Skip to main content

Advances in Input Management for Food and Environmental Security

  • Chapter
  • First Online:
Input Use Efficiency for Food and Environmental Security

Abstract

Achieving food security while protecting the environment in the context of future global climate changes is a great challenge to the sustainability of modern agricultural systems. Food production is likely to maintain priority over environmental protection. In modern agriculture, input management is very crucial for sustaining future food security and environmental protection which might be achieved by the integration of land, pest, disease, nutrient, and other resource management practices. This chapter focuses on the potential of next-generation input management techniques for safer food production and environmental protection. The possible impacts of next-generation input management techniques for safer and nutritious food production without environmental degradation as along with other vital dimensions of food security have been discussed. Additionally, next-generation input assessment studies, possible integration of different techniques, and approaches for food and environment security have been objectively described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FAO:

Food and Agriculture Organization

FUE:

Fertilizer use efficiency

GHGs:

Greenhouse gases

CH4:

Methane

N:

Nitrogen

References

  • Abbas F, Hammad HM, Fahad S, CerdĆ  A, Rizwan M, Farhad W, Ehsan S, Bakhat HF (2017) Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios-a review. Environ Sci Pollut Res 24:11177ā€“11191. https://doi.org/10.1007/s11356-017-8687-0

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Adisa I, Pullagurala V, Peralta-videa J, Dimkpa C, Gardea-Torresdey J, White J (2019) Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ Sci Nano 5:6. https://doi.org/10.1039/C9EN00265K

    ArticleĀ  Google ScholarĀ 

  • Antle JM, Jones JW, Rosenzweig CE (2017) Next generation agricultural system data, models and knowledge products: introduction. Agril Syst 155:186ā€“190

    ArticleĀ  Google ScholarĀ 

  • Asseng S, Ewert F, Martre P, Rƶtter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP (2014) Rising temperatures reduce global wheat production. Nat Clim Change 5(2):143ā€“147

    ArticleĀ  Google ScholarĀ 

  • Awais M, Wajid A, Bashir MU, Habib-ur-Rahman M, Raza MA, Ahmad A, Saleem MF, Hammad HM, Mubeen M, Saeed U, Arshad MN (2017a) Nitrogen and plant population change radiation capture and utilization capacity of sunflower in semi-arid environment. Environ Sci Pollut Res 24:17511ā€“17525. https://doi.org/10.1007/s11356-017-9308-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Awais M, Wajid A, Nasim W, Ahmad A, Saleem MF, Raza MA, Bashir MU, Habib-ur-Rahman M, Saeed U, Hussain J, Arshad N (2017b) Modeling the water and nitrogen productivity of sunflower using OILCROP-SUN model in Pakistan. Field Crop Res 205:67ā€“77. https://doi.org/10.1016/j.fcr.2017.01.013

    ArticleĀ  Google ScholarĀ 

  • Ayieko MW, Tschirley DL (2006) Enhancing access and utilization of quality seed for improved food security in Kenya (no. 680-2016-46721)

    Google ScholarĀ 

  • Babcock BA (2015) Breaking the link between food and biofuels. Lowa Agric Rev 14:3

    Google ScholarĀ 

  • Bai B, Bian HW, Zeng ZH, Hou N, Shi B, Wang JH, Zhu MY, Hanmi N (2017) R393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58(3):426ā€“439

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, ValĆØ G, Cattivelli L (2016) Next generation breeding. Plant Sci 242:3ā€“13

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Barkunan SR, Bhanumathi V, Sethuram J (2019) Smart sensor for automatic drip irrigation system for paddy cultivation. Compu Elect Eng 73:180ā€“193

    ArticleĀ  Google ScholarĀ 

  • Barrett CB (2010) Measuring food insecurity. Sci 327:825ā€“828. https://doi.org/10.1126/science.1182768

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bautista-Capetillo C, MĆ”rquez-Villagrana H, Pacheco-Guerrero A, GonzĆ”lez-Trinidad J (2018) Cropping system diversification: water consumption against crop production. Sustain 10(7):2164. https://doi.org/10.3390/su10072164

    ArticleĀ  Google ScholarĀ 

  • Bayala J, Sanou J, Teklehaimanot Z, OuĆ©draogo SJ (2015) Advances in knowledge of processes in soilā€“treeā€“crop interactions in parkland systems in the west African Sahel: a review. Agric Ecosyst Environ 205:25ā€“35. https://doi.org/10.1016/j.agee.2015.02.018

    ArticleĀ  Google ScholarĀ 

  • Beddington J (2009) Food, energy, water and the climate: a perfect storm of global events? Sustainable development UK annual conf., London, 19 March 2009. http://www.bis.gov.uk/assets/goscience/docs/p/perfect-storm-paper.Pdf. Accessed 20 Aug 2020

  • Beddington JR (2010) Global food and farming futures. Phil Trans Roy Soc B 365:20120272. https://doi.org/10.1098/rstb.2010.0181

    ArticleĀ  Google ScholarĀ 

  • Belder P, Rohrbach D, Twomlow S, Senzanje A (2007) Can Drip irrigation improve food security for vulnerable households in Zimbabwe? (Vol. 2). Briefing Note No.7, ICRISAT, Bulawayo, Zimbabwe

    Google ScholarĀ 

  • Beltran-PeƱa AA, Rosa L, D'Odorico P (2020) Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ Res Let 15:095004

    ArticleĀ  Google ScholarĀ 

  • Beuschel R, Piepho HP, Joergensen RG, Wachendorf C (2020) Effects of converting a temperate short-rotation coppice to a silvo-arable alley cropping agroforestry system on soil quality indicators. Agrofor Syst 94:389ā€“400. https://doi.org/10.1007/s10457-019-00407-2

    ArticleĀ  Google ScholarĀ 

  • Biggs R, Bohensky E, Desanker PV, Fabricius C, Lynam T, Misselhorn AA, Musvoto C, Mutale M, Reyers B, Scholes RJ, Shikongo S, van Jaarsveld AA (2004) Nature supporting people: the southern African millennium ecosystem assessment. Council for Scientific and Industrial Research.Pretoria, Pretoria

    Google ScholarĀ 

  • Bilali HE, Callenius C, Strassner C, Probst L (2018) Food and nutrition security and sustainability transitions in food systems. Food Energy Secur 8:e00154. https://doi.org/10.1002/fes3.154

    ArticleĀ  Google ScholarĀ 

  • Bƶhm C, Kanzler M, Freese D (2014) Wind speed reductions as influenced by woody hedgerows grown for biomass in short rotation alley cropping systems in Germany. Agrofor Syst 88:579ā€“591. https://doi.org/10.1007/s10457-014-9700-y

    ArticleĀ  Google ScholarĀ 

  • Bond I, Grieg-Gran M, Wertz-Kanounnikoff S, Hazlewood P, Wunder S, Angelsen A (2009) Incentives to sustain forest ecosystem services: a review and lessons for REDD. IIEED, London

    Google ScholarĀ 

  • Branca G, McCarthy N, Lipper L, Jolejole MC (2011) Climate-smart agriculture: a synthesis of empirical evidence of food security and mitigation benefits from improved cropland management. Mitig Clim Change Agric Ser 3:1ā€“42

    Google ScholarĀ 

  • Brevik EC, Slaughter L, Singh BR, Steffan JJ (2020) Soil and human health: current status and future needs. Air Soil Water Res 13:117862212093444. https://doi.org/10.1177/1178622120934441

    ArticleĀ  Google ScholarĀ 

  • Buluswar S, Friedman Z, Mehta P, Mitra S, Sathre R (2014) Critical scientific and technological advances needed for sustainable global development. Food Security and Agricultural Development Report. Institute for Globally Transformative Technologies, Lawrence Berkeley National Lab, Berkeley, CA. https://ligtt.org/sites/all/files/page/50BTsFoodSecurityAndAgriculturalDevelopment_0.pdf. Accessed 7 Mar 2021

  • Burgess PJ, Rosati A (2018) Advances in European agroforestry: results from the AGFORWARD project. AgroforSyst 92:801ā€“810. https://doi.org/10.1007/s10457-018-0261-3

    ArticleĀ  Google ScholarĀ 

  • Burton NO, Riccio C, Dallaire A et al (2020) Cysteine synthases CYSL-1 and CYSL-2 mediate C. elegans heritable adaptation to P. vranovensis infection. Nat Commun 11:1741. https://doi.org/10.1038/s41467-020-15555-8

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Carmichael GR, Tang Y, Kurata G, UnoI, Streets DG, Thongboonchoo N et al (2003) Evaluating regional emission estimates using the TRACE-P observations. J Geophys Res. https://doi.org/10.1029/2002JD003116

  • Caron P, de Loma-Osorio GF, Nabarro D, Hainzelin E, Guillou M, Andersen I, Bwalya M (2018) Food systems for sustainable development: proposals for a profound four-part transformation. Agron Sustain Dev 38(4):41

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cassman KG, Grassini P (2020) A global perspective on sustainable intensification research. Nat Sustain 3:262ā€“268. https://doi.org/10.1038/s41893-020-0507-8

    ArticleĀ  Google ScholarĀ 

  • Catenacci M, Giupponi C (2013) Integrated assessment of sea-level rise adaptation strategies using a Bayesian decision network approach. Environ Model Softw 44:87ā€“100

    ArticleĀ  Google ScholarĀ 

  • Chikara SK, Pandey M, Pandey S, Vaidya K, Chaudhary S (2014) Next generation sequencing: a revolutionary tool for plant variety improvement. Am J Social Issues Human 5:37ā€“154

    Google ScholarĀ 

  • CIESIN (Centre for International Earth Science Information Network) (1995) Thematic guide to integrated assessment modeling of climate change (online), University Centre, Mich, 1995. http://sedac.ciesin.org/mva/iamcc.tg/TGHP.html

  • Clark M, Tilman D (2017) Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ Res Let 12(6):064016

    ArticleĀ  Google ScholarĀ 

  • Crous-Duran J, Graves AR, Garcia-De-JalĆ³n S et al (2019) Assessing food sustainable intensification potential of agroforestry using a carbon balance method. iForest 12:85ā€“91. https://doi.org/10.3832/ifor2578-011

    ArticleĀ  Google ScholarĀ 

  • Dagar JC, Tewari VP (2018) Agroforestry: anecdotal to modern science. Agrofor Anecdotal Mod Sci 5:1ā€“879. https://doi.org/10.1007/978-981-10-7650-3

    ArticleĀ  Google ScholarĀ 

  • Das S, Ali MM, Rahman MH, Khan MR, Hossain A, EL Sabagh A, Barutcular C, Akdeniz H (2018) Soil test based with additional nutrients increased the fertility and productivity of wheat-mungbean-T. Aman rice cropping pattern in the high Ganges river floodplain soils of Bangladesh. Bulgarian J AgricSci 24(6):992ā€“1003

    Google ScholarĀ 

  • Davis KF, Gephart JA, Emery KA, Leach AM, Galloway JN, Dā€™Odorico P (2016) Meeting future food demand with current agricultural resources. Glob Environ Change 39:125ā€“132

    ArticleĀ  Google ScholarĀ 

  • de Vries P, Frits WT, Acquay H, David M, Scherr SJ, Christian V, Olufunke C (2003) Integrated land and water management for food and environmental security. International Water Management Institute (IWMI), Colombo. https://doi.org/10.3910/2009.392

    BookĀ  Google ScholarĀ 

  • Debaeke P, Casadebaig P, Flenet F, Langlade N (2017) Sunflower and climate change in Europe: crop vulnerability, adaptation, and mitigation potential. Oilseeds Fats Crops Lipids 24:D102. https://doi.org/10.1051/ocl/2016052

    ArticleĀ  Google ScholarĀ 

  • delPozo A, Brunel-Saldias N, Engler A, Ortega-Farias S, Acevedo-Opazo C, Lobos GA, Molina-Montenegro MA (2019) Climate change impacts and adaptation strategies of agriculture in Mediterranean-climate regions (MCRs). Sustain 11(10):2769

    ArticleĀ  Google ScholarĀ 

  • DeRosa MR, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol J 5:91ā€“97

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Dokoohaki H, Gheysari M, Mousavi SF, Zand-Parsa S, Miguez FE, Archontoulis SV, Hoogenboom G (2016) Coupling and testing a new soil water module in DSSAT CERES-maize model for maize production under semi-arid condition. Agric Water Manag 163:90ā€“99. https://doi.org/10.1016/j.agwat.2015.09.002

    ArticleĀ  Google ScholarĀ 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotech Rep 15:11ā€“23

    ArticleĀ  Google ScholarĀ 

  • DurĆ”n-Lara EF, Valderrama A, Marican A (2020) Natural organic compounds for application in organic farming. Agric (Switzerland) 10(2):1ā€“22

    Google ScholarĀ 

  • Ejeta G (2009) Revitalizing agricultural research for global food security. Food Security 1(4):391ā€“401

    ArticleĀ  Google ScholarĀ 

  • EL Sabagh A, Islam MS, Skalicky M, Raza MA, Singh K, Anwar Hossain M, Hossain A, Mahboob W, Iqbal MA, Ratnasekera DP, Singhal R (2021) Adaptation and management strategies of wheat (Triticum aestivum L.) against salinity stress to increase yield and quality. Front Agron 3:43

    ArticleĀ  Google ScholarĀ 

  • Elahi A, Ajaz M, Rehman A, Vuilleumier S, Khan Z, Syed Zajif Hussain SZ (2019) Isolation, characterization, and multiple heavy metal-resistant and hexavalent chromium-reducing Microbacterium testaceum B-HS2 from tannery effluent. J King Saud Univ Sci 31(4):1437ā€“1444. https://doi.org/10.1016/j.jksus.2019.02.007

    ArticleĀ  Google ScholarĀ 

  • Ericksen PJ (2008) Conceptualizing food systems for global environmental change research. Glob Environ Change 18(1):234ā€“245. https://doi.org/10.1016/j.gloenvcha.2007.09.002

    ArticleĀ  Google ScholarĀ 

  • Erler JT, Bennewith KL, Nicolau M et al (2020) Retraction note: lysyl oxidase is essential for hypoxia-induced metastasis. Nature 579:456. https://doi.org/10.1038/s41586-020-2112-4

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Evans A (2009) The feeding of the nine billion: global food security. Chatham House, London

    Google ScholarĀ 

  • Faisal M, Iqbal MA, Aydemir SK, Hamid A, Rahim N, El Sabagh A, Khaliq A, Siddiqui MH (2020) Exogenously foliage applied micronutrients efficacious impact on achene yield of sunflower under temperate conditions. Pakistan J Bot 52(4):1215ā€“1221

    CASĀ  Google ScholarĀ 

  • Falk E, Schlieper D, van Caster P, Lutterbeck MJ, Schwartz J, Cordes J, Grau I, Peter Kienbaum P, Neukirchen M (2020) A rapid positive influence of S-ketamine on the anxiety of patients in palliative care: a retrospective pilot study. BMC Palliat Care 19:1. https://doi.org/10.1186/s12904-019-0499-1

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, RocktƤschel P (2019) Mitophagy inhibits amyloid- and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci 22:401ā€“412. https://doi.org/10.1038/s41593-018-0332-9

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (1996) Rome declaration on world food security and world food summit plan of action. World Food Summit 13-17 November 1996, FAO, Rome

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2006) World agriculture: towards 2030/2050 interim report. FAO, Rome

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2010) Climate-smart agriculture. Policies, practices and finances for food security, adaptation and mitigation. FAO, Rome

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2011) Save and grow: a policy makers guide to the sustainable intensification of crop production. Food and Agriculture Organization, Rome, p 116

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2011a) Save and grow: a policymakerā€™s guide to the sustainable intensification of smallholder crop production. FAO, Rome

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2011b) Global food losses and food waste - extent, causes and prevention. FAO, Rome

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2013) Climate-smart agriculture sourcebook, 1st edn. FAO, Italy

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2015) Mapping the vulnerability of mountain peoples to food insecurity. FAO, Rome

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2016a) The state of food and agriculture climate change, agriculture and food security. FAO, Rome

    BookĀ  Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2016b) The state of food and agriculture, climate change. Agriculture and Food Security. Food and Agriculture Organization of the United Nations, Rome

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2017) The future of food and agriculture-trends and challenges. FAO, Rome

    Google ScholarĀ 

  • FAO (Food and Agriculture Organization) (2019) The state of food security and nutrition in the world. FAO, Rome

    Google ScholarĀ 

  • Ferrarezi RS, Nogueira TAR, Zepeda SGC (2020) Performance of soil moisture sensors in Florida sandy soils. Water 12:358. https://doi.org/10.3390/w12020358

    ArticleĀ  Google ScholarĀ 

  • Fisher B, Turner RK, Morling P (2009) Defining and classifying ecosystem services for decision making. Ecol Econ 68:643ā€“653

    ArticleĀ  Google ScholarĀ 

  • Folberth C, Yang H, Gaiser T, Liu J, Wang X, Williams J, Schulin R (2014) Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change. Environ Res Let 9:044004

    ArticleĀ  Google ScholarĀ 

  • Foresight (2011) The future of food and farming: executive summary. Government Office for Science, London

    Google ScholarĀ 

  • Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33ā€“34

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science 327(5967):828ā€“831

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Giller KE, Witter E, Corbeels M, Tittonell P (2009) Conservation agriculture and smallholder farming in Africa: the hereticsā€™ view. Field Crops Res 114(1):23ā€“34

    ArticleĀ  Google ScholarĀ 

  • Global Footprint Network (2017) National footprint accounts: 2017 edition. Oakland, Global Footprint Network

    Google ScholarĀ 

  • Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Phil Trans Roy Soc B 369:20120273. https://doi.org/10.1098/rstb.2012.0273

    ArticleĀ  Google ScholarĀ 

  • Harfouche AL, Jacobson DA, Kainer D, Romero JC, Harfouche AH, Mugnozza GS, Moshelion M, Tuskan GA, Keurentjes JJB, Altman A (2019) Accelerating climate-resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol 37(11):1217ā€“1235

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci 10:23. https://doi.org/10.3389/fpls.2019.00103

    ArticleĀ  Google ScholarĀ 

  • Holzworth D, Huth NI, Fainges J, Brown H, Zurcher E, Cichota R, Verrall S, Herrmann NI, Zheng B, Snow V (2018) APSIM next generation: overcoming challenges in modernising a farming systems model. Environ Model Softw 103:43ā€“51

    ArticleĀ  Google ScholarĀ 

  • Holzworth D, Huth NI, Fainges J, Herrmann NI, Zurcher E, Brown H, Snow V, Verrall S, Cichota R, Doherty A, De Voil P (2015) APSIM next generation: the final frontier? In: Proceedings - 21st international congress on modelling and simulation, MODSIM 2015 2020 Jan 1, pp. 347ā€“353. Modelling and Simulation Society of Australia and New Zealand Inc.(MSSANZ)

    Google ScholarĀ 

  • Hoorman JJ (2009) Using cover crops to improve soil and water quality. The Ohio State University, Agriculture and Natural Resources

    Google ScholarĀ 

  • Hossain A, Sabagh AEL, Barutcular C, Bhatt R, Ƈig F, Seydoşoğlu S, Turan N, Konuskan O, Iqbal MA, Abdelhamid M, Soler CMT, Laing AM, Saneoka H (2020) Sustainable crop production to ensuring food security under climate change: a Mediterranean perspective. Aust J Crop Sci 14(03):439ā€“446

    ArticleĀ  Google ScholarĀ 

  • Imai KS (2017) Roles of agricultural transformation in achieving sustainable development goals on poverty, hunger, productivity, and inequality (no. DP2017-26). Research Institute for Economics and Business Administration, , Kobe University, Nada, pp 1ā€“60

    Google ScholarĀ 

  • Indu, Lal D, Dadrwal BK, Saha D, Chand S, Chauhan J, Dey P, Kumar V, Mishra UN, Hidangmayum A, Singh A, Singhal RK (2021) Molecular advances in plant root system architecture response and redesigning for improved performance under unfavourable environments. Academic Press, London

    Google ScholarĀ 

  • Iqbal MA (2018) Comparative performance of forage cluster bean accessions as companion crops with sorghum under varied harvesting times. Bragantia 77(3):476ā€“484

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Iqbal MA (2019) Nano-fertilizers for sustainable crop production under changing climate: a global perspective. In: Crop production. IntechOpen, London, pp 1ā€“12

    Google ScholarĀ 

  • Iqbal MA (2020) Ensuring food security amid novel coronavirus (COVID-19) pandemic: global food supplies and Pakistanā€™s perspectives. Acta Agric Slov 115(2):1ā€“4

    Google ScholarĀ 

  • Iqbal MA, Hamid A, Ahmad T, Hussain I, Ali S, Ali A, Ahmad Z (2019) Forage sorghum-legumes intercropping: effect on growth, yields, nutritional quality and economic returns. Bragantia 78(1):82ā€“95

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Iqbal MA, Iqbal A (2015) A study on dwindling agricultural water availability in irrigated plains of Pakistan and drip irrigation as a future life line. Am-Eur J Agric Environ Sci 15(2):184ā€“190

    Google ScholarĀ 

  • Iqbal MA, Iqbal A, Afzal S, Akbar N, Abbas RN, Khan HZ (2015a) In Pakistan, agricultural mechanization status and future prospects. Am-Eur J Agric Environ Sci 15(1):122ā€“128

    Google ScholarĀ 

  • Iqbal MA, Iqbal A, Akbar N, Khan HZ, Abbas RN (2015c) A study on feed stuffs role in enhancing the productivity of milch animals in Pakistan-existing scenario and future prospect. Global Veterinaria 14(1):23ā€“33

    CASĀ  Google ScholarĀ 

  • Iqbal MA, Maqsood Q, Ahmad Z, Saleem AM, Afzal S, Ahmad B (2015b) A preliminary study on plant nutrients production as combined fertilizers, consumption patterns and future prospects for Pakistan. Am-Eurasian J Agric Environ Sci 15(4):588ā€“594

    Google ScholarĀ 

  • Islam MS, Hossain A, Timsina J, Saif H, Sarker MMR, Khan ASMMR, Hasan MK, Zahan T, EL Sabagh A, Akdeniz H, BarutƧular C (2020) Feasibility and financial viability study of an intensive mustard ā€“Mungbeanā€“transplanted Aus Riceā€“transplanted Aman Rice cropping system in a non-saline coastal ecosystem of Bangladesh. Philipp Agric Scientist 103(1):73ā€“83

    Google ScholarĀ 

  • Islam MS, Kieu E (2020) Tackling regional climate change impacts and food security issues: a critical analysis across ASEAN, PIE, and SAARC. Sustainability 12:883. https://doi.org/10.3390/su12072840

    ArticleĀ  Google ScholarĀ 

  • ITPS (2015) Status of the Worldā€™s soil resources (SWSR). FAO intergovernmental technical panel on soils. ITPS, Rome

    Google ScholarĀ 

  • Jat ML, Chakraborty D, Ladha JK, Rana DS, Gathala MK, McDonald A, Gerard B (2020) Conservation agriculture for sustainable intensification in South Asia. Nat Sustain 3:336ā€“343. https://doi.org/10.1038/s41893-020-0500-2

    ArticleĀ  Google ScholarĀ 

  • Jatav HS, Singh SK, Jatav SS, Rajput VD, Parihar M, Mahawer SK, Singhal RK (2020) Importance of biochar in agriculture and its consequence. In: Applications of biochar for environmental safety. IntechOpen, London, p 109

    Google ScholarĀ 

  • Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Godfray HC, Herrero M, Howitt RE, Janssen S, Keating BA (2017) Brief history of agricultural systems modeling. Agric Syst 155:240ā€“254. https://doi.org/10.1016/j.agsy.2016.05.014

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. AgroforSyst 76:1ā€“10. https://doi.org/10.1007/s10457-009-9229-7

    ArticleĀ  Google ScholarĀ 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. AgroforSyst 85:1ā€“8. https://doi.org/10.1007/s10457-012-9517-5

    ArticleĀ  Google ScholarĀ 

  • Kanianska R (2016) Agriculture and its impact on land use. In: Environment, and ecosystem services, landscape ecology-the influences of land use and anthropogenic impacts of landscape creation. IntechOpen, London. https://doi.org/10.5772/63719

    ChapterĀ  Google ScholarĀ 

  • Kay S, Rega C, Moreno G, den Herder M, Palma JH, Borek R, Crous-Duran J, Freese D, Giannitsopoulos M, Graves A, JƤger M (2019) Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 83:581ā€“593. https://doi.org/10.1016/j.landusepol.2019.02.025

    ArticleĀ  Google ScholarĀ 

  • Kayad A, Sozzi M, Gatto S, Marinello F, Pirotti F (2019) Monitoring within-field variability of corn yield using sentinel-2 and machine learning techniques. Remote Sens 2019:11. https://doi.org/10.3390/rs11232873

    ArticleĀ  Google ScholarĀ 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JN, Meinke H, Hochman Z, McLean G (2003) An overview of APSIM, a model designed for farming systems simulation. European J Agron 18:267ā€“288

    ArticleĀ  Google ScholarĀ 

  • Kehoe L, Romero-MuƱoz A, Polaina E, Estes L, Kreft H, Kuemmerle T (2017) Biodiversity at risk under future cropland expansion and intensification. Nat EcolEvol 1:1129ā€“1135. https://doi.org/10.1038/s41559-017-0234-3

    ArticleĀ  Google ScholarĀ 

  • Khaliq A, Iqbal M, Zafar M, Gulzar A (2019) Appraising economic dimension of maize production under coherent fertilization in Azad Kashmir, Pakistan. Custos e Agronegocio 15(2):243ā€“253

    Google ScholarĀ 

  • King T, Cole M, Farber JM, Eisenbrand G, Zabaras D, Fox EM, Hill JP (2017) Food safety for food security: relationship between global megatrends and developments in food safety. Trends Food SciTechnol 68:160ā€“175

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, Stanifer ML, Boulant S, Bartenschlager R, Chlanda P (2020) SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. https://doi.org/10.1101/2020.06.23.167064

  • Kopittke PM, Dalal RC, Hoeschen C, Li C, Menzies NW, Mueller CW (2020) Soil organic matter is stabilized by organo-mineral associations through two key processes: the role of the carbon to nitrogen ratio. Geoderma 357:113974. https://doi.org/10.1016/j.geoderma.2019.113974

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E (2019) Soil and the intensification of agriculture for global food security. Environ Int 132:105078. https://doi.org/10.1016/j.envint.2019.105078

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kriegler E, Oā€™Neill BC, Hallegatte S, Kram T, Lempert RJ, Moss RH, Wilbanks T (2012) The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Glob Environ Change 22(4):807ā€“822

    ArticleĀ  Google ScholarĀ 

  • Krueger T, Page T, Hubacek K, Smith L, Hiscock K (2012) The role of expert opinion in environmental modelling. Environ Model Softw 36:4ā€“18. https://doi.org/10.1016/j.envsoft.2012.01.011

    ArticleĀ  Google ScholarĀ 

  • Kumar S, Meena RS (2020) Impact of various sowing environment and nutrient sources on growth performance of Indian mustard (Brassica juncea). Indian J Agrono 65(4):465ā€“470

    CASĀ  Google ScholarĀ 

  • Kumar S, Meena RS, Bohra JS (2018b) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brass 9(1):72ā€“76

    Google ScholarĀ 

  • Kumar S, Meena RS, Lal R, Yadav GS, Mitran T, Meena BL, Dotaniya ML, ELSabagh A (2018a) Role of legumes in soil carbon sequestration. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore

    Google ScholarĀ 

  • Kumar S, Meena RS, Singh RK, Munir TM, Datta R, Danish S, Singh GS, Yadav KS (2021) Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice based cropping system. Sci Rep 11:5289. https://doi.org/10.1038/s41598-021-84742-4

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kumari A, Kaur R, Kaur R (2018) An insight into drought stress and signal transduction of abscisic acid. Plant Sci Today 5(2):72ā€“80

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kumari A, Sharma B, Singh BN, Hidangmayum A, Jatav HS, Chandra K, Singhal RK, Sathyanarayana E, Patra A, Mohapatra KK (2021) Physiological mechanisms and adaptation strategies of plants under nutrient deficiency and toxicity conditions. In: Plant perspectives to global climate changes. Academic Press, London

    Google ScholarĀ 

  • Lal R (2001) Managing world soils for food security and environmental quality. AdvAgron 74:155ā€“192. https://doi.org/10.1016/S0065-2113(01)74033-3

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lal R (2013) Food security in a changing climate. Ecohydrol Hydrobiol 13(1):8ā€“21

    ArticleĀ  Google ScholarĀ 

  • Lampayan RM, Rejesus RM, Singleton GR, Bouman BAM (2015) Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res 170:95ā€“108

    ArticleĀ  Google ScholarĀ 

  • Lott JE, Ong CK, Black CR (2009) Understorey microclimate and crop performance in a Grevillea robusta-based agroforestry system in semi-arid Kenya. Agric For Meteorol 149:1140ā€“1151. https://doi.org/10.1016/j.agrformet.2009.02.002

    ArticleĀ  Google ScholarĀ 

  • Luedeling E, Kindt R, Huth NI, Koenig K (2014) Agroforestry systems in a changing climate-challenges in projecting future performance. CurrOpin Environ Sustain 6:1ā€“7. https://doi.org/10.1016/j.cosust.2013.07.013

    ArticleĀ  Google ScholarĀ 

  • MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human Well-being: synthesis. Island Press, Washington

    Google ScholarĀ 

  • Meena RS, Lal R, Yadav GS (2020) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752. https://doi.org/10.1016/j.catena.2020.104752

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mikkelsen R (2018) Nanofertilizer and nanotechnology: a quick look better crops. Better Crops with Plant Food 102:3. https://doi.org/10.24047/BC102318

    ArticleĀ  Google ScholarĀ 

  • Misselhorn A, Aggarwal P, Ericksen P, Gregory P, Horn-Phathanothai L, Ingram J, Wiebe K (2012) A vision for attaining food security. Curr Opin Environ Sustain 4(1):7ā€“17

    ArticleĀ  Google ScholarĀ 

  • Mohammed U, Caine RS, Atkinson JA, Harrison EL, Wells D, Chater CC, Gray JE, Swarup R, Murchie EH (2019) Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation. Sci Rep 9(1):5584. https://doi.org/10.1038/s41598-019-41922-7

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Montt G, Fraga F, Harsdorff M (2018) The future of work in a changing natural environment: climate change, degradation and sustainability. International Labour Office, Geneva

    Google ScholarĀ 

  • Morris MR, Richard R, Leder EH, Barrett RD, Aubin Horth N, Rogers SM (2014) Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol Ecol 23(13):3226ā€“3240

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Moulick RG, Das S, Debnath N, Bandyopadhyay K (2020) Potential use of nanotechnology in sustainable and ā€˜smartā€™agriculture: advancements made in the last decade. Plant Biotech Rep 26:1ā€“9

    Google ScholarĀ 

  • MĆ¼ller RD, Zahirovic S, Williams SE, Cannon J, Seton M, Bower DJ, Tetley MG, Heine C, Le Breton E, Liu S, Russell SH (2019) A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 2019:38. https://doi.org/10.1029/2018TC005462

    ArticleĀ  Google ScholarĀ 

  • Mulley C, Ho C, Balbontin C, Hensher DA (2020) Mobility as a service in community transport in Australia: can it provide a sustainable future? Transp Res 131:107ā€“122. https://doi.org/10.1016/j.tra.2019.04.001

    ArticleĀ  Google ScholarĀ 

  • Nabavi-Pelesaraei A, Abdi R, Rafiee S, Shamshirband S, Yousefinejad-Ostadkelayeh M (2016) Resource management in cropping systems using artificial intelligence techniques: a case study of orange orchards in north of Iran. Stoch Env Res Risk A 1:413ā€“427

    ArticleĀ  Google ScholarĀ 

  • NEA (Nuclear Energy Agency) (2011) Annual report for 2010ā€“2011. National Academies Press, Washington, D.C

    Google ScholarĀ 

  • Nguyen TT, Carpanen D, Rankin IA, Ramasamy A, Breeze J, Proud WG, Clasper JC, Masouros SD (2020) Mapping the risk of fracture of the tibia from penetrating fragments. Front Bioeng Biotechnol 8:544214. https://doi.org/10.3389/fbioe.2020.544214

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nikolaou G, Neocleous D, Christophi C, Heracleous T (2020) Irrigation groundwater quality characteristics: a case study of Cyprus. Atmos 11(3):15. https://doi.org/10.3390/atmos11030302

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nwokoro CV, Chima FO (2017) Impact of environmental degradation on agricultural production and poverty in rural Nigeria. AmeInt J Contemp Res 2(7):6ā€“14

    Google ScholarĀ 

  • Nyagumbo I, Mkuhlani S, Mupangwa W, Rodriguez D (2017) Planting date and yield benefits from conservation agriculture practices across southern Africa. Agric Sys 150:21ā€“33

    ArticleĀ  Google ScholarĀ 

  • Ostero M, Joanna B, Christopher BF, Richard BN, David P (1999) Revisiting the commons: local lessons, global challenges. Science 284:278ā€“282. https://doi.org/10.1126/science.284.5412.278

    ArticleĀ  Google ScholarĀ 

  • Pachapur PK, Pachapur VL, Brar SK, Galvez R, Le Bihan Y, Surampalli RY (2020) Food security and sustainability. In: Sustainability: fundamentals and applications. Wiley, Hoboken, pp 357ā€“374

    ChapterĀ  Google ScholarĀ 

  • Paek J, Hicks J, Coe S, Govindan R (2014) Image-based environmental monitoring sensor application using an embedded wireless sensor network. Sensors (Basel) 14:15981ā€“16002

    ArticleĀ  Google ScholarĀ 

  • Palma M, Goffeau A, Spencer-Martins I, Baret PV (2007) A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts. J Mol Microbiol Biotechnol 12(3ā€“4):241ā€“248

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Panchard J, Prabhakar TV, Hubaux JP (2014) Common sense net: a wireless sensor network for resource-poor agriculture in the semi-arid areas of developing countries. Inf Technol Int Dev 4:51ā€“67

    ArticleĀ  Google ScholarĀ 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles: the next generation technology for sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 289ā€“300

    ChapterĀ  Google ScholarĀ 

  • Parry MA, Hawkesford MJ (2010) Food security: increasing yield and improving resource use efficiency. Proceed Nutr Soc 69(4):592ā€“600

    ArticleĀ  Google ScholarĀ 

  • Pathak H, Sankhyan S, Dubey DS, Bhatia A, Jain N (2013) Dry direct-seeding of rice for mitigating greenhouse gas emission: field experimentation and simulation. Paddy Water Environ 11:593ā€“601

    ArticleĀ  Google ScholarĀ 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nat 532(7597):49ā€“57

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pingali P, Aiyar A, Abraham M, Rahman A (2019) Indian food systems towards 2050: challenges and opportunities. In: Transforming food systems for a rising India. Palgrave Macmillan, Cham, pp 1ā€“14

    ChapterĀ  Google ScholarĀ 

  • Poppy GM, Jepson PC, Pickett JA, Birkett MA (2014) Achieving food and environmental security: new approaches to close the gap. Phil Trans Roy Soc B 369:20120272. https://doi.org/10.1098/rstb.2012.0272

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Porras I, Barton DN, Miranda M, ChacĆ³n-Cascante A (2013) Learning from 20 years of payments for ecosystem services in Costa Rica. IIED, Washington

    Google ScholarĀ 

  • Posadas B (2012) Economic impacts of mechanization or automation on horticulture production firms sales, employment, and workersā€™ earnings, safety, and retention. Hort Technol 22(3):388ā€“401

    ArticleĀ  Google ScholarĀ 

  • Powlson DS, Gregory PJ, Whalley WR, Quinton JN, Hopkins DW, Whitmore AP, Hirsch PR, Goulding KW (2011) Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 36(1):572ā€“587. https://doi.org/10.1016/j.foodpol.2010.11.025

    ArticleĀ  Google ScholarĀ 

  • Prusky D (2011) Reduction of the incidence of postharvest quality losses, and future prospects. Food Security 3(4):463ā€“474

    ArticleĀ  Google ScholarĀ 

  • Qaim M (2020) Role of new plant breeding Technologies for Food Security and Sustainable Agricultural Development. Appl Econ Perspec Poli 42(2):129ā€“150

    ArticleĀ  Google ScholarĀ 

  • Rahman MHU, Ahmad A, Wajid A, Hussain M, Rasul F, Ishaque W, Islam MA, Shelia V, Awais M, Ullah A, Wahid A (2019) Application of CSM-CROPGRO-cotton model for cultivars and optimum planting dates: evaluation in changing semi-arid climate. Field Crop Res 238:139ā€“152. https://doi.org/10.1016/j.fcr.2017.07.007

    ArticleĀ  Google ScholarĀ 

  • Rahman MHU, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253-254:94ā€“113. https://doi.org/10.1016/j.agrformet.2018.02.008

    ArticleĀ  Google ScholarĀ 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotech 3:315ā€“324

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ranganathan J, Vennard D, Waite R, Dumas P, Lipinski B, Searchinger T (2016) Shifting diets for a sustainable food future. Working paper, installment 11 of creating a sustainable food future. World Resources Institute, Washington, DC

    Google ScholarĀ 

  • Ranganathan J, Waite R, Searchinger T, Hanson C (2018) How to sustainably feed 10 billion people by 2050, in 21 charts? https://www.wri.org/blog/2018/12/how-sustainably-feed 10-billion-people-2050-21-charts

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plan Theory 8(2):34. https://doi.org/10.3390/plants8020034

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Reddy SH, Kambalimath SK, Singhal RK, Chikkakariyappa MK, Muthurajan R, Rajanna MP, Sreevathsa R, Sevanthi AM, Mohapatra T, Sarla N, Chinnusamy V (2019) Allele-specific analysis of single parent backcross population identifies HOX10 transcription factor as a candidate gene regulating rice root growth. Physiol Planta 166(2):596ā€“611

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Reddy SH, Singhal RK, DaCosta MV, Kambalimath SK, Rajanna MP, Muthurajan R, Sevanthi AM, Mohapatra T, Sarla N, Chinnusamy V, Singh AK (2020) Leaf mass area determines water use efficiency through its influence on carbon gain in rice mutants. Physiol Planta 169(2):194ā€“213

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rinderknecht SL, Borsuk ME, Reichert P (2012) Bridging uncertain and ambiguous knowledge with imprecise probabilities. Environ Model Softw 36:122ā€“130

    ArticleĀ  Google ScholarĀ 

  • Ritchie H (2020) Environmental impacts of food production. https://ourworldindata.org/environmental-impacts-of-food. Accessed 26 Aug 2020

  • Ritchie H, Reay DS, Higgins P (2018) The impact of global dietary guidelines on climate change. Glob Environ Change 49:46ā€“55

    ArticleĀ  Google ScholarĀ 

  • Rouphael Y, Colla G (2018) Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci 9:1655

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Royal Society (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. Royal Soc, London

    Google ScholarĀ 

  • Ruben R, Verhagen J, Plaisier C (2018) The challenge of food systems research: what difference does it make? Towards Sustain Glob Food Syst 17:171. https://doi.org/10.3390/su11010171

    ArticleĀ  Google ScholarĀ 

  • Ruhullah ME, Purnomo EP, Malawani AD (2020) Sustainable development affecting by the climate change: a secondary study of cyclones (natural disasters: Sidr, Aila and Roanu in Bangladesh). Sumatra J Disas Geogr Edu 4(1):22ā€“28

    Google ScholarĀ 

  • Sahin O, Siems RS, Stewart RA, Porter MG (2014) Paradigm shift to enhanced water supply planning through augmented grids, scarcity pricing and adaptive factory water: a system dynamics approach. Environ Model Softw 1:14. https://doi.org/10.1016/j.envsoft.2014.05.018

    ArticleĀ  Google ScholarĀ 

  • Saina CK, Murgor DK, Murgor FA (2013) Climate change and food security. Environ Change Sust 5:235ā€“257

    Google ScholarĀ 

  • Saiz-Rubio V, Rovira-MĆ”s F (2020) From smart farming towards agriculture 5.0: a review on crop data. Manage Agron 10(2):207. https://doi.org/10.3390/agronomy10020207

    ArticleĀ  Google ScholarĀ 

  • SĆ”nchez JM, RodrĆ­guez JP, Espitia HE (2020) Review of artificial intelligence applied in decision-making processes in agricultural public policy. PRO 8(11):1374

    Google ScholarĀ 

  • Scholten L, Scheidegger A, Reichert P, Maurer M (2013) Combining expert knowledge and local data for improved service life modeling of water supply networks. Environ Model Softw 42:1ā€“16

    ArticleĀ  Google ScholarĀ 

  • Scialabba N, Hattam C (2002) Organic agriculture, environment and food security. FAO, Rome, p 258

    Google ScholarĀ 

  • Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100(6):2591ā€“2602

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shamshiri RR, Weltzien C, Hameed IA, Yule I, Grift T, Balasundram SK, Pitonakova L, Ahmad D, Chowdhary G (2018) Research and development in agricultural robotics: a perspective of digital farming. Int J Agril Biol Eng 11(4):1ā€“14

    Google ScholarĀ 

  • Shang Y, Hasan M, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558

    ArticleĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sharma T, Carmichael J, Klinkenberg B (2006) Integrated modeling for exploring sustainable agriculture futures. Futures 38(1):93ā€“113

    ArticleĀ  Google ScholarĀ 

  • Shebl A, Hassan AA, Salama DM, Abd El-Aziz ME, AbdElwahed MSA (2019) Green synthesis of Nanofertilizers and their application as a foliar for Cucurbita pepo L|. J Nanomater 2019:3476347. https://doi.org/10.1155/2019/3476347

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Siad SM, Iacobellis V, Zdruli P, Gioia A, Stavi I, Hoogenboom G (2019) A review of coupled hydrologic and crop growth models. Agric Water Manage 224:105746. https://doi.org/10.1016/j.agwat.2019.105746

    ArticleĀ  Google ScholarĀ 

  • Siddiqui MH, Iqbal MA, Naeem W, Hussain I, Khaliq A (2019) Bio-economic viability of rainfed wheat (Triticum aestivum L.) cultivars under integrated fertilization regimes in Pakistan. Custos e Agronegocio 15(3):81ā€“96

    Google ScholarĀ 

  • Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu I (2021) Crucial cell signaling compounds cross-talk and integrative multi-omics techniques for salinity stress tolerance in plants. Front Plant Sci 12:1227

    ArticleĀ  Google ScholarĀ 

  • Sistla SA, Roddy AB, Williams NE, Kramer DB, Stevens K, Allison SD (2016) Agroforestry practices promote biodiversity and natural resource diversity in Atlantic Nicaragua. PLoS One 11:1ā€“20. https://doi.org/10.1371/journal.pone.0162529

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Smartt AD, Brye KR, Norman RJ (2016) Methane emissions from rice production in the United States - a review of controlling factors and summary of research. In: Greenhouse gases. IntechOpen, London. https://doi.org/10.5772/62025

    ChapterĀ  Google ScholarĀ 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, Oā€™Mara F, Rice C, Scholes B (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric, Ecosys Environ 118(1ā€“4):6ā€“28

    ArticleĀ  Google ScholarĀ 

  • Sobhy IS, Erb M, Lou Y, Turlings TCJ (2014) The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Phil Trans Roy Soc B 369:20120283. https://doi.org/10.1098/rstb.2012.0283

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Spielman DJ, Kennedy A (2016) Towards better metrics and policymaking for seed system development: insights from Asiaā€™s seed industry. AgrilSyst 147:111ā€“122

    Google ScholarĀ 

  • Stevanato N, BalderramaSubieta S, Quoilin S, Colombo E (2019) Two-stage stochastic sizeing of a rural micro-grid based on stochastic load generation. Proceedings of the 13th IEEE PES power tech conference 2019

    Google ScholarĀ 

  • Sustaining Food Availability (2020). https://www.cgiar.org/research/research-theme/food-security/. Accessed Sept 2020

  • Talaviya T, Shah D, Patel N, Yagnik H, Shah M (2020) Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric 4(1):58ā€“73. https://doi.org/10.1016/j.aiia.2020.04.002

    ArticleĀ  Google ScholarĀ 

  • Tarannum N, Rhaman MK, Khan SA, Shakil SR (2015) A brief overview and systematic approach for using agricultural robot in developing countries. J Mod Sci Technol 3:88ā€“101

    Google ScholarĀ 

  • Tariq M, Ahmad S, Fahad S, Abbas G, Hussain S, Fatima Z, Nasim W, Mubeen M, urRehman MH, Khan MA, Adnan M (2018) The impact of climate warming and crop management on phenology of sunflower-based cropping systems in Punjab, Pakistan. Agric For Meteorol 256-257:270ā€“282. https://doi.org/10.1016/j.agrformet.2018.03.015

    ArticleĀ  Google ScholarĀ 

  • TEEB (2010) The economics of ecosystems and biodiversity. Mainstreaming the economics of nature: a synthesis of the approach, conclusions and recommendations of TEEB. UNEP, Nairobi

    Google ScholarĀ 

  • Thomas GB (1997) US environmental security policy: broad concern or narrow interests. The J Environ Dev 6(4):397ā€“425

    ArticleĀ  Google ScholarĀ 

  • Tillett ND (1993) Robotic manipulators in horticulture: a review. J Agri Eng Res 55(2):89ā€“105

    ArticleĀ  Google ScholarĀ 

  • Timsina J (2018) Can organic sources of nutrients increase crop yields to meet global food demand? Agron 8(10):214

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tomlinson I (2013) Doubling food production to feed the 9 billion: a critical perspective on a key discourse of food security in the UK. J Rural Stud 29:81ā€“90

    ArticleĀ  Google ScholarĀ 

  • Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T (2016) Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ 230:150ā€“161. https://doi.org/10.1016/j.agee.2016.06.002

    ArticleĀ  Google ScholarĀ 

  • Udawatta RP, Rankoth LM, Jose S (2019) Agroforestry and biodiversity. Sustain 11:5. https://doi.org/10.3390/su11102879

    ArticleĀ  Google ScholarĀ 

  • Ullah A, Ahmad I, Ahmad A, Khaliq T, Saeed U, Habib-ur-Rahman M, Hussain J, Ullah S, Hoogenboom G (2019) Assessing climate change impacts on pearl millet under arid and semi-arid environments using CSM-CERES-millet model. Environ Sci Pollut Res 26:6745ā€“6757. https://doi.org/10.1007/s11356-018-3925-7

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Umesha S, Manukumar HM, Chandrasekhar B (2018) Sustainable agriculture and food security. In biotechnology for sustainable agriculture. Woodhead Publishing, New York, pp 67ā€“92

    BookĀ  Google ScholarĀ 

  • UN (United Nations) (2015a) Transforming our world: the 2030 agenda for sustainable development (a/RES/70/1). United Nations General Assembly, New York

    Google ScholarĀ 

  • UN (United Nations) (2015b) Agricultural technology for development. report of the secretary-general. United Nations, New York

    Google ScholarĀ 

  • UNCTAD (2010) Technology and innovation report 2010: enhancing food security in Africa through science, technology and innovation. United Nations, New York and Geneva

    Google ScholarĀ 

  • UNCTAD (2011) Applying a gender lens to science, technology and innovation. United Nations, New York and Geneva

    Google ScholarĀ 

  • UNCTAD (2015) Commodities and development report. United Nations, New York and Geneva

    Google ScholarĀ 

  • UNEP (United Nations Environment Programme) (2019) Emissions gap report 2019. https://www.unep.org

  • Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, ur Rehman H, Ashraf I, Sanaullah M (2020) Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci Total Environ 721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Uusitalo L, Lehikoinen A, Helle I, Myrberg K (2015) An overview of methods to evaluate uncertainty of deterministic models in decision support. Environ Model Softw 63:24ā€“31

    ArticleĀ  Google ScholarĀ 

  • Van der Lippe T, De Ruijter J, De Ruijter E, Raub W (2011) Persistent inequalities in time use between men and women: a detailed look at the influence of economic circumstances, policies, and culture. European Soc Rev 27(2):164ā€“179

    ArticleĀ  Google ScholarĀ 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522ā€“530

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Veldkamp EF (2001) Lambin, editorial: predicting land-use change. In: Agriculture, Ecosystems and Environment, vol 85, pp 1ā€“6

    Google ScholarĀ 

  • Venugopal KR (1999) Food security vs. nutrition security. Health Millions 25(2):18ā€“19

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Vermeulen SJ, Challinor AJ, Thornton PK, Campbell BM, Eriyagama N, Vervoort JM, Nicklin KJ (2013) Addressing uncertainty in adaptation planning for agriculture. Proc Nat Acad Sci 110(21):8357ā€“8362

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Vervoort JM, Thornton PK, Kristjanson P, Fƶrch W, Ericksen PJ, Kok K et al (2014) Challenges to scenario-guided adaptive action on food security under climate change. Glob Environ Change 28:383ā€“394

    ArticleĀ  Google ScholarĀ 

  • Wajid A, Ahmad A, Hussain M, ur Rahman MH, Khaliq T, Mubeen M, Rasul F, Bashir U, Awais M, Iqbal J, Sultana SR (2014) Modeling growth, development and seed-cotton yield for varying nitrogen increments and planting dates using DSSAT. Pak J Agric Sci 51(3):639ā€“647

    Google ScholarĀ 

  • Wen Y, He Z, Xu T, Jiao Y, Liu X, Wang YF, Yu XQ (2019) Ingestion of killed bacteria activates antimicrobial peptide genes in Drosophila melanogaster and protects flies from septic infection. Dev Comp Immunol 95:10ā€“18

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wheaton E, Kulshreshtha S (2017) Environmental sustainability of agriculture stressed by changing extremes of drought and excess moisture: a conceptual review. Sustainability 9(6):970

    ArticleĀ  Google ScholarĀ 

  • Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508ā€“513

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • World Bank and FAO (2009) Awakening Africaā€™s sleeping Giant. World Bank, Washington DC

    Google ScholarĀ 

  • Yadav GS, Lal R, Meena RS (2020) Vehicular traffic effects on hydraulic properties of a Crosby silt loam under a long-term no-till farming in Central Ohio, USA. Soil Till Res 202:104654. https://doi.org/10.1016/j.still.2020.104654

    ArticleĀ  Google ScholarĀ 

  • Young TP (2000) Restoration ecology and conservation biology. Biol Conserv 92(1):73ā€“83

    ArticleĀ  Google ScholarĀ 

  • Zeweld W, Van Huylenbroeck G, Tesfay G, Azadi H, Speelman S (2020) Sustainable agricultural practices, environmental risk mitigation and livelihood improvements: empirical evidence from northern Ethiopia. Land Use Policy 95:103799

    ArticleĀ  Google ScholarĀ 

  • Zhang F, Wang R, Xiao Q, Wang Y, Zhang J (2006) Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on biology. Nanoscience 11:18ā€“26

    CASĀ  Google ScholarĀ 

  • Zhang H, Li Y, Zhu J (2018) Developing naturally stress-resistant crops for a sustainable agriculture. Nat Plants 4:989ā€“996. https://doi.org/10.1038/s41477-018-0309-4

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51ā€“59. https://doi.org/10.1038/nature15743

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhao C, Liu B, Xiao L, Hoogenboom G, Boote KJ, Kassie BT, Pavan W, Shelia V, Kim KS, Hernandez-Ochoa IM, Wallach D (2019) A simple crop model. Eur J Agron 104:97ā€“106. https://doi.org/10.1016/j.eja.2019.01.009

    ArticleĀ  Google ScholarĀ 

Download references

Conflict of Interest

Authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman E. L. Sabagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabagh, A.E.L. et al. (2021). Advances in Input Management for Food and Environmental Security. In: Bhatt, R., Meena, R.S., Hossain, A. (eds) Input Use Efficiency for Food and Environmental Security. Springer, Singapore. https://doi.org/10.1007/978-981-16-5199-1_6

Download citation

Publish with us

Policies and ethics