Skip to main content

Precision Input Management for Minimizing and Recycling of Agricultural Waste

  • Chapter
  • First Online:
Input Use Efficiency for Food and Environmental Security

Abstract

Agricultural production system, being one of the most important and dynamic sectors, significantly alleviate climate change, which directly or indirectly results in emissions of greenhouse gases (GHG’s). Several strategies and technological interventions have been made that have resulted in reducing greenhouse gas emission, but it should not by any means reduce the farm revenue and productivity. Apart from this, the age-old traditional methods of cultivation have raised several concerns related to water drainage, fertilizer consumption, and waste disposal, etc. Optimizing agricultural waste and also enhancing food productivity simultaneously to feed the ever-increasing world population is an urgent need of the hour. In these aspects, smart agriculture which often incorporates technologies for improving farming operations, improving water management, fertilizer applications and finally crop production by means of sensor-based equipment’s have proved to be fruitful. Under the agricultural production system, it is a well-known fact that a significant amount of wastage is created as trash and bagasse. These wastages present within the system itself can be a precious alternatives resource if suitable waste to loop mechanism is applied. For example, in cities and towns, several sensors-mounted trash-collecting vehicles are used to monitor total waste load and identifying the best alternative path for waste collection for efficient management. It is, however, a matter of fact that in most of the countries around the globe the smart agriculture has failed to integrate and incorporate waste management techniques altogether as a whole. Thus, the use of sensors, GPS, etc., can help in waste management by utilizing the loops through incorporation of cost-effective means of waste collection, transportation economic resource utilization techniques. Thus, under this context, the chapter aims to find the different alternatives and roles of effective waste to gold creation opportunities within a smart agricultural production system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AWMS:

Agricultural waste management system

DGPS:

Differential global positioning system

FIS:

Farm Information Systems

GDP:

Gross domestic product

GHGs:

Greenhouse Gases

GIS:

Geographic Information System

GIS:

Geographic Information System

GNSS:

Global Navigation Satellite System

GPS:

Global Positioning System

IoT:

Internet-of-Things

IRSS:

Indian Remote Sensing Satellites

LCA:

Life Cycle Assessment

LORIS:

Local Resources Information System

NUE:

Nitrogen Use Efficiency

PA:

Precision Agriculture

RFID:

Radio-frequency identification

RS:

Remote Sensing

SD:

Standard Deviation

SEPA:

Scottish Environmental Protection Agency

SPOT:

Satellite Pour I’Observation de la Terre (French National Earth Observation Satellite)

SSA:

Sub Saharan Africa

TM:

Territorial Metabolism

USDA:

United States Department of Agriculture

VRA:

Variable rate application

VRI:

Variable Rate Irrigation

VRNA:

Variable-rate nutrient application

VRPA:

Variable-rate pesticide application

VRT:

Variable Rate Technique

VRTA:

Variable Rate Tillage or Seeding Application

References

  • Aalok A, Tripathi AK, Soni P (2008) Vermicomposting: a better option for organic solid waste management. J Human Ecol 24(1):59–64

    Article  Google Scholar 

  • Abidine AZ, Heidman BC, Upadhyaya SK, Hills DJ (2002) Application of RTK GPS based auto-guidance system in agricultural production. ASABE, St. Joseph, MI

    Google Scholar 

  • Adamchuck VI, Mulliken J (2005) Site-specific management of soil pH (FAQ). University of Nebraska-Lincoln, extension EC05705

    Google Scholar 

  • Adamez JD, Samino EG, Sanchez EV, González-Gómez D (2012) In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control 24(1–2):36–141

    Google Scholar 

  • Aeschelmann F, Carus M, Baltus W, Carrez D, de Guzman D, Käb H, Ravenstijn J (2017) Bio-based building blocks and polymers: global capacities and trends 2016–2021. Nova Institute GmbH and Europeans bioplastics association. http://17-02-20-Bio-based-Building-Blocks-and-Polymers-preview.pdf 17-02-20-Bio-based-Building-Blocks-and-Polymers-preview.pdf

  • Agamuthu P (2009) Challenges and opportunities in agro-waste management: an Asian perspective. Inaugural meeting of first regional 3R forum in Asia 11-12 Nov., Tokyo, Japan

    Google Scholar 

  • Anagnostopoulos T, Kolomvatsos K, Anagnostopoulos C, Zaslavsky A, Hadjiefthymiades S (2015) Assessing dynamic models for high priority waste collection in smart cities. J Syst Softw 110:178–192

    Article  Google Scholar 

  • Andreo V (2013) Remote sensing and geographic information systems in precision farming. http://aulavirtual.ig.conae.gov.ar/moodle/pluginfile.php/513/mod_page/content/71/seminario_andreo_2013.pdf

  • Andrieu N, Sogoba B, Zougmore R, Howland F, Samake O, Bonilla-Findji O, Lizarazo M, Nowak A, Dembele C, Corner-Dolloff C (2017) Prioritizing investments for climate-smart agriculture: lessons learned from Mali. Agric Syst 154:13–24

    Article  Google Scholar 

  • Angelopoulou T, Balafoutis A, Zalidis G, Bochtis D (2020) From laboratory to proximal sensing spectroscopy for soil organic carbon estimation—a review. Sustainability 12:443. https://doi.org/10.3390/su12020443

    Article  CAS  Google Scholar 

  • Atzberger C (2013) Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sens 5(2):949–981

    Article  Google Scholar 

  • Aubert BA, Schroeder A, Grimaudo J (2012) IT as enabler of sustainable farming: an empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis Support Syst 54(1):510–520

    Article  Google Scholar 

  • Avadí A, Nitschelm L, Corson M, Vertès F (2016) Data strategy for environmental assessment of agricultural regions via LCA: case study of a French catchment. Int J Life Cycle Assess 21(4):476–491

    Article  Google Scholar 

  • Balafoutis A, Beck B, Fountas S, Vangeyte J, van der Wal T, Soto I, Gómez-Barbero M, Barnes A, Eory V (2017) Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 9:1339. https://doi.org/10.3390/su9081339

    Article  CAS  Google Scholar 

  • Bannari A, Pacheco A, Staenz K, McNairn H, Omari K (2006) Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data. Remote Sens Environ 104:447–459

    Article  Google Scholar 

  • Bates J, Brophy N, Harfoot M, Webb J (2009) Sectoral emission reduction potentials and economic costs for climate change (SERPEC-CC). In: Agriculture: methane and nitrous oxide. Ecofys Netherlands, Utrecht, the Netherlands

    Google Scholar 

  • Bentrup F, Paliere C (2008) Energy efficiency and greenhouse gas emissions in European nitrogen fertilizer production and use. Fertilizers Europe. International Fertiliser Society, Proceedings, pp 639

    Google Scholar 

  • Berckmans D (2014) Precision livestock farming technologies for welfare management in intensive livestock systems. Sci Tech Rev 33(1):189–196

    Article  CAS  Google Scholar 

  • Bolzonella D, Battista F, Cavinato C, Gottardo M, Micolucci F, Lyberatos G, Pavan P (2018) Recent developments in biohythane production from household food wastes: a review. Bioresour Technol 257:311–319

    Article  CAS  PubMed  Google Scholar 

  • Bong CPC, Lim LY, Lee CT, Fan YV, Klemes JJ (2018) The role of smart waste Management in Smart Agriculture. Chem Eng Trans 70:937–942

    Google Scholar 

  • Bora GC, Nowatzki JF, Roberts DC (2012) Energy savings by adopting precision agriculture in rural USA. Energ Sustain Soc 2(1):22. https://doi.org/10.1186/2192-0567-2-22

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cycles 16:1080–1107

    Article  Google Scholar 

  • Brown and Root Environmental Consultancy Group (1997) Environmental review of national solid waste management plan Interim report submitted to the Government of Mauritius

    Google Scholar 

  • Burke IT, Boothman C, Lloyd JR, Mortimer RJ, Livens FR, Morris K (2005) Effects of progressive anoxia on the solubility of technetium in sediments. Environ Sci Technol 39(11):4109–4116

    Article  CAS  PubMed  Google Scholar 

  • Busse M, Schwerdtner W, Siebert R, Doernberg A, Kuntosch A, König B, Bokelmann W (2015) Analysis of animal monitoring technologies in Germany from an innovation system perspective. Agric Syst 138:55–65

    Article  Google Scholar 

  • CAST (1975) Ruminants as food producers: now and for the future. Council for Agricultural Science and Technology, Special Publication, 4: 1–13

    Google Scholar 

  • Cunningham JA, Fadel ZJ (2007) Contaminant degradation in physically and chemically heterogeneous aquifers. J Contamin hydrol 94(3–4):293–304

    Article  CAS  Google Scholar 

  • Dhaliwal SS, Naresh RK, Gupta RK, Panwar AS, Mahajan NC, Ravinder-Singh MA (2020) Effect of tillage and straw return on carbon footprints, soil organic carbon fractions and soil microbial community in different textured soils under rice–wheat rotation: a review. Rev Environ Sci Biotechnol 19:103–115. https://doi.org/10.1007/s11157-019-09520-1

    Article  CAS  Google Scholar 

  • Diacono M, Rubino P, Montemurro F (2013) Precision nitrogen management of wheat: a review. Agron Sustain Dev 33:219–241

    Article  Google Scholar 

  • DIC (Decision Intelligence Document) (2013) Waste and spoilage in the food chain. Rockefeller Foundation, New York

    Google Scholar 

  • Earl R, Wheeler PN, Blackmore BS, Godwin R (1996) Precision farming - the management of variability. J Instit Agri Eng 51:18–23

    Google Scholar 

  • Edwards S, Araya H (2011) How to make and use compost. Climate change and food systems resilience in Sub-Saharan Africa. FAO, Rome, pp 379–476

    Google Scholar 

  • El-Haggar S (2007) Sustainable industrial design and waste management: cradle-to-cradle for sustainable development. Elsevier, Amsterdam, pp 261–292

    Book  Google Scholar 

  • Eory V, Moran D (2012) Review of potential measures for RPP2-agriculture. ClimateXChange. http://www.climatexchange.org.uk/files/3413/7338/8148/Review_of_Potential_Measures_for_RPP2_-_Agriculture.pdf. Accessed 13 Dec 2019

  • Evans RG, LaRue J, Stone KC, King BA (2013) Adoption of site-specific variable rate sprinkler irrigation systems. Irrig Sci 31:871–887

    Article  Google Scholar 

  • Ezcurra A, de Zárate IO, Dhin PV, Lacaux JP (2001) Cereal waste burning pollution observed in the town of Vitoria (northern Spain). Atmos Environ 35(8):1377–1386

    Article  CAS  Google Scholar 

  • FAO (2001) Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land. International fertilizer industry association-food and agriculture Organization of the United Nations. FAO, Rome, Italy

    Google Scholar 

  • Finger R, Swinton SM, Benni NE, Walter A (2019) Precision farming at the Nexus of agricultural production and the environment. Annu Rev Resour Econ 11:313–335. https://doi.org/10.1146/annurev-resource-100518-093929

    Article  Google Scholar 

  • Fiorentino G, Ripa M, Ulgiati S (2017) Chemicals from biomass: technological versus environmental feasibility: a review. Biofuels Bioprod Biorefin 11(1):195–214

    Article  CAS  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2003) High-rate vermicomposting systems for recycling paper waste. Indian J Biotechnol 2:613–615

    Google Scholar 

  • Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science 327:828–831

    Article  CAS  PubMed  Google Scholar 

  • Ghosh RK, Ghosh A, Mondal D (2018) Invasive weed threats in India and their Ecosafe management. Arch diary res Technol ADRT-102. Doi: https://doi.org/10.29011/ADRT-102.100002

  • Goldstein B, Birkved M, Quitzau MB, Hauschild M (2013) Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environ Res Lett 8(3):035024

    Article  CAS  Google Scholar 

  • Goulding K, Jarvis S, Whitmore A (2008) Optimizing nutrient management for farm systems. Philos Trans R Soc Lond Ser B Biol Sci 363:667–680

    Article  CAS  Google Scholar 

  • Goulding KWT (2002) Minimising losses of nitrogen from intensive agricultural systems. In: lynch JM, Schepers JS, Ünver I (eds) innovative soil-plant systems for sustainable agricultural practices. Proceedings of an international workshop organised by the university of Ankara, Faculty of Agriculture, Department of Soil Science 3-7 June 2002, Izmir, Turkey, pp 477-499

    Google Scholar 

  • Graminha EBN, Goncalves AZL, Pirota RDPB, Balsalobre MAA, Silva R, Gomes E (2008) Enzyme production by solid-state fermentation: application to animal nutrition. Anim Feed Sci Technol 144:1–22

    Article  CAS  Google Scholar 

  • Grisso R, Alley M, Thomason W, Holshouser D, Roberson GT (2011) Precision farming tools: variable-rate application. Virginia Cooperative Extension, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University

    Google Scholar 

  • Gummert M, Hung NV, Chivenge P, Douthwaite B (2020) Sustainable Rice straw management. Springer, Cham

    Book  Google Scholar 

  • Hai HT and Tuyet NTA (2010) Benefits of the 3R approach for agricultural waste management (AWM) in Vietnam. Under the Framework of joint Project on Asia Resource Circulation Policy Research Working Paper Series. Institute for Global Environmental Strategies supported by the Ministry of Environment, Japan

    Google Scholar 

  • Hanson LD, Robert PC, Bauer M (1995) Mapping wild oats infestation using digital imagery for site specific management. In: Robert PC, Rust RH, Larson WE (eds) Site-Specific Management for Agricultural Systems. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. Wiley, Madison, pp 495–503

    Google Scholar 

  • Hegg DA, Radke LF, Hobbs PV, Brock CA, Riggan PJ (1987) Nitrogen and Sulphur emissions from the burning of forest products near large urban areas. J Geophys Res 92:14701–14709

    Article  CAS  Google Scholar 

  • Henry JG, Heinke GW (1989) Water supply, environmental science and engineering, vol 11. Prentice Hall, Hoboken, NJ

    Google Scholar 

  • Heraud JA, Lange AF (2009) Agricultural automatic vehicle guidance from horses to GPS: how we got Here, and where we are going. ASABE distinguished lecture series 33, American Society of Agricultural and Biological Engineers, St. Joseph, MI, pp 1–67

    Google Scholar 

  • Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sustain Energ Rev 32:504–512. https://doi.org/10.1016/j.rser.2014.01.025

    Article  Google Scholar 

  • IARI (2012) Crop residues management with conservation agriculture: potential, constraints and policy needs. Indian Agricultural Research Institute, New Delhi, vii+32, pp 12-13

    Google Scholar 

  • Jakobsen S (1995) Aerobic decomposition of organic wastes 2. Value of compost as fertilizer. Resour Conserv Recycl 13:57–71

    Article  Google Scholar 

  • Jannoura R, Brinkmann K, Uteau D, Bruns C, Joergensen RG (2015) Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosyst Eng 129:341–351

    Article  Google Scholar 

  • Katalinic V, Mozina SS, Skroza D, Generalic I, Abramovic H, Milos M, Ljubenkov I, Piskernik S, Pezo I, Terpinc P, Boban M (2010) Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in dalmatia (Croatia). Food Chem 119:715–723

    Article  CAS  Google Scholar 

  • Kaur K, Kaur P, Sharma S (2019) Management of crop residue through various techniques. J Pharmacog Phytochem SP1:618–620

    Google Scholar 

  • Kavoosi Z, Raoufat MH, Dehghani M, Jafari A, Kazemeini SA, Nazemossadat MJ (2020) Feasibility of satellite and drone images for monitoring soil residue cover. J Saudi Soc Agric Sci 19:56–64. https://doi.org/10.1016/j.jssas.2018.06.001

    Article  Google Scholar 

  • Khosla R (2008) Precision agriculture: challenges and opportunities in flat world. Opening ceremony presentation. The 9th international conference on precision agriculture. July 20-23rd, 2008

    Google Scholar 

  • Kiran EU, Trzcinski AP, Liu Y (2015) Platform chemical production from food wastes using a biorefinery concept. J Chem Technol Biotechnol 90(8):1364–1379

    Article  Google Scholar 

  • Kumar K, Goh KM (2000) Crop residue management: effects on soil quality, soil nitrogen dy- namics, crop yield, and nitrogen recovery. Adv Agron 68:197–319

    Article  CAS  Google Scholar 

  • Kumar P, Kumar S, Joshi L (2014) The extent and management of crop stubble. Socio economic and Environmental Implications of Agricultural Residue Burning, Springer, New Delhi, pp 13–34. https://doi.org/10.1007/978-81-322-2014-5_2

    Book  Google Scholar 

  • Kumar S, Meena RS (2020) Impact of various sowing environment and nutrient sources on growth performance of Indian mustard (Brassica juncea). Indian J Agrono 65(4):465–470

    CAS  Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). 72. J Oilseed Brass 9(1):72–76

    Google Scholar 

  • Kumar S, Meena RS, Singh RK, Muni TM, Datta R, Danish S, Singh GS, Kumar S (2021) Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice based cropping system. Scientific Report 11:5289. https://doi.org/10.1038/s41598-021-84742-4

    Article  CAS  Google Scholar 

  • Lacaux JP, Loemba-Ndembi J, Lefeivre B, Cros B, Delmas R (1992) Biogenic emissions and biomass burning influences on the chemistry of the fogwater and stratiform precipitations in the African equatorial forest. Atmos Environ 26(a/4):541–551

    Article  Google Scholar 

  • Lee J (2009) Global positioning/GPS. In: Kitchin R, Thrift N (eds) International encyclopedia of human geography. Elsevier, Amsterdam, pp 548–555

    Chapter  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–245

    Article  CAS  Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2014) Remote sensing and image interpretation. Wiley, Hoboken, NJ

    Google Scholar 

  • Lin AY, Huang ST, Wahlqvist ML (2009) Waste management to improve food safety and security for health advancement. Asia Pac J Clin Nutr 18(4):538–545

    PubMed  Google Scholar 

  • Lohan SK, Jat HS, Yadav AK, Sidhu HS, Jat ML, Choudhary M, Sharma PC (2018) Burning issues of paddy residue management in north-west states of India. Renew Sustain Energ Rev 81:693–706. https://doi.org/10.1016/j.rser.2017.08.057

    Article  Google Scholar 

  • Lowe PD (1995) Social issues and animal wastes: a European perspective. In: Proceedings of International Livestock Odor Conference, Iowa State University College of Agriculture, America, 1995, pp. 168–171

    Google Scholar 

  • Lowenberg-DeBoer J (2015) The precision agriculture revolution: making the modern farmer. Foreign Aff 94(3):105–112

    Google Scholar 

  • Mackie RI, Stroot PG, Varel VH (1998) Biochemical identification and biological origin of key odour components in livestock waste. J Animal Sci 76:1331–1342

    Article  CAS  Google Scholar 

  • Mandal A, Majumder A, Dhaliwal SS, Toor AS, Mani PK, Naresh RK, Gupta RK, Mitran T (2020) Impact of agricultural management practices on soil carbon sequestration and its monitoring through simulation models and remote sensing techniques: a review. Critic Rev Env Sci Technol 2020:1–49. https://doi.org/10.1080/10643389.2020.1811590

    Article  CAS  Google Scholar 

  • Mani PK, Mandal A, Biswas S, Sarkar B, Mitran T, Meena RS (2021) Remote sensing and geographic information system: a tool for precision farming. In: Mitran T, Meena RS, Chackraborty A (eds) Geospatial technologies for crops and soils. Springer, Singapore, pp 49–111. https://doi.org/10.1007/978-981-15-6864-0_2

    Chapter  Google Scholar 

  • Marlow HJ, Hayes WK, Soret S, Carter RL, Schwab ER, Sabate J (2009) Diet and the environment: does what you eat matter? Am J Clin Nutr 89:1699S–1703S

    Article  CAS  PubMed  Google Scholar 

  • Mathieu F, Timmons MB (1995) In: Wang JK (ed) Techniques for modern aquaculture. American Society of Agricultural Engineers, St. Joseph, MI

    Google Scholar 

  • McDougall FR, White PR, Franke M, Hindle P (2008) Integrated solid waste management: a life cycle inventory. Willey, Hoboken, NJ

    Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752. https://doi.org/10.1016/j.catena.2020.104752

    Article  CAS  Google Scholar 

  • Meshram JR (2002) Biomass resources assessment programme and prospects of biomass as an energy resource in India. IREDA News 13(4):21–29

    Google Scholar 

  • Mirsky SB, Ryan MR, Teasdale JR, Curran WS, Reberg-Horton CS, Spargo JT, Wells MS, Keene CL, Moyer JW (2013) Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the eastern United States. Weed Technol 27(1):193–203

    Article  Google Scholar 

  • Moran MS, Inoue Y, Barnes E (1997) Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens Environ 61(3):319–346

    Article  Google Scholar 

  • Mulla DJ, Perillo CA, Cogger CG (1996) A site-specific farm-scale GIS approach for reducing groundwater contamination by pesticides. J Environ Qual 25:419–425

    Article  CAS  Google Scholar 

  • Murrell TS (2004) Using advanced technologies to refine nitrogen management at the farm scale: a case study from the US Midwest. In: Mosier AR, Syers JK, Freney JR (eds) agriculture and the nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment. SCOPE 65. Ch. 11. Island press; Washington, DC, 2004, pp. 155–165

    Google Scholar 

  • Nagendran R (2011) Agricultural waste and pollution. In: Letcher TM, Vallero DA (eds) Waste. Academic Press, Elsevier, Amsterdam, pp 341–355

    Chapter  Google Scholar 

  • Nguyen TAH, Ngo HH, Guo WS, Zhang J, Liang S, Lee DJ, Nguyen PD, Bui XT (2014) Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles. Bioresour Technol 169:750–762

    Article  CAS  PubMed  Google Scholar 

  • Njakou Djomo S, Witters N, Van Dael M, Gabrielle B, Ceulemans R (2015) Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies. Appl Energy 154:122–130

    Article  CAS  Google Scholar 

  • Obi FO, Ugwuishiwu BO, Nwakaire JN (2016) Agricultural waste concept, generation, utilization and management. Nigerian J Technol 35(4):957–964

    Article  Google Scholar 

  • Ojha T, Misra S, Raghuwanshi NS (2015) Wireless sensor networks for agriculture: the state-of-the-art in practice and future challenges. Comput Electron Agric 118:66–84

    Article  Google Scholar 

  • Okonko IO, Adeola OT, Aloysius FE, Damilola AO, Adewale OA (2009) Utilization of food wastes for sustainable development. Electr J Environ Agric Food Chem 8(4):263–286

    CAS  Google Scholar 

  • Olesen JE, Sørensen P, Thomsen IK, Eriksen J, Thomsen AG, Berntsen J (2004) Integrated nitrogen input systems in Denmark. In: Mosier AR, Syers JK, Freney JR (eds). Agriculture and the nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment. SCOPE 65, ch. 9, island press, Washington, DC, USA, pp 129–140

    Google Scholar 

  • Oltjen JW, Beckett JL (1996) Role of ruminant livestock in sustainable agricultural systems. J Animal Sci 74:1406–1409

    Article  CAS  Google Scholar 

  • Overcash MR (1973) Livestock waste management. In: Humenik FJ, Miner JR (eds) . CRC Press, Boca Raton, FL

    Google Scholar 

  • Patil SS, Bhalerao SA (2013) Precision farming: the most scientific and modern approach to sustainable agriculture. Int Res J Sci Engg 1(2):21–30

    Google Scholar 

  • Pinter PJ Jr, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daugh-try CS, Upchurch DR (2003) Remote sensing for crop management. Photogrammetr Eng Remote Sens 69(6):647–664

    Article  Google Scholar 

  • Pires A, Martinho G, Chang NB (2011) Solid waste Management in European countries: a review of system analysis tecniques. J Environ Manag 92(4):1033–1050

    Article  Google Scholar 

  • Prasad R, Power JF (1991) Crop residue management. In: Advances in soil science. Springer, New York, pp 205–251

    Google Scholar 

  • Ramson SRJ, Moni DJ (2017) Wireless sensor networks based smart bin. Comput Electric Eng 64:337–353

    Article  Google Scholar 

  • Ray SS, Panigrahy S, Parihar JS (2010) Precision farming in indian context. Geospatial world. http://geospatialmedia.net. Accessed 12 Oct 2010

    Google Scholar 

  • Robin M (2001). How factory farm lagoons and spray fields threaten environmental and public health. https://nrdc.org/waterpollution/cesspools.pdf. Accessed 18 May 2005

  • Sabiiti EN (2011) Utilising agricultural waste to enhance food security and conserve the environment. Afr J R Food Agric Nutr Dev 11(6):1–9

    Google Scholar 

  • Sadler EJ, Evans RG, Stone KC, Camp CR (2005) Opportunities for conservation with precision irrigation. J Soil Water Conserv 60:371–378

    Google Scholar 

  • Sahoo RN (2011) Precision farming: concepts, limitations, and opportunities in Indian agriculture. In: Sharma AR, Behera UK (eds) Resource conserving techniques in crop production. Scientific Publishers, Jodhpur, India, pp 439–450

    Google Scholar 

  • Scharfe D (2010) Integrated waste management plan. Report at

    Google Scholar 

  • Schepers JS, Raun WR (2008) Nitrogen in agricultural systems. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI

    Book  Google Scholar 

  • Schroder D, Haneklaus S, Schung E (1997) Information management in precision agriculture with Loris. In: Stafford JV (ed) Precision Agriculture’97, Technology, IT and management, vol II. BIOS Scientific Publishers Ltd., Oxford, UK, pp 821–826

    Google Scholar 

  • Schulte DD (1997) Critical parameters for emissions. In: JAM V, Monteny GJ (eds) Proceedings of Ammonia and Odour Emissions from Animal Production Facilities. NVTL Publishing, Rosmalen, The Netherlands, p 23

    Google Scholar 

  • Scottish Environmental Protection Agency (SEPA) (2005) A guide to agricultural waste. https://www.sepa.org.uk. Accessed 16 April 2015

  • Seadon JK (2006) Integrated waste management–looking beyond the solid waste horizon. Waste Manag 26(12):1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Sehy U, Ruser R, Munch JC (2003) Nitrous oxide fluxes from maize fields: relationship to yield, site-specific fertilization, and soil conditions. Agric Ecosys Environ 99:97–111

    Article  CAS  Google Scholar 

  • Shirish P, Bhalerao S (2013) Precision farming: the most scientific and modern approach to sustainable agriculture. Int Res J Sci Eng 1:21–30

    Google Scholar 

  • Shyamsundar P, Springer NP, Tallis H, Polasky S, Jat ML, Sidhu HS, Krishnapriya PP, Skiba N, Ginn W, Ahuja V, Cummins J, Datta I, Dholakia HH, Dixon J, Gerard B, Gupta R, Hellmann J, Jadhav A, Jat HS, Keil A, Ladha JK, Lopez-Ridaura S, Nandrajog SP, Paul S, Ritter A, Sharma PC, Singh R, Singh D, Somanathan R (2019) Fields on fire: alternatives to crop residue burning in India. Science 365(6453):536–538

    Article  CAS  PubMed  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C, Scholes B (2008) Greenhouse gas mitigation in agriculture. Philos Trans Royal Soc B Biol Sci 363(1492):789–813

    Article  CAS  Google Scholar 

  • Sokefeld M (2010) Variable rate technology for herbicide application herbicide application. In: Precision crop protection-the challenge and use of heterogeneity. Springer, Heidelberg, pp 335–347

    Chapter  Google Scholar 

  • Suttibak S, Nitivattananon V (2008) Assessment of factors influencing the performance of solid waste recycling programs. Resour Conserv Recyclin 53(1–2):45–56

    Article  Google Scholar 

  • Sylvester-Bradley R, Lord E, Sparkes DL, Scott RK, Wiltshire JJJ, Orson J (1999) An analysis of the potential of precision farming in northern Europe. Soil Use Mang 15:1–8

    Google Scholar 

  • Talavera JM, Tobón LE, Gómez JA, Culman MA, Aranda JM, Parra DT, Quiroz LA, Hoyos A, Garreta LE (2017) Review of IoT applications in agro-industrial and environmental fields. Comput Electron Agric 142:283–297

    Article  Google Scholar 

  • Tudor T, Robinson GM, Riley M, Guilbert S, Barr SW (2011) Challenges facing the sustainable consumption and waste management agendas: perspectives on UK households. Local environ. J 16(1):51–66

    Google Scholar 

  • UNEP (2011) Towards a green economy: pathways to sustainable development and poverty eradication. https://www.unep.org/greeneconomy

    Google Scholar 

  • UNEP (2015) Global waste management outlook. United Nations Environment Programme–International Solid Waste Association. https://www.unenvironment.org/resources/report/global-waste-management-outlook. Accessed 18 Oct 2020

    Google Scholar 

  • United States Department of Agriculture (USDA) (2013) Characteristics of women farm operators and their farm. https://www.ers.usva.gov/media/1093194/eib/pdf. Accessed 02 April 2015

    Google Scholar 

  • USEPA (2010) US Environmental Protection Agency 2010–2014 pollution prevention (P2) program strategic plan. http://www.epa.gov/p2/pubs/docs/P2StrategicPlan2010-14.pdf

  • Vega FA, Ramirez FC, Saiz MP, Rosua FO (2015) Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosyst Eng 132:19–27

    Article  Google Scholar 

  • Verdone N, De Filippis P (2004) Thermodynamic behaviour of sodium and calcium based sorbents in the emission control of waste incinerators. Chemosphere 54(7):975–985

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Dong F, Chen M, Zhu J, Tan J, Fu X, Wang Y, Chen S (2016) Advances in recycling and utilization of agricultural wastes in China: based on environmental risk, crucial pathways, influencing factors, policy mechanism. Procedia Environ Sci 31:12–17. https://doi.org/10.1016/j.proenv.2016.02.002

    Article  Google Scholar 

  • Wathes CM, Kristensen HH, Aerts JM, Berckmans D (2008) Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput Electron Agric 64(1):2–10

    Article  Google Scholar 

  • Wen Z, Hu S, De Clercq D, Beck MB, Zhang H, Zhang H, Fei F, Liu J (2018) Design, implementation and evaluation of an internet of things (IoT) network system for restaurant food waste management. Waste Manag:7326–7338

    Google Scholar 

  • Westerman PW, Bicudo JR (2005) Management considerations for organic waste use in agriculture. Bioresour Technol 96:215–221

    Article  CAS  PubMed  Google Scholar 

  • Wood S, Cowie A (2004) A review of greenhouse gas emission factors for Fertiliser production; for IEA bioenergy task 38; Orange, Research and Development division. New South Wales, Australia, State Forests of New South Wales

    Google Scholar 

  • Xiang H, Tian L (2011) Development of a low cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst Eng 108:174–190

    Article  Google Scholar 

  • Yadav GS, Lal R, Meena RS (2020) Vehicular traffic effects on hydraulic properties of a Crosby silt loam under a long-term no-till farming in Central Ohio, USA. Soil Till Res 202:104654. https://doi.org/10.1016/j.still.2020.104654

    Article  Google Scholar 

  • Yilmaz E (2014) Assessment of the role of agricultural wastes in aggregate formation and their stability. J Environ Manag 144:93–100

    Article  CAS  Google Scholar 

  • Zhang N, Wang M, Wang N (2002) Precision agriculture—a worldwide overview. Comput Electron Agric 36(2–3):113–132

    Article  Google Scholar 

  • Zheng B, Campbell JB, Serbin G, Galbraith JM (2014) Remote sensing of crop residue and tillage practices: present capabilities and future prospects. Soil Till Res 138:26–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumder, D. et al. (2021). Precision Input Management for Minimizing and Recycling of Agricultural Waste. In: Bhatt, R., Meena, R.S., Hossain, A. (eds) Input Use Efficiency for Food and Environmental Security. Springer, Singapore. https://doi.org/10.1007/978-981-16-5199-1_19

Download citation

Publish with us

Policies and ethics