and surface chemistry are responsible for the production of ROS. The critical specific roles of ROS are concentration dependent and it is instrumental in regulating various biological functions. Nanoparticles induced toxicity along with cellular signaling leads to cell death. Redox-based bioconjugation combinational nano therapies are also a better option for the production of ROS. Development of novel immunotherapeutic agents for ROS generation, such as defining synergistic drug combinations, understanding the tumor microenvironment defects in antigen processing and presentation, and the number, type, quality, and distribution of immune cells in a tumor, and the pathways that regulate them are critical for ongoing clinical success. Green synthesis of a nanoparticle is the safest method of synthesis which avoids the production of toxic by-products. Natural components such as organic systems are ideal for solvent free toxic green synthesis. Numerous biological materials like bacteria, fungi, algae, and plant extracts are used for the green synthesis of metallic nanoparticles. In this chapter, we describe the synthesis of biogenic nanoparticles and their role in the generation of ROS to perform various activities. The biogenic synthesis of nanoparticles with the help of biomolecules, organic waste materials, and microbes leads to a reduction in toxicity. The biogenic syntheses not only reduce cost but also reduce hazardous chemicals and promote green synthesis. Moreover, we also describe the bioconjugated drugs with nanoparticles as promising anticancer nanomedicine. Such novel smart drug delivery nanomedicine induces ROS and decreases the side effects and improves the efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K (2013) Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci 110(43):17247–17252

    Article  CAS  Google Scholar 

  • Augusto O, Miyamoto S (2011) Oxygen radicals and related species. Princ Free Radic Biomed 1:19–42

    Google Scholar 

  • Baker A, Khan MS, Iqbal MZ, Khan MS (2020) Tumor-targeted drug delivery by nanocomposites. Curr Drug Metab 21(8):599–613

    Article  CAS  Google Scholar 

  • Baker A, Wahid I, Hassan Baig M, Alotaibi SS, Khalid M, Uddin I, Dong J-J, Khan MS (2021) Silk cocoon-derived protein bioinspired gold nanoparticles as a formidable anticancer agent. J Biomed Nanotechnol 17(4):615–626

    Article  CAS  Google Scholar 

  • Chavali MS, Nikolova MP (2019) Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 1(6):607

    Article  CAS  Google Scholar 

  • Chen C, Xing G, Wang J, Zhao Y, Li B, Tang J, Jia G, Wang T, Sun J, Xing L (2005) Multihydroxylated [Gd@ C82 (OH) 22] n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5(10):2050–2057

    Article  CAS  Google Scholar 

  • Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2016) Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanopart Res 18(3):79

    Article  Google Scholar 

  • Dizaj SM, Lot F (2014) Pour, M. Barzegar-Jalali, MH Zarrintan and K. Adibkia. Mater Sci Eng C 44(1):278

    Article  CAS  Google Scholar 

  • Dröse S, Brandt U (2012) Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Mitochondrial Oxidative Phosphorylation 145–169

    Google Scholar 

  • Dykman LA, Staroverov SA, Fomin AS, Khanadeev VA, Khlebtsov BN, Bogatyrev VA (2018) Gold nanoparticles as an adjuvant: Influence of size, shape, and technique of combination with CpG on antibody production. Int Immunopharmacol 54:163–168

    Article  CAS  Google Scholar 

  • Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75

    Article  CAS  Google Scholar 

  • Goldberg MS (2015) Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell 161(2):201–204

    Article  CAS  Google Scholar 

  • Gorinstein S, Poovarodom S, Leontowicz H, Leontowicz M, Namiesnik J, Vearasilp S, Haruenkit R, Ruamsuke P, Katrich E, Tashma Z (2011) Antioxidant properties and bioactive constituents of some rare exotic Thai fruits and comparison with conventional fruits: in vitro and in vivo studies. Food Res Int 44(7):2222–2232

    Article  CAS  Google Scholar 

  • He C, Jiang S, Jin H, Chen S, Lin G, Yao H, Wang X, Mi P, Ji Z, Lin Y (2016) Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity. Biomaterials 83:102–114

    Article  CAS  Google Scholar 

  • Hoang M-D, Lee H-J, Lee H-J, Jung S-H, Choi N-R, Vo M-C, Nguyen-Pham T-N, Kim H-J, Park I-K, Lee J-J (2015) Branched polyethylenimine-superparamagnetic iron oxide nanoparticles (bPEI-SPIONs) improve the immunogenicity of tumor antigens and enhance Th1 polarization of dendritic cells. J Immunol Res 2015:706379

    Article  Google Scholar 

  • Iram S, Zahera M, Khan S, Khan I, Syed A, Ansary AA, Ameen F, Shair OHM, Khan MS (2017) Gold nanoconjugates reinforce the potency of conjugated cisplatin and doxorubicin. Colloids Surfaces B Biointerfaces 160:254–264

    Article  CAS  Google Scholar 

  • Iram S, Zahera M, Wahid I, Baker A, Raish M, Khan A, Ali N, Ahmad S, Khan MS (2019) Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence. Sci Rep 9(1):1–16

    Article  CAS  Google Scholar 

  • Kang S, Zhou G, Yang P, Liu Y, Sun B, Huynh T, Meng H, Zhao L, Xing G, Chen C (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@ C82 (OH) 22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci 109(38):15431–15436

    Article  CAS  Google Scholar 

  • Khan MS, Siddiqui SA, Siddiqui MSRA, Goswami U, Srinivasan KV, Khan MI (2008) Antibacterial activity of synthesized 2, 4, 5-trisubstituted imidazole derivatives. Chem Biol Drug Des 72(3):197–204

    Article  CAS  Google Scholar 

  • Khan S, Haseeb M, Baig MH, Bagga PS, Siddiqui HH, Kamal MA, Khan MS (2015) Improved efficiency and stability of secnidazole–An ideal delivery system. Saudi J Biol Sci 22(1):42–49

    Article  CAS  Google Scholar 

  • Kodiha M, Wang YM, Hutter E, Maysinger D, Stochaj U (2015) Off to the organelles-killing cancer cells with targeted gold nanoparticles. Theranostics 5(4):357

    Article  Google Scholar 

  • Kong F-Y, Zhang J-W, Li R-F, Wang Z-X, Wang W-J, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22(9):1445

    Article  Google Scholar 

  • Kwon S, Ko H, You DG, Kataoka K, Park JH (2019) Nanomedicines for reactive oxygen species mediated approach: an emerging paradigm for cancer treatment. Acc Chem Res 52(7):1771–1782

    Article  CAS  Google Scholar 

  • Li JJ, Hartono D, Ong C-N, Bay B-H, Yung L-YL (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003

    Article  CAS  Google Scholar 

  • Luo L, Zhu C, Yin H, Jiang M, Zhang J, Qin B, Luo Z, Yuan X, Yang J, Li W (2018) Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors. ACS Nano 12(8):7647–7662

    Article  CAS  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916

    Article  Google Scholar 

  • Meir R, Shamalov K, Sadan T, Motiei M, Yaari G, Cohen CJ, Popovtzer R (2017) Fast image-guided stratification using anti-programmed death ligand 1 gold nanoparticles for cancer immunotherapy. ACS Nano 11(11):11127–11134

    Article  CAS  Google Scholar 

  • Muddineti OS, Ghosh B, Biswas S (2015) Current trends in using polymer coated gold nanoparticles for cancer therapy. Int J Pharm 484(1–2):252–267

    Article  CAS  Google Scholar 

  • Mueller CF, Laude K, JS MN, Harrison DG (2005) ATVB Focus redox Mech blood Vessel. Arter Thromb Vasc Biol 25:274–278

    Article  CAS  Google Scholar 

  • Paravicini TM, Touyz RM (2008) NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31(Supplement 2):S170–S180

    Article  CAS  Google Scholar 

  • Poilil Surendran S, Moon MJ, Park R, Jeong YY (2018) Bioactive nanoparticles for cancer immunotherapy. Int J Mol Sci 19(12):3877

    Article  Google Scholar 

  • Prasad S, Gupta SC, Tyagi AK (2017) Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett 387:95–105

    Article  CAS  Google Scholar 

  • Sanchez-Dominguez M, Boutonnet M, Solans C (2009) A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water microemulsion reaction method. J Nanopart Res 11(7):1823

    Article  CAS  Google Scholar 

  • Shvedova A, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandelsman V, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Heal Part A 66(20):1909–1926

    Article  CAS  Google Scholar 

  • Singh J, Dutta T, Kim K-H, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):84

    Article  CAS  Google Scholar 

  • Song M-F, Li Y-S, Kasai H, Kawai K (2011) Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr:1202080139

    Google Scholar 

  • Sulthana S, Banerjee T, Kallu J, Vuppala SR, Heckert B, Naz S, Shelby T, Yambem O, Santra S (2017) Combination therapy of NSCLC using Hsp90 inhibitor and doxorubicin carrying functional nanoceria. Mol Pharm 14(3):875–884

    Article  CAS  Google Scholar 

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chemie Int Ed 53(46):12320–12364

    CAS  Google Scholar 

  • Tangaa SR, Selck H, Winther-Nielsen M, Khan FR (2016) Trophic transfer of metal-based nanoparticles in aquatic environments: a review and recommendations for future research focus. Environ Sci Nano 3(5):966–981

    Article  CAS  Google Scholar 

  • Teske SS, Detweiler CS (2015) The biomechanisms of metal and metal-oxide nanoparticles’ interactions with cells. Int J Environ Res Public Health 12(2):1112–1134

    Article  Google Scholar 

  • Toy R, Roy K (2016) Engineering nanoparticles to overcome barriers to immunotherapy. Bioeng Transl Med 1(1):47–62

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC (2017) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Heal Part C 27(2):120–139

    Article  CAS  Google Scholar 

  • Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol Cancer Ther 5(4):1014–1020

    Article  CAS  Google Scholar 

  • Vranić E, Rahić O, Hadžiabdić J, Elezović A, BoÅ¡ković D (2015) Opportunities and challenges for utilization of nanoparticles as bioactive drug carriers for the targeted treatment of cancer. Folia Medica Fac Med Univ Saraeviensis 50(1):34–39

    Google Scholar 

  • Wu H, Yin J-J, Wamer WG, Zeng M, Lo YM (2014) Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22(1):86–94

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  CAS  Google Scholar 

  • Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6(3):e90–e90

    Article  CAS  Google Scholar 

  • Xu Q, He C, Xiao C, Chen X (2016) Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol Biosci 16(5):635–646

    Article  CAS  Google Scholar 

  • Yoshizaki Y, Yuba E, Komatsu T, Udaka K, Harada A, Kono K (2016) Improvement of peptide-based tumor immunotherapy using pH-sensitive fusogenic polymer-modified liposomes. Molecules 21(10):1284

    Article  Google Scholar 

  • Yuba E, Kanda Y, Yoshizaki Y, Teranishi R, Harada A, Sugiura K, Izawa T, Yamate J, Sakaguchi N, Koiwai K (2015) pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy. Biomaterials 67:214–224

    Article  CAS  Google Scholar 

  • Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11(11):986

    Article  CAS  Google Scholar 

  • Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W (2018) Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Mol Pharm 15(5):1791–1799

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baker, A., Khan, M.S. (2022). Biogenic Nanomaterials Derived ROS for Cancer Therapy. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-5422-0_121

Download citation

Publish with us

Policies and ethics