Skip to main content

Semiconductor Quantum Dots and Core Shell Systems for High Contrast Cellular/Bio Imaging

  • Chapter
  • First Online:
Nanomaterials for Luminescent Devices, Sensors, and Bio-imaging Applications

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 16))

  • 361 Accesses

Abstract

QDs are excellent materials for bioimaging because of its unique properties like high level of biocompatibility and its absorption and emission can be tuned with particle size. QDs are an extremely photostable and are considered to be brighter probes as compared to the traditional organic based dye. If the QDs are toxic in nature, it is necessary to surface modify ie, to add or cover some material like a shell over such types of QDs to reduce the toxicity. The non/least-toxic organic based dyes also can be used for cellular imaging application, so that it will cover the toxic QDs to protect the cellular surface and provide good images. Their attractive optical properties promise sensitive cancer imaging properties. In inorganic nanostructures, the ZnS QD is one of the less toxic material and several works are carried using ZnS capped with CdSe QDs for reducing the toxicity. This chapter deals with the cellular/bioimaging applications of the semiconductor QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Bera, L. Qian, T.-K. Tseng, P.H. Holloway, Quantum dots and their multimodal applications: a review. Materials (Basel). 3, 2260–2345 (2010)

    Article  ADS  Google Scholar 

  2. R.E. Bailey, A.M. Smith, S. Nie, Quantum dots in biology and medicine. Phys. E Low-dimensional Syst. Nanostructures 25, 1–12 (2004)

    Article  ADS  Google Scholar 

  3. S.A. Empedocles, M.G. Bawendi, Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997)

    Google Scholar 

  4. S.T. Selvan, T.T. Tan, J.Y. Ying, Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv. Mater. 17, 1620–1625 (2005)

    Article  Google Scholar 

  5. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Google Scholar 

  6. G.D. Luker, K.E. Luker, Optical imaging: current applications and future directions. J. Nucl. Med. 49, 1–4 (2008)

    Article  Google Scholar 

  7. R. Dungdung et al., A slow, efficient and safe nanoplatform of tailored ZnS QD-mycophenolic acid conjugates for in vitro drug delivery against dengue virus 2 genome replication. Nanoscale Adv. 2, 5777–5789 (2020)

    Article  ADS  Google Scholar 

  8. H. Mattoussi et al., Self-assembly of CdSe− ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000)

    Article  Google Scholar 

  9. Y. Li et al., Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. J. Mater. Chem. B 4, 6454–6461 (2016)

    Article  ADS  Google Scholar 

  10. W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)

    Google Scholar 

  11. X. Gao, L.W.K. Chung, S. Nie, Quantum dots for in vivo molecular and cellular imaging, in Quantum Dots (Springer, 2007), pp. 135–145

    Google Scholar 

  12. S. Santra et al, Rapid and effective labeling of brain tissue using TAT-conjugated CdS∶ Mn/ZnS quantum dots. Chem. Commun. 3144–3146 (2005)

    Google Scholar 

  13. M.E. Åkerman, W.C.W. Chan, P. Laakkonen, S.N. Bhatia, E. Ruoslahti, Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. 99, 12617–12621 (2002)

    Article  ADS  Google Scholar 

  14. F. Pinaud, D. King, H.-P. Moore, S. Weiss, Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123 (2004)

    Article  Google Scholar 

  15. J.F. Hainfeld, W. Liu, C.M.R. Halsey, P. Freimuth, R.D. Powell, Ni–NTA–gold clusters target His-tagged proteins. J. Struct. Biol. 127, 185–198 (1999)

    Article  Google Scholar 

  16. J.M. Slocik, J.T. Moore, D.W. Wright, Monoclonal antibody recognition of histidine-rich peptide encapsulated nanoclusters. Nano Lett. 2, 169–173 (2002)

    Article  ADS  Google Scholar 

  17. N. Chandran et al., Label free, nontoxic Cu-GSH NCs as a nanoplatform for cancer cell imaging and subcellular pH monitoring modulated by a specific inhibitor: bafilomycin A1. ACS Appl. Bio Mater. 3, 1245–1257 (2020)

    Article  Google Scholar 

  18. W.C.W. Chan et al., Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13, 40–46 (2002)

    Article  Google Scholar 

  19. S. Santra, D. Dutta, Quantum dots for cancer imaging, in Nanoparticles in Biomedical Imaging (Springer, 2008),pp. 463–485

    Google Scholar 

  20. X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004)

    Article  Google Scholar 

  21. X. Michalet et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)

    Google Scholar 

  22. M. Bayal et al., Cytotoxicity of nanoparticles-Are the size and shape only matters? or the media parameters too?: a study on band engineered ZnS nanoparticles and calculations based on equivolume stress model. Nanotoxicology 13, 1005–1020 (2019)

    Article  Google Scholar 

  23. F. Chen, D. Gerion, Fluorescent CdSe/ZnS nanocrystal− peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 4, 1827–1832 (2004)

    Article  ADS  Google Scholar 

  24. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005)

    Article  ADS  Google Scholar 

  25. C. Bremer, V. Ntziachristos, R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical applications. Eur. Radiol. 13, 231–243 (2003)

    Article  Google Scholar 

  26. E.B. Voura, J.K. Jaiswal, H. Mattoussi, S.M. Simon, Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10, 993–998 (2004)

    Article  Google Scholar 

  27. B. Dubertret et al., In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002)

    Google Scholar 

  28. T. Pellegrino et al., Quantum dot-based cell motility assay. Differentiation 71, 542–548 (2003)

    Article  Google Scholar 

  29. X. Wu et al., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003)

    Article  Google Scholar 

  30. J.O. Winter, T.Y. Liu, B.A. Korgel, C.E. Schmidt, Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv. Mater. 13, 1673–1677 (2001)

    Article  Google Scholar 

  31. V. Ntziachristos, C. Bremer, R. Weissleder, Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195–208 (2003)

    Article  Google Scholar 

  32. N.Y. Morgan et al., Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots1. Acad. Radiol. 12, 313–323 (2005)

    Article  Google Scholar 

  33. X. Gao, W.C.W. Chan, S. Nie, Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 7, 532–537 (2002)

    Article  ADS  Google Scholar 

  34. S. Kim et al., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004)

    Article  Google Scholar 

  35. E. Cassette et al., Synthesis and characterization of near-infrared Cu− In− Se/ZnS core/shell quantum dots for in vivo imaging. Chem. Mater. 22, 6117–6124 (2010)

    Article  Google Scholar 

  36. F. Erogbogbo et al., Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873–878 (2008)

    Article  Google Scholar 

  37. J. Qian et al., Imaging pancreatic cancer using surface-functionalized quantum dots. J. Phys. Chem. B 111, 6969–6972 (2007)

    Article  Google Scholar 

  38. P.M. Allen et al., InAs (ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J. Am. Chem. Soc. 132, 470–471 (2010)

    Article  Google Scholar 

  39. H. Duan, S. Nie, Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J. Am. Chem. Soc. 129, 3333–3338 (2007)

    Article  Google Scholar 

  40. M.-L. Chen, Y.-J. He, X.-W. Chen, J.-H. Wang, Quantum-dot-conjugated graphene as a probe for simultaneous cancer-targeted fluorescent imaging, tracking, and monitoring drug delivery. Bioconjug. Chem. 24, 387–397 (2013)

    Article  Google Scholar 

  41. D. Iannazzo et al., Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm. 518, 185–192 (2017)

    Article  Google Scholar 

  42. D. Qu, M. Zheng, J. Li, Z. Xie, Z. Sun, Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci. Appl. 4, e364–e364 (2015)

    Article  ADS  Google Scholar 

  43. L.-L. Feng et al., Near infrared graphene quantum dots-based two-photon nanoprobe for direct bioimaging of endogenous ascorbic acid in living cells. Anal. Chem. 89, 4077–4084 (2017)

    Article  Google Scholar 

  44. J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47–51 (2003)

    Article  Google Scholar 

  45. H. Li, W.Y. Shih, W.-H. Shih, Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Ind. Eng. Chem. Res. 46, 2013–2019 (2007)

    Article  Google Scholar 

  46. N. Ma, J. Yang, K.M. Stewart, S.O. Kelley, DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles. Langmuir 23, 12783–12787 (2007)

    Article  Google Scholar 

  47. W. Zhang, Y. Yao, Y. Chen, Imaging and quantifying the morphology and nanoelectrical properties of quantum dot nanoparticles interacting with DNA. J. Phys. Chem. C 115, 599–606 (2011)

    Article  Google Scholar 

  48. A. Liu et al., Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. Anal. Chem. 83, 1124–1130 (2011)

    Article  Google Scholar 

  49. G. Ruan, A. Agrawal, A.I. Marcus, S. Nie, Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. J. Am. Chem. Soc. 129, 14759–14766 (2007)

    Article  Google Scholar 

  50. R. Wilson, D.G. Spiller, A. Beckett, I.A. Prior, V. Sée, Highly stable dextran-coated quantum dots for biomolecular detection and cellular imaging. Chem. Mater. 22, 6361–6369 (2010)

    Article  Google Scholar 

  51. V. Bagalkot et al., Quantum dot− aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–3070 (2007)

    Article  ADS  Google Scholar 

  52. K.C. Weng et al., Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. 8, 2851–2857 (2008)

    Article  ADS  Google Scholar 

  53. C. Walther, K. Meyer, R. Rennert, I. Neundorf, Quantum dot− carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug. Chem. 19, 2346–2356 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayal, M., Chandran, N., Pilankatta, R., Nair, S.S. (2021). Semiconductor Quantum Dots and Core Shell Systems for High Contrast Cellular/Bio Imaging. In: Nanomaterials for Luminescent Devices, Sensors, and Bio-imaging Applications. Progress in Optical Science and Photonics, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-16-5367-4_3

Download citation

Publish with us

Policies and ethics