Skip to main content

Quantum Dots: Potential Cell Imaging Agent

  • Chapter
  • First Online:
Application of Quantum Dots in Biology and Medicine

Abstract

Fluorescent semiconductor nanocrystals (also known as quantum dots or QDs) have become monumental over the past two decades in the material science as well as biomedical field due to their tunable optical properties. Moreover, the exclusive nature of QDs has always kept it one step ahead of conventional organic fluorophores, particularly in cell imaging. QDs exhibit extremely bright multicolor fluorescence behaviour, high photo-stability, larger extinction co-efficient and lesser photo bleaching tendencies inside the cellular environment which make them as advanced labelling agents. Here we have depicted the supreme characteristics features of different types of QDs and their applications in the in vitro and in vivo cell imaging. Recently, QDs are safely used in the advanced clinical research as promising diagnostic tool that will surely open up a new direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peabody JW, Taguiwalo MM, Robalino DA, Frenk J. Improving the quality of care in developing countries. 2006.

    Google Scholar 

  2. Barr AJ. The biochemical basis of disease. Essays Biochem. 2018;62(5):619–42.

    Article  Google Scholar 

  3. Weaver O, Leung JW. Biomarkers and imaging of breast cancer. Am J Roentgenol. 2018;210(2):271–8.

    Article  Google Scholar 

  4. Sun D, Liu Y, Liu D, Zhang R, Yang X, Liu J. Stabilization of G‐quadruplex DNA, inhibition of telomerase activity and live cell imaging studies of chiral ruthenium (II) complexes. Chem–A Eur J. 2012;18(14):4285–95.

    Google Scholar 

  5. Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44(14):4743–68.

    Article  CAS  Google Scholar 

  6. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763.

    Article  CAS  Google Scholar 

  7. Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, et al. Watching silica nanoparticles glow in the biological world. ACS Publications; 2006.

    Google Scholar 

  8. Ronda CR, Jüstel T. Quantum dots and nanophosphors. Luminescence: From Theory to Applications/CR Ronda, T Justel. 2008:35–59.

    Google Scholar 

  9. Jensen EC. Use of fluorescent probes: their effect on cell biology and limitations. Anat Rec Adv Integr Anat Evol Biol. 2012;295(12):2031–6.

    Article  CAS  Google Scholar 

  10. Ansari AA, Labis JP, Manthrammel MA. Designing of luminescent GdPO4: Eu@ LaPO4@ SiO2 core/shell nanorods: Synthesis, structural and luminescence properties. Solid State Sci. 2017;71:117–22.

    Article  CAS  Google Scholar 

  11. Cantelli A, Battistelli G, Guidetti G, Manzi J, Di Giosia M, Montalti M. Luminescent gold nanoclusters as biocompatible probes for optical imaging and theranostics. Dyes Pigm. 2016;135:64–79.

    Article  CAS  Google Scholar 

  12. Hu F-l, Shi Y-X, Chen H-H, Lang J-P. A Zn (II) coordination polymer and its photocycloaddition product: syntheses, structures, selective luminescence sensing of iron (III) ions and selective absorption of dyes. Dalton Trans. 2015;44(43):18795–803.

    Google Scholar 

  13. Liu M, Huang H, Wang K, Xu D, Wan Q, Tian J, et al. Fabrication and biological imaging application of AIE-active luminescent starch based nanoprobes. Carbohyd Polym. 2016;142:38–44.

    Article  CAS  Google Scholar 

  14. Walling MA, Novak JA, Shepard JR. Quantum dots for live cell and in vivo imaging. Int J Mol Sci. 2009;10(2):441–91.

    Article  CAS  Google Scholar 

  15. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev. 2017;46(14):4218–44.

    Article  CAS  Google Scholar 

  16. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.

    Google Scholar 

  17. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.

    Article  CAS  Google Scholar 

  18. Pierobon P, Cappello G. Quantum dots to tail single bio-molecules inside living cells. Adv Drug Deliv Rev. 2012;64(2):167–78.

    Article  CAS  Google Scholar 

  19. Wegner KD, Hildebrandt N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44(14):4792–834.

    Article  CAS  Google Scholar 

  20. Larramendy M, Soloneski S. Green nanotechnology: Overview and further prospects. 2016.

    Google Scholar 

  21. Li J, Zhu J-J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst. 2013;138(9):2506–15.

    Article  CAS  Google Scholar 

  22. Vu TQ, Lam WY, Hatch EW, Lidke DS. Quantum dots for quantitative imaging: from single molecules to tissue. Cell Tissue Res. 2015;360(1):71–86.

    Article  CAS  Google Scholar 

  23. Daniel M-C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    Article  CAS  Google Scholar 

  24. Kastner MA, Klein O, Lyszczarz TM, Mankiewich PM, Shaver DC, Wind S, et al. Artificial atoms. Research Laboratory of Electronics (RLE) at the Massachusetts Institute of …; 1994.

    Google Scholar 

  25. Schaming D, Remita H. Nanotechnology: from the ancient time to nowadays. Found Chem. 2015;17(3):187–205.

    Article  CAS  Google Scholar 

  26. Ėfros AL, Lockwood D, Tsybeskov L. Semiconductor nanocrystals: from basic principles to applications: Springer Science & Business Media; 2003.

    Google Scholar 

  27. Ekimov AI, Onushchenko AA. Quantum size effect in three-dimensional microscopic semiconductor crystals. Jetp Lett. 1981;34(6):345–9.

    Google Scholar 

  28. Reed M, Bate R, Bradshaw K, Duncan W, Frensley W, Lee J, et al. Spatial quantization in GaAs–AlGaAs multiple quantum dots. J Vacuum Sci Technol B: Microelectron Process Phenom. 1986;4(1):358–60.

    Article  CAS  Google Scholar 

  29. Emory SR, Haskins WE, Nie S. Direct observation of size-dependent optical enhancement in single metal nanoparticles. J Am Chem Soc. 1998;120(31):8009–10.

    Article  CAS  Google Scholar 

  30. Mokari T, Habas SE, Zhang M, Yang P. Synthesis of lead chalcogenide alloy and core–shell nanowires. Angew Chem. 2008;120(30):5687–90.

    Article  Google Scholar 

  31. Masala O, Seshadri R. Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res. 2004;34:41–81.

    Article  CAS  Google Scholar 

  32. Adlim A. Preparations and application of metal nanoparticles. Indonesian J Chem. 2006;6(1):1–10.

    Article  Google Scholar 

  33. Yen F-L, Wu T-H, Tzeng C-W, Lin L-T, Lin C-C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J Agric Food Chem. 2010;58(12):7376–82.

    Article  CAS  Google Scholar 

  34. Chukwuocha E, Onyeaju M. Simulation of quantum dots (QDs) in the confinement regime. Ijaser Int J Appl Sci Eng Res. 2012;1(6).

    Google Scholar 

  35. Weller H. Colloidal semiconductor q-particles: Chemistry in the transition region between solid state and molecules. Angew Chem, Int Ed Engl. 1993;32(1):41–53.

    Article  Google Scholar 

  36. Ghaffari M, Dolatabadi JEN. Nanotechnology for pharmaceuticals. Industrial applications of nanomaterials: Elsevier; 2019. p. 475–502.

    Google Scholar 

  37. Haverinen HM, Myllylä RA, Jabbour GE. Inkjet printing of light emitting quantum dots. Appl Phys Lett. 2009;94(7): 073108.

    Article  Google Scholar 

  38. Tekin E, Smith PJ, Hoeppener S, Van Den Berg AM, Susha AS, Rogach AL, et al. Inkjet printing of luminescent CdTe nanocrystal–polymer composites. Adv Func Mater. 2007;17(1):23–8.

    Article  CAS  Google Scholar 

  39. Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–44.

    Google Scholar 

  40. Prasad PN. Introduction to biophotonics: Wiley; 2003.

    Google Scholar 

  41. Wittcoff HA, Reuben BG, Plotkin JS. Industrial organic chemicals: Wiley; 2012.

    Google Scholar 

  42. Farzin MA, Abdoos H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta. 2020:121828.

    Google Scholar 

  43. Kershaw SV, Susha AS, Rogach AL. Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem Soc Rev. 2013;42(7):3033–87.

    Article  CAS  Google Scholar 

  44. Derfus AM, Chan WC, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4(1):11–8.

    Article  CAS  Google Scholar 

  45. Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006;114(2):165–72.

    Article  Google Scholar 

  46. Loukanov AR, Dushkin CD, Papazova KI, Kirov AV, Abrashev MV, Adachi E. Photoluminescence depending on the ZnS shell thickness of CdS/ZnS core-shell semiconductor nanoparticles. Colloids Surf, A. 2004;245(1–3):9–14.

    Article  CAS  Google Scholar 

  47. Vasudevan D, Gaddam RR, Trinchi A, Cole I. Core–shell quantum dots: Properties and applications. J Alloy Compd. 2015;636:395–404.

    Article  CAS  Google Scholar 

  48. Carrillo-Carrión C, Cárdenas S, Simonet BM, Valcárcel M. Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chem Commun. 2009;35:5214–26.

    Article  Google Scholar 

  49. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem. 2013;6:143–62.

    Article  CAS  Google Scholar 

  50. Wang X, Yu J, Chen R. Optical characteristics of ZnS passivated CdSe/CdS quantum dots for high photostability and lasing. Sci Rep. 2018;8(1):1–7.

    Google Scholar 

  51. Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131(32):11308–9.

    Article  CAS  Google Scholar 

  52. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–76.

    Article  CAS  Google Scholar 

  53. Geys J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts MF, et al. Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ Health Perspect. 2008;116(12):1607–13.

    Article  CAS  Google Scholar 

  54. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129(37):11318–9.

    Article  CAS  Google Scholar 

  55. Luo PG, Sahu S, Yang S-T, Sonkar SK, Wang J, Wang H, et al. Carbon “quantum” dots for optical bioimaging. J Mater Chem B. 2013;1(16):2116–27.

    Article  CAS  Google Scholar 

  56. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7.

    Article  CAS  Google Scholar 

  57. Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22(6):734–8.

    Article  Google Scholar 

  58. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J-J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale. 2013;5(10):4015–39.

    Article  CAS  Google Scholar 

  59. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126(40):12736–7.

    Article  CAS  Google Scholar 

  60. Hutton GA, Martindale BC, Reisner E. Carbon dots as photosensitisers for solar-driven catalysis. Chem Soc Rev. 2017;46(20):6111–23.

    Article  CAS  Google Scholar 

  61. Wang J, Qiu J. A review of carbon dots in biological applications. J Mater Sci. 2016;51(10):4728–38.

    Article  CAS  Google Scholar 

  62. Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem Soc Rev. 2015;44(1):362–81.

    Article  CAS  Google Scholar 

  63. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon. 2012;50(12):4738–43.

    Article  CAS  Google Scholar 

  64. Wang L, Zhu S-J, Wang H-Y, Qu S-N, Zhang Y-L, Zhang J-H, et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano. 2014;8(3):2541–7.

    Article  CAS  Google Scholar 

  65. Liu Y, Huang H, Cao W, Mao B, Liu Y, Kang Z. Advances in carbon dots: from the perspective of traditional quantum dots. Mater Chem Front. 2020;4(6):1586–613.

    Article  CAS  Google Scholar 

  66. Morozova S, Alikina M, Vinogradov A, Pagliaro M. Silicon quantum dots: synthesis, encapsulation, and application in light-emitting diodes. Front Chem. 2020;8:191.

    Article  CAS  Google Scholar 

  67. Jin S, Hu Y, Gu Z, Liu L, Wu H-C. Application of quantum dots in biological imaging. J Nanomater. 2011;2011.

    Google Scholar 

  68. Rosenthal SJ, Wright DW. Nanobiotechnology protocols: Springer; 2005.

    Google Scholar 

  69. Zhou L, Yan J, Tong L, Han X, Wu X, Guo P. Quantum dot-based immunohistochemistry for pathological applications. Cancer Transl Med. 2016;2(1):21.

    Article  Google Scholar 

  70. Li H, Shih WY, Shih W-H. Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications. Ind Eng Chem Res. 2007;46(7):2013–9.

    Article  CAS  Google Scholar 

  71. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol. 2003;21(1):47–51.

    Article  CAS  Google Scholar 

  72. Liu A, Peng S, Soo JC, Kuang M, Chen P, Duan H. Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells. Anal Chem. 2011;83(3):1124–30.

    Article  CAS  Google Scholar 

  73. Sun P, Zhang H, Liu C, Fang J, Wang M, Chen J, et al. Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells. Langmuir. 2010;26(2):1278–84.

    Article  CAS  Google Scholar 

  74. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot− aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70.

    Article  CAS  Google Scholar 

  75. Walther C, Meyer K, Rennert R, Neundorf I. Quantum dot− carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug Chem. 2008;19(12):2346–56.

    Article  CAS  Google Scholar 

  76. Biju V, Muraleedharan D, Nakayama K-i, Shinohara Y, Itoh T, Baba Y, et al. Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells. Langmuir. 2007;23(20):10254–61.

    Google Scholar 

  77. Fan Z, Li S, Yuan F, Fan L. Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv. 2015;5(25):19773–89.

    Article  CAS  Google Scholar 

  78. Aiyer S, Prasad R, Kumar M, Nirvikar K, Jain B, Kushwaha OS. Fluorescent carbon nanodots for targeted in vitro cancer cell imaging. Appl Mater Today. 2016;4:71–7.

    Article  Google Scholar 

  79. Meena R, Singh R, Marappan G, Kushwaha G, Gupta N, Meena R, et al. Fluorescent carbon dots driven from ayurvedic medicinal plants for cancer cell imaging and phototherapy. Heliyon. 2019;5(9): e02483.

    Article  Google Scholar 

  80. Su Z, Shen H, Wang H, Wang J, Li J, Nienhaus GU, et al. Motif-designed peptide nanofibers decorated with graphene quantum dots for simultaneous targeting and imaging of tumor cells. Adv Func Mater. 2015;25(34):5472–8.

    Article  CAS  Google Scholar 

  81. Iravani S, Varma RS. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A Review. Environ Chem Letters. 2020;18(3):703–27.

    Article  CAS  Google Scholar 

  82. Sheng L, Huangfu B, Xu Q, Tian W, Li Z, Meng A, et al. A highly selective and sensitive fluorescent probe for detecting Cr (VI) and cell imaging based on nitrogen-doped graphene quantum dots. J Alloy Compd. 2020;820: 153191.

    Article  CAS  Google Scholar 

  83. Li H, Zhang Y, Wang L, Tian J, Sun X. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun. 2011;47(3):961–3.

    Article  CAS  Google Scholar 

  84. Hai X, Wang Y, Hao X, Chen X, Wang J. Folic acid encapsulated graphene quantum dots for ratiometric pH sensing and specific multicolor imaging in living cells. Sens Actuators, B Chem. 2018;268:61–9.

    Article  CAS  Google Scholar 

  85. Jin K, Gao H, Lai L, Pang Y, Zheng S, Niu Y, et al. Preparation of highly fluorescent sulfur doped graphene quantum dots for live cell imaging. J Lumin. 2018;197:147–52.

    Article  CAS  Google Scholar 

  86. Mondal MK, Mukherjee S, Joardar N, Roy D, Chowdhury P, Babu SPS. Synthesis of smart graphene quantum dots: A benign biomaterial for prominent intracellular imaging and improvement of drug efficacy. Appl Surf Sci. 2019;495: 143562.

    Article  CAS  Google Scholar 

  87. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298(5599):1759–62.

    Article  CAS  Google Scholar 

  88. Yong K-T, Hu R, Roy I, Ding H, Vathy LA, Bergey EJ, et al. Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods. ACS Appl Mater Interfaces. 2009;1(3):710–9.

    Article  CAS  Google Scholar 

  89. Zimmer JP, Kim S-W, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG. Size series of small indium arsenide—zinc selenide core—shell nanocrystals and their application to in vivo imaging. J Am Chem Soc. 2006;128(8):2526–7.

    Article  CAS  Google Scholar 

  90. Cai W, Shin D-W, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006;6(4):669–76.

    Article  CAS  Google Scholar 

  91. Zhang X, Wang S, Xu L, Feng L, Ji Y, Tao L, et al. Biocompatible polydopamine fluorescent organic nanoparticles: Facile preparation and cell imaging. Nanoscale. 2012;4(18):5581–4.

    Article  CAS  Google Scholar 

  92. Yan H, Tan M, Zhang D, Cheng F, Wu H, Fan M, et al. Development of multicolor carbon nanoparticles for cell imaging. Talanta. 2013;108:59–65.

    Article  CAS  Google Scholar 

  93. Zhang X, Wang S, Zhu C, Liu M, Ji Y, Feng L, et al. Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging. J Colloid Interface Sci. 2013;397:39–44.

    Article  CAS  Google Scholar 

  94. Huang X, Zhang F, Zhu L, Choi KY, Guo N, Guo J, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano. 2013;7(7):5684–93.

    Article  CAS  Google Scholar 

  95. Hashemi F, Heidari F, Mohajeri N, Mahmoodzadeh F, Zarghami N. Fluorescence intensity enhancement of green carbon dots: Synthesis, characterization and cell imaging. Photochem Photobiol. 2020;96(5):1032–40.

    Article  CAS  Google Scholar 

  96. Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications. Nanoscale. 2015;7(5):1586–95.

    Article  CAS  Google Scholar 

  97. Roy P, Periasamy AP, Lin C-Y, Her G-M, Chiu W-J, Li C-L, et al. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale. 2015;7(6):2504–10.

    Article  CAS  Google Scholar 

  98. Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014;5(1):1–8.

    Article  Google Scholar 

  99. Chen J, Than A, Li N, Ananthanarayanan A, Zheng X, Xi F, et al. Sweet graphene quantum dots for imaging carbohydrate receptors in live cells. FlatChem. 2017;5:25–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamanna Mallick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallick, T., Karmakar, A., Sultana, Z. (2022). Quantum Dots: Potential Cell Imaging Agent. In: Barik, P., Mondal, S. (eds) Application of Quantum Dots in Biology and Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-3144-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3144-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3143-7

  • Online ISBN: 978-981-19-3144-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics