Skip to main content

Remote Sensing and Geographic Information System: A Tool for Precision Farming

  • Chapter
  • First Online:
Geospatial Technologies for Crops and Soils

Abstract

The right time application of the right amount of input is a prerequisite to optimizing profitability and sustainability with a lesser impact on environmental degradation. Such can be achieved through precision farming (PF). It can offer a great potential to minimize the yield gap by optimizing food production using best management practices. It can also help to maintain the consumption of natural resources at an ecologically benign and environmentally sustainable level. PF is a holistic approach to enhance crop productivity with the aid of satellite-based technology and information technology (IT) to assess and manage the spatial and temporal variability of resources and inputs such as seeds, fertilizers, chemicals, etc. within the field. Application of remote sensing (RS) and geographic information system (GIS) shows a great promise to precision agriculture (PA) because of its role in monitoring spatial variability overtime at high resolution. This chapter highlights various applications of RS and GIS techniques in PA or smart agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIEM:

Advanced Integral Equation Model

ALI:

Advanced Land Imager

ARVI:

Atmospherically Resistant Vegetation Index

ASTER:

Advance Spaceborne Thermal Emission and Reflection Radiometer

AVHRR:

Advance Very High Resolution Radiometer

AVIRIS:

Airborne Visible Infrared Imaging Spectrometer

AWS:

Amazon Web Services

CASI:

Compact Airborne Spectrographic Imager

DCNI:

Double-peak Canopy Nitrogen Index

DEM:

Digital Elevation Model

DGPS:

Differential Global Positioning System

DSSAT:

Decision Support System for Agrotechnology Transfer

DVI:

Difference Vegetation Index

EO :

Earth Observing

EOS :

Earth Observing System

EROS:

Earth Resources Observation and Science

ERS:

European Remote Sensing satellite

FASAL:

Forecasting Agricultural Output Using Space, Agrometeorology and Land Based Observations

FIS:

Farm Information Systems

GDVI:

Green Difference Vegetation Index

GI:

Greenness Index

GIS:

Geographic Information System

GNDVI:

Green Normalized Difference Vegetation Index

GNSS:

Global Navigation Satellite System

GOSAVI:

Green Optimized Soil-Adjusted Vegetation Index

GPS:

Global Positioning System

GRVI:

Green–Red Vegetation Index

GSAVI:

Green Soil–Adjusted Vegetation index

GWR:

Geographically Weighted Regression

HH:

Horizontal Transmit and Horizontal Receive

HNDVI:

Hyperspectral Normalized Difference Vegetation Index

HV:

Horizontal Transmit and Vertical Receive

HVI:

Hyperspectral Vegetation Index

IEM:

Integral Equation Model

IRS:

Indian Remote Sensing

IRSS:

Indian Remote Sensing Satellite

IT:

Information Technology

JERS:

Japanese Earth Resource Satellite

LAI:

Leaf Area Index

LANDSAT:

Land Satellite

LASSIE:

Low-Altitude Stationary Surveillance Instrumental Equipment

LIDAR:

Light Detection and Ranging

LORIS:

Local Resources Information System

MCAR:

Modified Chlorophyll Absorption Ratio

MCARI:

Modified Chlorophyll Absorption Ratio Index

MODIS:

Moderate-resolution Imaging Spectrometer

MSAVI :

Modified Soil-Adjusted Vegetation Index

MSR:

Modified Simple Ratio

MSS:

Multispectral Sensor

MTVI:

Modified Triangular Vegetation Index

MZ:

Management Zone

NAOC:

Normalized Area Over Reflectance Curve

NASA:

National Aeronautics and Space Administration

NDI:

Normalized Difference Index

NDNI:

Normalized Difference Nitrogen Index

NDRE:

Normalized Difference Red Edge

NDVI:

Normalized Difference Vegetation Index

NDWI:

Normalized Difference Water Index

NG:

Normalized Green

NGNDVI:

Normalized Green Normalized Difference Vegetation Index

NR:

Normalized Red

NUE:

Nitrogen Use Efficiency

OLS:

Ordinary Least Square

OMNBR:

Optimal Multiple Narrow Band Reflectance Indexes

OSAVI:

Optimized Soil-Adjusted Vegetation Index

PA:

Precision Agriculture

PCA:

Principal Component Analysis

PF:

Precision Farming

PFDC:

Precision Farming Development Center

PLS:

Partial Least Squares

PSSR:

Pigment Specific Simple Ratio

PVI:

Perpendicular Vegetation Index

RDVI:

Renormalized Difference Vegetation Index

RGRI:

Red–Green Ratio Index

RIICE:

Remote Sensing–based information and Insurance for Crops in Emerging Economics

RISAT:

Radar Imaging Satellite

RS:

Remote Sensing

RVI:

Ratio Vegetation Index

RVSI:

Red-Edge Vegetation Stress Index

SAR:

Synthetic Aperture Radar

SAVI:

Soil-Adjusted Vegetation Index

SNR:

Signal-to-Noise Ratio

SOC:

Soil Organic Carbon

SOM:

Soil Organic Matter

SPAD:

Soil Plant Analysis Development

SPOT:

Système Pour l’Observation de la Terre

SR:

Simple Ratio

SRM:

Satellite-based Rice Monitoring

SRTM:

Shuttle Radar Topography Mission

SWIR:

Shortwave Infrared Region

TCARI:

Transformed Chlorophyll Absorption Reflectance Index

TKK:

Tata Kisan Kendra

TM:

Thematic Mapper

TVI:

Triangular Vegetation Index

TVIMSR:

Triangular Vegetation Index Modified Simple Ratio

UAV:

Unmanned Aerial Vehicles

USDA:

United States Department of Agriculture

VH:

Vertical Transmit and Horizontal Receive

VNIR:

Visible Near Infrared

VRT:

Variable Rate Technology

VV:

Vertical Transmit and Vertical Receive

WDVI:

Weighted Difference Vegetation Index

References

  • Adamchuck VI, Mulliken J (2005) Site specific management of soil pH (FAQ). University of Nebraska-Lincoln, Extension EC05705

    Google Scholar 

  • Adamchuk VI, Hummel JW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for precision agriculture. Comput Electron Agric 44:71–79

    Article  Google Scholar 

  • Alchanatis V, Cohen Y (2010) Spectral and spatial methods of hyperspectral image analysis for estimation of biophysical and biochemical properties of agricultural crops. Ch. 13. In: Thenkabail PS, Lyon JG, Huete A (eds) Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton, p 705

    Google Scholar 

  • Al-Kufaishi SAA, Blackmore BSS, Sourell H (2006) The feasibility of using variable rate water application under a central pivot irrigation system. Irrig Drain Syst 20:317–327

    Article  Google Scholar 

  • Andreo V (2013) Remote sensing and geographic information systems in precision farming. Available: http://aulavirtual.ig.conae.gov.ar/moodle/pluginfile.php/513/mod_page/content/71/seminario_andreo_2013.pdf. Retrieved 16 April 2015

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Apostol S, Viau AA, Tremblay N, Briantais JM, Prasher S, Parent L, Moya I (2003) Laser-induced fluorescence signatures as a tool for remote monitoring of water and nitrogen stresses in plants. Can J Remote Sens 29:57–65

    Article  Google Scholar 

  • Arbia G (2015) Spatial econometrics: a broad view. Found Trends Econometrics 8(3–4):1–121

    Google Scholar 

  • Arslan S, Colvin TS (2002) Grain yield mapping: yield sensing, yield reconstruction, and errors. Precis Agric 3:135–154

    Article  Google Scholar 

  • Baghdadi N, Zribi M (2006) Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int J Remote Sens 27(18):3831–3852

    Article  Google Scholar 

  • Baghdadi N, Holah N, Zribi M (2006) Soil moisture estimation using multi-incidence and multi-polarization ASAR data. Int J Remote Sens 27(10):1907–1920

    Article  Google Scholar 

  • Baghdadi N, Cerdan O, Zribi M, Auzet V, Darboux F, El Hajj M, Bou Kheir R (2007) Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: application to hydrological and erosion modeling. Hydrol Process 22(1):9–20

    Article  Google Scholar 

  • Baghdadi N, Cerdan O, Zribi M, Auzet V, Darboux F, El Hajj M, Kheir RB (2008) Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: application to hydrological and erosion modelling. Hydrol Process Int J 22:9–20

    Article  Google Scholar 

  • Baghdadi N, Choker M, Zribi M, El Hajj M, Paloscia S, Verhoest NEC, Lievens H, Baup F, Mattia F (2016) A new empirical model for radar scattering from bare soil surfaces. Remote Sens 8(920):1–14. https://doi.org/10.3390/rs8110920

    Article  Google Scholar 

  • Bandyopadhyay D, Bhavsa D, Pandey K, Gupta S, Roy A (2017) Red edge index as an indicator of vegetation growth and vigor using hyperspectral remote sensing data. Proc Natl Acad Sci India Sect A Phys Sci. https://doi.org/10.1007/s40010-017-0456-4

  • Bansod B, Singh R, Thakur R, Singhal G (2017) A comparison between satellite based and drone based remote sensing technology to achieve sustainable development: a review. J Agric Environ Int Dev 111(2):383–407. https://doi.org/10.12895/jaeid.20172.690

    Article  Google Scholar 

  • Banu S (2015) Precision agriculture: tomorrow’s technology for today’s farmer. J Food Process Technol 6:468–473

    Google Scholar 

  • Barnes EM, Clarke TR, Richards SE, Colaizzi PD, Haberland J, Kostrzewski M, Waller P, Choi C, Riley E, Thompson T, Lascano RJ, Li H, Moran MS (2000) Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In: Robert PC, Rust RH, Larson WE (eds) Proceedings of the fifth international conference on precision agriculture. ASA, Madison, pp 1–15

    Google Scholar 

  • Basso B, Bertocco M, Sartori L, Martin EC (2007) Analyzing the effects of climate variability on spatial of yield in a maize-wheat-soybean rotation. Eur J Agron 26:82–91

    Article  Google Scholar 

  • Basso B, Dumont B, Cammarano D, Pezzuolo A, Marinello F, Sartori L (2016) Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Sci Total Environ 545–546:227–235

    Article  Google Scholar 

  • Bauer M E, Cipra J E (1973) Identification of agricultural crops by computer processing of ERTS MSS data (LARS Technical Reports. Paper 20. http://docs.lib.purdue.Edu/larstech/20). In: The laboratory for applications of remote sensing Purdue University, West Lafayette, Indiana, pp 1–9

  • Baumgardner MF, Silva LF, Biehl LL, Stoner ER (1985) Reflectance properties of soils. Adv Agron 38:1–44. https://doi.org/10.1016/S0065-2113(08)60672-0

    Article  Google Scholar 

  • Bausch WC, Khosla R (2010) QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precis Agric 11:274–290

    Article  Google Scholar 

  • Bendig J, Bolten A, Bareth G (2012) Introducing a low-cost mini-UAV for thermal- and multispectral-imaging. Int Arch Photogramm Remote Sens Spat Inf Sci 39(B1):345–349

    Article  Google Scholar 

  • Ben-Dor E, Taylor RG, Hill J, Demattê JAM, Whiting ML, Chabrillat S, Sommer S (2008) Imaging spectrometry for soil applications. Adv Agron 97:321–392

    Article  Google Scholar 

  • Bernhardsen T (1992) Geographic information systems. VIAK IT and Norwegian Mapping Authority, Arendal

    Google Scholar 

  • Berni JAJ, Zarco-Tejada PJ, Suarez L, Gonzalez-Dugo V, Fereres E (2009) Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Retrieved March 12, 2012 from: http://www.ipi.uni-hannover.de/fileadmin/institut/pdf/isprs-Hannover2009/Jimenez_Berni-155.pdf

  • Bertoldi G, Chiesa SD, Notarnicola C, Pasolli L, Niedrist G, Tappeiner U (2014) Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling. J Hydrol 516:245–257

    Article  Google Scholar 

  • Bhatti AU, Mulla DJ, Frazier BE (1991a) Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sens Environ 37:181–191

    Article  Google Scholar 

  • Bhatti AU, Mulla DJ, Koehler FE, Gurmani AH (1991b) Identifying and removing spatial correlation from yield experiments. Soil Sci Soc Am J 55:1523–1528

    Article  Google Scholar 

  • Black CA (1992) Soil fertility evaluation and control. LEWIS Publishers, Bockaton

    Google Scholar 

  • Blackburn GA (1998) Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sens Env 66(3):273–285

    Article  Google Scholar 

  • Blackmer TM, Schepers JS (1995) Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J Prod Agric 8:56–60

    Article  Google Scholar 

  • Blackmore BS, Godwin RJ, Fountas S (2003) The analysis of spatial and temporal trends in yield map data over six years. Biosyst Eng 84(4):455–466

    Article  Google Scholar 

  • Blaes X, Vanhalleb L, Defourny P (2005) Efficiency of crop identification based on optical and SAR image time series. Remote Sens Environ 96:352–365

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon, Ontario

    Google Scholar 

  • Bouman BAM (1995) Crop modeling and remote sensing for yield prediction. J Agric Sci 43:143–161

    Google Scholar 

  • Bouvet A, Le Toan T (2011) Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sens Environ 115:1090–1101

    Article  Google Scholar 

  • Boydell B, McBratney A (2002) Identifying potential within field management zones from cotton-yield estimates. Precis Agric 3(1):9–23

    Article  Google Scholar 

  • Brekke EB (1986) Use of GIS to analyze impacts of C02 gas development on elk calving areas. In: Proceedings of Third National MOSS Users Workshop, Bureau of Land Management, Denver, Colorado, 236 p

    Google Scholar 

  • Brisco B, Brown RJ, Hirose T, McNairn H, Staenz K (1998) Precision agriculture and the role of remote sensing: a review. Can J Remote Sens 24(3):315–327

    Article  Google Scholar 

  • Broge NH, Leblanc E (2000) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ 76:156–172

    Article  Google Scholar 

  • Buckley DJA, Hendrix WG (1986) Use of geographic information systems in assessment of site suitability for land application of waste. In: Proceedings of Geographic Information Systems in Government. U.S. Army Engineer Topographic Laboratory, Ft. Belvoir, p 968

    Google Scholar 

  • Buschman C, Nagel E (1993) In-vivo spectroscopy and internal optics of leaves as a basis for remote sensing of vegetation. Int J Remote Sens 14:711–722

    Article  Google Scholar 

  • Buttner G, Csillag F (1989) Comparative study of crop and soil mapping using multitemporal and multispectral SPOT and Landsat Thematic Mapper data. Remote Sens Environ 29:241–249

    Article  Google Scholar 

  • Campbell JB (1996) Introduction to remote-sensing, 2nd edn. The Guiford Press, London, p 622

    Google Scholar 

  • Candiago S, Remondino F, De Giglio M, Dubbini M, Gattelli M (2015) Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens 7(4):4026–4047

    Article  Google Scholar 

  • Carr PM, Carlson GR, Jacobsen JS, Nielsen GA, Skogley EO (1991) Farming soils, not fields: a strategy for increasing fertilizer profitability. J Prod Agric 4:57–61

    Article  Google Scholar 

  • Casady WW, Palm HL (2002) Precision agriculture, remote sensing and ground truthing. University of Missouri-Colombia EQ 453. www.muextension.missouri.edu/xplor/

  • Castillejo-González IS (2018) Mapping of olive trees using pansharpened quickbird images: an evaluation of pixel- and object-based analyses. Agronomy 8:288. https://doi.org/10.3390/agronomy8120288

    Article  Google Scholar 

  • Chakraborty M, Manjunath KR, Panigrahy S, Kundu N, Parihar JS (2005) Rice crop parameter retrieval using multi-temporal, multi-incidence angle Radarsat SARdata. ISPRS J Photogramm Remote Sens 59(5):310–322

    Article  Google Scholar 

  • Chan CW, Schueller JK, Miller WM, Whitney JD, Cornell JA (2004) Error sources affecting variable rate application of nitrogen fertilizer. Precis Agric 5:601–616. https://doi.org/10.1007/s11119-004-6345-2

    Article  Google Scholar 

  • Chappelle EW, Kim MS, McMurtrey JE III (1992) Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b and carotenoids in soybean leaves. Remote Sens Environ 39(3):239–247

    Article  Google Scholar 

  • Chatterjee S, Santra P, Kaushik K, Ghosh D, Das I, Sanyal SK (2015) Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India. Environ Monit Assess 187:183

    Article  Google Scholar 

  • Chen J (1996) Evaluation of vegetation indices and modified simple ratio for boreal applications. Can J Remote Sens 22:229–242

    Article  Google Scholar 

  • Chen KS, Wu TD, Tsang L, Li Q, Shi J, Fung AK (2003) Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Trans Geosci Remote Sens 41:90–101

    Article  Google Scholar 

  • Chen P, Haboudane D, Tremblay N, Wang J, Vigneault P, Li B (2010) New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens Environ 114:1987–1997

    Article  Google Scholar 

  • Chi M, Plaza A, Benediktsson JA, Sun Z, Shen J, Zhu Y (2016) Big data for remote sensing: challenges and opportunities. In: Proceedings of the IEEE, pp 2207–2219

    Google Scholar 

  • Choker M, Baghdadi N, Zribi M, El Hajj M, Paloscia S, Verhoest NEC, Lievens H, Mattia F (2017) Evaluation of the Oh, Dubois and IEM backscatter models using a large dataset of SAR data and experimental soil measurements. Water 9:38

    Article  Google Scholar 

  • Chostner B (2017) See and spray: the next generation of weed control. Resour Manag 24:4–5

    Google Scholar 

  • Christy CD (2008) Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Comput Electron Agric 61:10–19

    Article  Google Scholar 

  • Clay DE, Kim KI, Chang J, Clay SA, Dalsted K (2006) Characterizing water and nitrogen stress in corn using remote sensing. Agron J 98:579–587

    Article  Google Scholar 

  • Clevers JGPW (1997) A simplified approach for yield prediction of sugar beet based on optical remote sensing data. Remote Sens Environ 61(2):221–228

    Article  Google Scholar 

  • Colaco AF, Trevisan RG, Karp FHS, Molin JP (2015) Yield mapping methods for manually harvested crops. In: Stafford JV (ed) Precision Agriculture ’15. Academic Publishers, Wageningen, pp 225–232

    Chapter  Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. Remote Sens 92:79–97

    Google Scholar 

  • Corwin DL, Lesch SM (2003) Application of soil electrical conductivity to precision agriculture: theory, principles, and guidelines. Agron J 95:455–471

    Google Scholar 

  • Cressie NAC (1990) The origins of Kriging. Math Geol 22:239–252

    Article  Google Scholar 

  • Crookston K (2006) A top 10 list of developments and issues impacting crop management and ecology during the past 50 years. Crop Sci 46:2253–2262

    Article  Google Scholar 

  • Danilov A, Pivovarova I, Krotova S (2018) Geostatistical analysis methods for estimation of environmental data homogeneity. Hindawi Sci World J 2018:1–7

    Article  Google Scholar 

  • Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C, Corsi F, Cho M (2008) LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J Photogramm Remote Sens 63:409–426

    Article  Google Scholar 

  • Das K, Paul PK (2015) Soil moisture retrieval model by using RISAT-1, C-band data in tropical dry and sub-humid zone of Bankura district of India. Egypt J Remote Sens Space Sci 18(2):297–310

    Google Scholar 

  • Datt B (1998) Remote sensing of chlorophyll a, chlorophyll b, chlorophyll ab and total carotenoid content in eucalyptus leaves. Remote Sens Environ 66(2):111–121

    Article  Google Scholar 

  • Datt B (1999) Visible/near infrared reflectance and chlorophyll content in eucalyptus leaves. Int J Remote Sens 20(14):2741–2759

    Article  Google Scholar 

  • Datt B, Jupp D, McVicar T, Van Niel T (2003) Time series analysis of EO-1 Hyperion data for yield estimation at an agricultural site. Geosci Remote Sens Symp, IGARSS Proc IEEE Int 1:564–566

    Google Scholar 

  • Daughtry CST, Walthall CL, Kim MS, de Colstoun EB, McMurtrey JE (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74:229–239

    Article  Google Scholar 

  • Davis G, Massey R, Massey R (2005) Precision agriculture: an introduction. www.muextension.missouri.edu/explore/envqual/wq0450.html

  • Delegido J, Alonso L, Gonzalez G, Moreno J (2010) Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int J of Applied Earth Observation and Geoinfo 1;12(3):165–74

    Google Scholar 

  • DeTar WR, Chesson JH, Penner JV, Ojala JC (2008) Detection of soil properties with airborne hyperspectral measurements of bare fields. Trans Am Soc Agric Biol Eng 51(2):463–470

    Google Scholar 

  • Diacono M, Rubino P, Montemurro F (2013) Precision nitrogen management of wheat: a review. Agron Sustain Dev 33:219–241

    Article  Google Scholar 

  • Dobermann A, Blackmore S, Cook S E, Adamchuk VI (2004) Precision farming: challenges and future directions. In: Proceedings of the 4th International Crop Science Congress, New directions for a diverse planet, 26 Sep–1 Oct 2004, Brisbane, Australia

    Google Scholar 

  • Dobson MC, Ulaby FT (1986) Active microwave soil moisture research. IEEE Trans Geosci Remote Sens GE-24(1):23–36. https://doi.org/10.1109/TGRS.1986.289585

    Article  Google Scholar 

  • Doerge TA (1999) Defining management zones for precision farming. Crop Insight 8:21. Pioneer Hi-Bred International Inc

    Google Scholar 

  • Doraiswamy PC, Moulin S, Cook PW, Stern A (2003) Crop yield assessment from remote sensing. Photogramm Eng Remote Sens 69:665–674

    Article  Google Scholar 

  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygre A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36

    Article  Google Scholar 

  • Dubois PC, Van Zyl J, Engman T (1995) Measuring soil moisture with imaging radars. IEEE trans. Geosci Remote Sens 33:915–926

    Article  Google Scholar 

  • Dutta S, Sharma SA, Khera AP, Ajai YM, Hooda RS, Mothikumar KE, Manchanda ML (1994) Accuracy assessment in cotton acreage estimation using Indian remote sensing satellite data. ISPRS J Photogramm Remote Sens 49(6):21–26

    Article  Google Scholar 

  • Earl R, Wheeler PN, Blackmore BS, Godwin R (1996) Precision farming – the management of variability. J Inst Agric Eng 51:18–23

    Google Scholar 

  • Ehlers M (2003) Geoinformatics and digital earth initiatives: a German perspective. Int J Digit Earth (IJDE) 1(1):17–30

    Article  Google Scholar 

  • Ehrlich D, Estes J, Scepan J (1990) Improving crop type determination using satellite imagery: a study for the regione del veneto, Italy. Geocarto Int 5(2):35–47

    Article  Google Scholar 

  • Emmerik T, Steele-Dunne SC, Judge J, van de Giesen N (2015) Impact of diurnal variation of vegetation in vegetation water content on radar backscatter from maize during water stress. IEEE Trans Geosci Remote Sens 53(7):3855–3869

    Article  Google Scholar 

  • Engdahl M (2013) Multi-temporal in SAR in land-cover mapping and vegetation mapping. Doctoral Thesis. Aalto University, pp 1–119

    Google Scholar 

  • Environmental Systems Research Institute (1993) Understanding GIS: the ARC/INFO method. Longmans, London

    Google Scholar 

  • Erickson BJ, Johannsen CJ, Vorst JJ, Biehl LL (2004) Using remote sensing to assess stand loss and defoliation in maize. Photogram Eng Remote Sens 70:717–722

    Article  Google Scholar 

  • Erten E, Lopez-Sanchez JM, Yuzugullu O, Hajnsek I (2016) Retrieval of agricultural crop height from space: a comparison of SAR techniques. Remote Sens Environ 87:130–144

    Article  Google Scholar 

  • Esch T, Metz A, Marconcini M, Keil M (2014) Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland. Int J Appl Earth Obs Geoinf 28:230–237

    Google Scholar 

  • Fathi H, Mirzanejad M (2015) Spatial variability of agricultural characteristics to evaluate productivity potential in Iran. J Environ Sci Technol 8(1):13–24

    Article  Google Scholar 

  • Fikriyah VN, Darvishzadeh R, Laborte A, Khan NI, Nelson A (2019) Discriminating transplanted and direct seeded rice using Sentinel-1 intensity data. Int J Appl Earth Obs Geoinf 76:143–153

    Google Scholar 

  • Finch HJS, Samuel AM, Lane GPF (2014) Precision farming. In: Lockhart and Wiseman’s crop husbandry including grassland. Woodhead Publishing, Sawston, pp 235–244

    Chapter  Google Scholar 

  • Fischer MM (2015) Spatial analysis in geography. Int Encycl Soc Behav Sci 23:94–99. https://doi.org/10.1016/b978-0-08-097086-8.72054-x

    Article  Google Scholar 

  • Fleming KL, Westfall DG, Wiens DW, Brodah MC (2000) Evaluating farmer developed management zone maps for variable rate fertilizer application. Precis Agric 2:201–215

    Article  Google Scholar 

  • Fleming K, Heermann DF, Westfall DG (2004) Evaluating soil color with farmer input and apparent soil electrical conductivity for management zone delineation. Agron J 96:1581–1587

    Article  Google Scholar 

  • Foley JD, Van Dam A, Feiner SK, Hughes JF (1990) Computer graphics, principles and practice. Addison-Wesley, Reading

    Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  Google Scholar 

  • Fontanelli G, Paloscia S, Zribi M, Chahbi A (2013) Sensitivity analysis of X-band SAR to wheat and barley leaf area index in the Merguellil basin. Remote Sens Lett 4(11):1107–1116

    Article  Google Scholar 

  • Franzen DW, Peck TR (1995) Field soil sampling density for variable rate fertilization. J Prod Agric 8:568–574

    Article  Google Scholar 

  • Frazier BE (1989) Use of Landsat thematic mapper band ratios for soil investigations. Adv Space Res 9(1):155–158

    Article  Google Scholar 

  • Frazier BE, Jarvis CR (1990) A Landsat TM ratio transformation to show soil variation, Agronomy abstract 291. American Society of Agronomy, Madison

    Google Scholar 

  • Fridgen JJ, Kitchen NR, Sudduth KA, Drummond ST, Wiebold WJ, Fraisse CW (2004) Management zone analyst (MZA): software for subfield management zone delineation. Agron J 96:100–108

    Google Scholar 

  • Friedl MA (2018) Remote sensing of croplands. In: Comprehensive remote sensing. CRC Press, Boca Raton, pp 78–95

    Chapter  Google Scholar 

  • Frohn R, Reif M, Lane C, Autrey B (2009) Satellite remote sensing of isolated wetlands using object-oriented classification of LANDSAT-7 data. Wetlands 29:931–941

    Article  Google Scholar 

  • Fulton J, Hawkins E, Taylor R, Franzen A, Shannon DK, Clay DE, Kitchen NR (2018) Yield monitoring and mapping. In: Shannon DK, Clay DE, Kitchen NR (eds) Precision agriculture basics. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 63–77. https://doi.org/10.2134/precisionagbasics.2016.0089

    Chapter  Google Scholar 

  • Fung AK (1994) Microwave scattering and emission models and their applications. Artech House, Boston

    Google Scholar 

  • Fung AK, Li Z, Chen KS (1992) Backscattering from a randomly rough dielectric surface. IEEE Trans Geosci Remote Sens 30:356–369

    Article  Google Scholar 

  • Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117

    Article  Google Scholar 

  • Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G, Peñuelas J, Valentini R (1995) Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol Appl 5(1):28–41

    Article  Google Scholar 

  • Gangwar S (2013) Geographical Information System (GIS) in geography: a conceptual analysis. Int J Inf Comput Technol 3(7):23–728

    Google Scholar 

  • Gao B (1996) NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Env 58:257–266

    Article  Google Scholar 

  • García Torres L, Peña-Barragán JM, López-Granados F, Jurado-Expósito M, Fernández-Escobar R (2008) Automatic assessment of agro-environmental indicators from remotely sensed images of tree orchards and its evaluation using olive plantations. Comput Electron Agric 61:179–191

    Article  Google Scholar 

  • García-Tomillo A, Mirás-Avalos JM, Dafonte-Dafonte J, Paz-González A (2017) Mapping soil texture using geostatistical interpolation combined with electromagnetic induction measurements. Soil Sci 182(8):278–284

    Article  Google Scholar 

  • Gebbers R, Adamchuk VI (2010) Precision agriculture and food security. Science 327:828–831

    Article  Google Scholar 

  • Geladi P (2003) Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochim Acta B 58:767–782

    Article  Google Scholar 

  • Gessler PE, Moore ID, McKenzie NJ, Ryan PJ (1995) Soil-landscape modelling and spatial prediction of soil attributes. Int J Geogr Inf Sci 9(4):421–432

    Article  Google Scholar 

  • Ghozlen NB, Cerovic ZG, Germain C, Toutain S, Latouche G (2010) Non-destructive optical monitoring of grape maturation by proximal sensing. Sensors 10:10040–10068. https://doi.org/10.3390/s101110040

    Article  Google Scholar 

  • Gitelson AA, Kaufmann YJ, Merzlyak MN (1996a) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58:289–298

    Article  Google Scholar 

  • Gitelson AA, Merzlyak MN, Lichtenthaler HK (1996b) Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J Plant Physiol 148:501–508

    Article  Google Scholar 

  • Goel PK, Prasher SO, Landry JA, Patel RM, Bonnell RB, Viau AA, Miller JR (2003) Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn. Comput Electron Agric 38:99–124

    Article  Google Scholar 

  • Goetz A (1987) The portable instant display and analysis spectrometer (PIDAS). In: Proceedings of the third Airborne Imaging Spectrometer data analysis workshop, vol 87–30. JPL Publication, Pasadena, pp 8–17

    Google Scholar 

  • Goetz AFH, Vane G, Solomon JE, Rock BN (1985) Imaging spectrometry for Earth remote sensing. Science 228(4704):1147–1153

    Article  Google Scholar 

  • Gomez C, Lagacherie P, Coulouma G (2008) Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma 148:141–148

    Article  Google Scholar 

  • Goulding KWT (2002) Minimising losses of nitrogen from intensive agricultural systems. In: Lynch JM, Schepers JS, Ãœnver I (eds) Innovative soil-plant systems for sustainable agricultural practices. Proceedings of an international workshop organized by the University of Ankara, Faculty of Agriculture, Department of Soil Science 3–7 June 2002, Izmir, Turkey, pp 477–499

    Google Scholar 

  • Goulding KWT, Jarvis S, Whitmore A (2008) Optimizing nutrient management for farm systems. Philos Trans R Soc B 363:667–680. https://doi.org/10.1098/rstb.2007.2177

    Article  Google Scholar 

  • Grace J, Nichol C, Disney M, Lewis P, Quaife T, Bowyer P (2007) Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Glob Chang Biol 13(7):1484–1497

    Article  Google Scholar 

  • Green M (2013) Unmanned drones may have their greatest impact on agriculture, pp 1–4. http://www.thedailybeast.com/articles/2013/03/26unmanned-drones-may-havetheir-greatest-impact-on-agriculture.html#stash.c36uDpsT.dpuf

  • Grenzdörffer GJ, Engel A, Teichert B (2008) The photogrammetric potential of low-cost UAVs in forestry and agriculture. Int Arch Photogramm Remote Sens Spatial Inf Sci 37(B1):1207–1214

    Google Scholar 

  • Grisso RD, Jasa PJ, Schroeder MA, Wilcox JC (2002) Yield monitor accuracy: successful farming magazine case study. Appl Eng Agric 18(2):147–151

    Article  Google Scholar 

  • Grisso R, Alley M, Thomason W, Holshouser D, Roberson GT (2011) Precision farming tools: variable-rate application. Blacksburg, Virginia Cooperative Extension, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University

    Google Scholar 

  • Grunwald S (2009) Multi-criteria characterization of recent digital soil mapping and modelling approaches. Geoderma 152:195–207

    Article  Google Scholar 

  • Guo T, Kujirai T, Watanabe T (2012) Mapping crop status from an unmanned aerial vehicle for precision agriculture applications. Int Arch Photogramm Remote Sens Spatial Inf Sci 39(B1):485–490. https://doi.org/10.5194/isprsarchives-XXXIX-B1-485-2012

    Article  Google Scholar 

  • Gupta VK, Jangid RA (2010) Estimation of radar backscattering coefficient of soil surface with moisture content at microwave frequencies. Int J Pure Appl Phys 6(4):509–516

    Google Scholar 

  • Gutierrez PA, Lopez-Granados F, Jurado-Exposito JMPM, Hervas-Martinez C (2008) Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data. Comput Electron Agric 64:293–306

    Article  Google Scholar 

  • Haas T (2014) Measuring device for determining a vegetation index value of plants. US Patent No. 8823945

    Google Scholar 

  • Haboudane D, Miller JR, Tremblay N, Zarco-Tejada PJ, Dextraze L (2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ 81:416–426

    Article  Google Scholar 

  • Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens Environ 90:337–352

    Article  Google Scholar 

  • Hakkim VMA, Joseph EA, Gokul AJA, Mufeedha K (2016) Precision farming: the future of Indian agriculture. J Appl Biol Biotechnol 4(06):68–72

    Article  Google Scholar 

  • Haldar D, Chakraborty M, Manjunath KR, Parihar JS (2014) Role of polarimetric SAR data for discrimination/biophysical parameters of crops based on canopy architecture. Int Arch Photogram Remote Sens Spatial Inf Sci XL-8:737–744

    Article  Google Scholar 

  • Hanna R, Allah M, Berry A, Sharobeem Y (2004) Crop estimation using satellite based and ground-based surveys (comparative study). In: Proceedings of ASAE Annual International Meeting, St. Joseph, Michigan. American Society of Agricultural Engineers, Ottawa

    Google Scholar 

  • Hanson LD, Robert PC, Bauer M (1995) Mapping wild oats infestation using digital imagery for site specific management. In: Proceedings of site-specific management for agricultural system 27–230, March, 1994, Minneapolis, MN. ASA-CSA-SSSA, Madison, pp 495–503

    Google Scholar 

  • Hanuschak GA, Sigman R, Craig ME, Ozga M, Luebbe RC, Cook PW, Kleweno DD, Miller CE (1980) Crop-area estimates from Landsat: transition from research and development to timely results. IEEE Trans Geosci Remote Sens GE-18(2):160–166

    Article  Google Scholar 

  • Hardin PJ, Hardin TJ (2010) Small-scale remotely piloted vehicles in environmental research. Geogr Compass 4:1297–1311

    Article  Google Scholar 

  • Hardin PJ, Jackson MW, Anderson VJ, Johnson R (2007) Detecting squarrose knapweed (Centaurea virgata Lam. Ssp. Squarrosa Gugl.) using a remotely piloted vehicle: a Utah case study. GI Sci Remote Sens 44:203–219

    Article  Google Scholar 

  • Hariharan S, Mandal D, Tirodkar S, Kumar V, Bhattacharya A, Lopez-Sanchez JMA (2018) Novel phenology based feature subset selection technique using random forest for multi temporal PolSAR crop classification. J Selec Top Appl Earth Observ Remote Sens 11(11):4244–4257. https://doi.org/10.1109/JSTARS.2018.2866407

    Article  Google Scholar 

  • Haynes RJ (1986) Mineral nitrogen in the plant-soil system. Academic Press, New York

    Google Scholar 

  • He L, Jing MC, Chen KS (2017) Simulation and SMAP observation of sun-glint over the land surface at the L-band. IEEE Trans Geosci Remote Sens Lett 55:2589–2604

    Article  Google Scholar 

  • Henderson FM, Lewis AJ (1998) Principles and applications of imaging radar. Manual of remote sensing, 3rd edn. John Wiley and Sons, New York

    Google Scholar 

  • Henderson TL, Szilagyi A, Baumgardner MF, Chen CT, Landgrebe DA (1989) Spectral band selection for classification of soil organic matter content. Soil Sci Soc Am J 53:778–784

    Article  Google Scholar 

  • Hendrikse J (2000) Geostatistics in ILWIS. Int Arch Photogram Remote Sens 33(B4):365–375

    Google Scholar 

  • Hengl T, Heuvelink GBM, Stein A (2004) A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1–2):75–93

    Article  Google Scholar 

  • Heraud JA, Lange AF (2009) Agricultural automatic vehicle guidance from horses to GPS: how we got here, and where we are going, ASABE distinguished lecture series 33. American Society of Agricultural and Biological Engineers, St. Joseph, pp 1–67

    Google Scholar 

  • Herwitz SR, Johnson LF, Dunagan SE, Higgins RG, Sullivan DV, Zheng J, Lobitz BM, Leung JG, Gallmeyer BA, Aoyagi M, Slye RE, Brass JA (2004) Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput Electron Agric 44:49–61

    Article  Google Scholar 

  • Holah N, Baghdadi N, Zribi M, Bruand A, King C (2005) Potential of SAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields. Remote Sens Environ 96(1):78–86

    Article  Google Scholar 

  • Holland KH, Schepers JS, Shanahan JF, Horst GL (2004) Plant canopy sensor with modulated polychromatic light. In: Mulla DJ (ed) Proceedings of 7th International conference on precision agriculture. (CDROM). University of Minnesota, Minneapolis

    Google Scholar 

  • Hornacek M, Wagner W, Sabel D, Hong-Linh T, Snoeij P, Hahmann T, Diedrich E, Doubkova M (2012) Potential for high resolution systematic global surface soil moisture retrieval via change detection using Sentinel-1. IEEE J Select Topics Appl Earth Observ Remote Sens 5:1303–1311. https://doi.org/10.1109/JSTARS.2012.2190136

    Article  Google Scholar 

  • Huang XW, Senthilkurnar S, Kravchenko A, Thelen K, Qi JG (2007) Total carbon mapping in glacial till soils using near-infrared spectroscopy Landsat imagery and topographical information. Geoderma 141:34–42

    Article  Google Scholar 

  • Huang Y, Zhong-Xin C, Tao YU, Xiang-Zhi H, Gu XF (2018) Agricultural remote sensing big data: management and applications. J Integr Agric 17:1915–1931

    Article  Google Scholar 

  • Huang S, Ding J, Zou J, Liu B, Zhang J, Chen W (2019) Soil moisture retrieval based on Sentinel-1 Imagery under Sparse Vegetation Coverage. Sensors 19(3):589

    Article  Google Scholar 

  • Huete A (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309

    Article  Google Scholar 

  • Huete AR, Jackson RD (1988) Soil and atmosphere influences on the spectra of partial canopies. Remote Sens Environ 25:89–105

    Article  Google Scholar 

  • Hummel JW, Gaultney LD, Sudduth KA (1996) Soil property sensing for site-specific crop management. Comput Electron Agric 14:121–136

    Article  Google Scholar 

  • Hunt ER, Cavigelli M, Daughtry CST, McMurtrey JE, Walthall CL (2005) Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis Agric 6:359–378

    Article  Google Scholar 

  • Hunt ER, Hively WD, Fujikawa SJ, Linden DS, Daughtry CST, McCarty GW (2010) Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens 2:290–305

    Article  Google Scholar 

  • Inoue Y, Sakaiya E (2013) Relationship between X-band backscatter coefficients from high resolution satellite SAR and biophysical variables in paddy rice. Remote Sens Lett 4(3):288–295

    Article  Google Scholar 

  • Jaber SM, Al-Qinna MI (2011) Soil organic carbon modeling and mapping in a semi-arid environment using thematic mapper data. Photogramm Eng Rem Sens 77:709–719

    Article  Google Scholar 

  • Jang MW, Kim YH, Park NW, Hong SY (2012) Mapping paddy rice varieties using multi-temporal Radarsat SAR images. Korean J Remote Sens 28(6):653–660

    Article  Google Scholar 

  • Jewel N (1989) An evaluation of multi-date SPOT data for agriculture and land use mapping in the United Kingdom. Int J Remote Sens 10:939–951

    Article  Google Scholar 

  • Jin W, Du H, Xu X (2009) A review on unmanned aerial vehicle remote sensing and the applications. In: Remote sensing information (pp 1–8). http://en.cnki.com.cn/Article_en/CJFDTotal-NYGU201419025

  • Johnson RM, Richard EP (2003) Evaluation of crop and soil spatial variability in Louisiana sugarcane production systems. In: Robert PC et al (eds) Precision agriculture [CD-ROM]. Proceedings International Conference, 6th, Minneapolis, MN, 14–17 July 2002. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  • Johnson CE, Schafer RL, Young SC (1983) Controlling agricultural machinery intelligently. In: Agricultural electronics-1983 and beyond. Proceedings of the National Conference on Agricultural Electronics Applications. American Society of Agricultural Engineers, St Joseph, pp 14–119

    Google Scholar 

  • Johnson LF, Herwitz SR, Lobitz BM, Dunagan SE (2004) Feasibility of monitoring coffee field ripeness with airborne multispectral imagery. Appl Eng Agric 20:845–849

    Article  Google Scholar 

  • Jordan CF (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663–666

    Article  Google Scholar 

  • Journel AG (1986) Mining geostatistics. Math Geol 18:119–140

    Article  Google Scholar 

  • Karnieli A, Agam N, Pinker RT, Anderson M, Imhoff ML, Garik G, Gutman GG, Panov N, Goldberg A (2010) Use of NDVI and land surface temperature for drought assessment: merits and limitations. J Clim 23(3):618–633

    Article  Google Scholar 

  • Kaufman YJ, Tanre D (1992) Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans Geosci Remote Sens 30(2):261–270

    Article  Google Scholar 

  • Khosla R (2001) Zoning in on precision agriculture. Colarado State Univ Agron Newslett 21(1):2–4

    Google Scholar 

  • Khosla R (2008) Precision agriculture: challenges and opportunities in flat world. Opening ceremony presentation. In: The 9th International Conference on Precision Agriculture, July 20–23rd, 2008

    Google Scholar 

  • Khosla R, Shaver T (2001) Zoning in on nitrogen needs. Colorado State Univ Agron Newslett 21:24–26

    Google Scholar 

  • Kim Y, Jackson T, Lee H, Hong S (2012) Radar vegetation index for estimating the vegetation water content of rice and soybean. IEEE Geosci Remote Sens Lett 9(4):564–568

    Article  Google Scholar 

  • Kitchen NR, Sudduth KA, Drummond ST, Scharf PC, Palm HL, Roberts DF, Vories ED (2010) Ground-based canopy reflectance sensing for variable-rate nitrogen corn fertilization. Agron J 102:71–84

    Article  Google Scholar 

  • Koppe W, Gnyp ML, Hütt C, Yao Y, Miao Y, Chen X, Bareth G (2013) Rice monitoring with multi-temporal and dual-polarimetric Terra SAR-X data. Int J Appl Earth Obs Geoinf 21:568–576

    Google Scholar 

  • Kruse F (2003) Mineral mapping with AVIRIS and EO-1 hyperion. In: Proceedings of the 12th JPL Airborne Geoscience Workshop. JPL Publication, Pasadena, pp 230–234

    Google Scholar 

  • Kumar S (2018) Remote sensing for land resource monitoring and management. In: GPO R, Singh SK (eds) Geospatial technologies in land resources mapping, monitoring and management, geotechnologies and the environment, vol 21. Springer, Cham, pp 355–375

    Chapter  Google Scholar 

  • Kumar S, Singh RP (2016) Spatial distribution of soil nutrients in a watershed of Himalayan landscape using terrain attributes and geostatistical methods. Environ Earth Sci 75:473

    Article  Google Scholar 

  • Kupfer JA, Farris CA (2007) Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models. Landsc Ecol 22:837–852

    Article  Google Scholar 

  • Lajaunie C (1984) A geostatistical approach to air pollution modelling. In: Verly G, David M, Journel AG, Marechal A (eds) Geostatistics for natural resources characterization, part 2. D Reidel Publishing, Dordrecht, pp 877–891

    Chapter  Google Scholar 

  • Lajaunie C, Courrioux G, Mmanuel L (1997) Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation. Math Geol 29(4):571–584

    Article  Google Scholar 

  • Lamb DW, Brown RB (2001) Remote-sensing and mapping of weeds in crops. J Agric Eng Res 78:117–125

    Article  Google Scholar 

  • Lark RM (1998) Forming spatially coherent regions by classification of multivariate data: An example from the analysis of maps of crop yield. Int J Geogr Inform Sci 12:83–98

    Article  Google Scholar 

  • Lark RM (2000) Regression analysis with spatially autocorrelated error: simulation studies and application to mapping of soil organic matter. Int J Geo Inf Sci 14(3):247–264

    Article  Google Scholar 

  • Larson WE, Robert PC (1991) Farming by soil. In: Lal R, Pierce FJ (eds) Soil management for sustainability. Soil and Water Conservation Society, Ankeny, pp 103–112

    Google Scholar 

  • Laurini R, Thompson D (1992) Fundamentals of spatial information systems. Academic Press, London

    Google Scholar 

  • Laurini R, Thompson D (1998) Fundamentals of spatial information systems. A.P.I.C Series 37:1–673

    Google Scholar 

  • Le Toan T, Ribbes F, Li-Fang W, Floury N, Kung-Hau D, Kong JA, Fujita M, Kurosu T (1997) Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans Geosci Remote Sens 35:41–56

    Article  Google Scholar 

  • Lelong CCD, Pinet PC, Poilvé H (1998) Hyperspectral imaging and stress mapping in agriculture: a case study on wheat in Beauce (France). Remote Sens Environ 66:179–191

    Article  Google Scholar 

  • Lelong CCD, Burger P, Jubelin G, Roux B, Labbe S, Barett F (2008) Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 8:3557–3585

    Article  Google Scholar 

  • Lesage JP (1999) Spatial Econometrics using MATLAB: a manual for the spatial econometrics toolbox functions, available at https://www.spatial-econometrics.com

  • Lesage JP (2005) Spatial Econometrics. In: Kempf-Leonard K (ed) The encyclopedia of social measurement, volume 3. Elsevier, Amsterdam, pp 613–619

    Chapter  Google Scholar 

  • Li FY, Li XM, Chen LY, Guo B, Qi ZP (2008) The analysis of soil nutrient situations in Wanning of Hainan Province. Chinese J Soil Sci 29:1284–1287

    Google Scholar 

  • Li F, Miao Y, Hennig SD, Gnyp ML, Chen X, Jia L, Bareth G (2010) Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis Agric 11:335–357

    Article  Google Scholar 

  • Li Y, Gong JH, Wang DC, An LP, Li R (2013) Sloping farmland identification using hierarchical classification in the Xi-He region of China. Int J Remote Sens 34:545–562

    Article  Google Scholar 

  • Li F, Miao Y, Feng G, Yuan F, Yue S, Gao X, Liu Y, Liu B, Ustin SL, Chen X (2014) Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res 157:111–123

    Article  Google Scholar 

  • Lichtenthaler HK, Lang M, Sowinska M, Heisel F, Miehé JA (1996) Detection of vegetation stress via a new high resolution fluorescence imaging system. J Plant Physiol 148(5):599–612

    Google Scholar 

  • Lievens H, Verhoest NEC (2011) On the retrieval of soil moisture in wheat fields from L-band SAR based on water cloud Modeling, the IEM, and effective roughness parameters. IEEE Trans Geosci Remote Sens Lett 8:740–744

    Article  Google Scholar 

  • Lilienthal H, Ponomarev M, Schnug E (2004) Application of LASSIE to improve agricultural field experimentation. Landbauforschung Voelkenrode 1:21–26

    Google Scholar 

  • Lindblom J, Lundström C, Ljung M, Jonsson A (2017) Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precis Agric 18:309–331

    Article  Google Scholar 

  • Link A, Panitzki M, Reusch S (2002) Hydro N-sensor: tractormounted remote sensing for variable nitrogen fertilization. In: Robert PC (ed) Precision agriculture [CD-ROM]. Proceedings of 6th international conference on precision agriculture. ASA, CSSA, and SSSA, Madison, pp 1012–1018

    Google Scholar 

  • Linsley CM, Bauer F (1929) Illinois Agricultural Experiment Station. Circular. University of Illinois, Urbana, p 346

    Google Scholar 

  • Liu P (2015) A survey of remote-sensing big data. Front Environ Sci 3:1–6

    Article  Google Scholar 

  • Liu X, Zhao K, Xu J, Wang F (2008) Spatial variability of soil organic matter and nutrients in paddy fields at various scales in southeast China. Environ Geol 53:1139–1147

    Article  Google Scholar 

  • Liu C, Chen Z, Wang D, Li D (2019) Assessment of the X- and C-band polarimetric SAR data for plastic-mulched farmland classification. Remote Sens 11(6):660. https://doi.org/10.3390/rs11060660

    Article  Google Scholar 

  • Long DS, Engel RE, Carpenter FM (2005) On-combine sensing and mapping of wheat protein concentration. Crop Manag. https://doi.org/10.1094/CM-2005-0527-01-RS

  • Lopez-Sanchez JM, Ballester-Berman D, Marquez-Moreno Y (2007) Model limitations and parameter estimation methods for agricultural applications of polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3481–3493

    Article  Google Scholar 

  • Lucieer A, Malenovsky Z, Veness T, Wallace L (2014) HyperUAS-imaging spectroscopy from a multirotor unmanned aircraft system. J Field Robotics 31(4):571–590

    Article  Google Scholar 

  • Maguire DJ, Goodchild MF, Rhind DW (eds) (1991) Geographical information systems: principles and applications (2 Volumes). Longman Scientific and Technical, Harlow

    Google Scholar 

  • Mahmoudabadi E, Karimi A, Haghnia GH, Sepehr A (2017) Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environ Monit Assess 89(10):500

    Article  Google Scholar 

  • Mani PK (2000) Remote sensing –a modern tool for agricultural resource management. Everyman’s Sci 35(2):57–62

    Google Scholar 

  • Mao DR, Zhang CD (1991) Studies on the model and experimental design for recommendation of fertilization. Chinese J Soil Sci 22(5):216–218

    Google Scholar 

  • Martin D (1991) Geographic information systems and their socioeconomic applications. Routledge, London

    Google Scholar 

  • Matheron G (1962) Traite de geostatistiqueappliquee. Mermoires du Bureau de Researches Geologiqueset Mminieres. Tome I, No. 14, Editions Technip, Paris, Tome II: le krigeage, No. 24. Editions BRGM, Paris

    Google Scholar 

  • Matthews J (1983) Some challenges for engineers in agriculture. J R Agric Soc Engl 144:146–158

    Google Scholar 

  • McCann BL, Pennock DJ, Van Kessel C, Walley FL (1996) The development of management units for site specific farming. In: Robert PC, Rust RH, Larson WE (eds) Precision agriculture. Proceedings of International Conference, 3rd, Minneapolis, MN, 23–26 June 1996. ASA, CSSA, and SSSA, Madison, pp 295–302

    Google Scholar 

  • McMurtrey JE, Chappelle EW, Kim MS, Meisinger JJ, Corp LA (1994) Distinguish nitrogen fertilization levels in field corns (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sens Environ 47:36–44

    Article  Google Scholar 

  • McNairn H, Brisco B (2004) The application of C-band polarimetric SAR for agriculture: a review. Can J Remote Sens 30(3):525–542

    Google Scholar 

  • McNairn H, Shang J (2016) A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In: Ban Y (ed) Multitemporal remote sensing. Springer, Cham, pp 317–340

    Chapter  Google Scholar 

  • McSweeney KM, Gessler PE, Slater B, Hammer RD, Bell I, Peterson GW (1994) Towards a new framework for modelling the soil-landscape continuum. In: Factors of soil formation: a fiftieth anniversary retrospective, special publication 33. Soil Science Society of America, Madison, pp 127–145

    Google Scholar 

  • Meena RS, Mitran T, Kumar S, Yadav G, Bohra JS, Datta R (2018) Application of remote sensing for sustainable agriculture and forest management. Inf Process Agric 5:295–297

    Google Scholar 

  • Mehta NS, Rajawat AS, Bahuguna IM, Mehta DS, Srimal AK (1993) Geological potential of ERS-1 SAR data: observations in parts of Aravali and Thar Desert, western India. In: Proceedings of second ERS-1 symposium, space at the service of our environment, Hamburg, Germany, 11–14 October 1993, ESA-SP-361, pp 931–936

    Google Scholar 

  • Merton R, Huntington J (1999) Early simulation results of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. ftp://popo.jpl.nasa.gov/pub/docs/workshops/99_docs/41.pdf. NASA Jet Propulsion Lab, Pasadena

    Google Scholar 

  • Metwally MS, Shaddad SM, Liu M, Yao R, Abdo AI, Li P, Jiao J, Chen X (2019) Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability 11(7084):1–19. https://doi.org/10.3390/su11247084

    Article  Google Scholar 

  • Miao Y, Mulla DJ, Randall GW, Vetsch JA, Vintila R (2007) Predicting chlorophyll meter readings with aerial hyperspectral remote sensing for in-season site-specific nitrogen management of corn. In: Stafford JV (ed) Precision agriculture ’07. Academic Publisher, Wageningen, pp 635–641

    Google Scholar 

  • Miao Y, Mulla DJ, Randall G, Vetsch J, Vintila R (2009) Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn. Precis Agric 10:45–62

    Article  Google Scholar 

  • Mohan BK, Porwal A (2015) Hyperspectral image processing and analysis. Curr Sci 108:833–841

    Google Scholar 

  • Mohan S, Mehta NS, Patel P (1990) Radar remote sensing for land applications – a review. Scientific Report No ISRO-SAC-SR36–91. Space Applications Centre, Ahmedabad

    Google Scholar 

  • Moller M, Alchanatis V, Cohen Y, Meron M, Tsipris J, Naor A et al (2007) Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J Exp Bot 58:827–838

    Article  Google Scholar 

  • Mondal P, Tewari VK (2007) Present status of precision farming: a review. Int J Agric Res 2(1):1–10

    Article  Google Scholar 

  • Mondal P, Tewari VK, Rao PN, Verma RB, Basu M (2004) Scope of precision agriculture in India. In: Proceedings of international conference on emerging technologies in agricultural and food engineering, December 14–17, 2004. Department of Agricultural and Food Engineering, IIT, Kharagpur, p 103

    Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57(2):443–452

    Article  Google Scholar 

  • Morain SA, Williams DL (1975) Wheat production estimates using satellite images. Agron J 67:361–364

    Article  Google Scholar 

  • Moran MS, Inoue Y, Barnes EM (1997) Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens Environ 61:319–346

    Article  Google Scholar 

  • Moran MS, Alonso L, Moreno JF, Mateo MPC, Fernando de la Cruz D, Montoro A (2012) A RADARSAT-2 quad-polarized time series for monitoring crop and soil conditions in Barrax, Spain. IEEE Trans Geosci Remote Sens 50(4):1057–1070

    Article  Google Scholar 

  • Moslemzadeh M, Salarijazi M, Soleymani S (2011) Application and assessment of kriging and cokriging methods on groundwater level estimation. J Am Sci 7(7):34–39

    Google Scholar 

  • Moulin AP, Beckie HJ, Pennock DJ (1998) Strategies for variable rate nitrogen fertilization in hummocky terrain. In: Robert PC, Rust RH, Larson WE (eds) Precision Agriculture. Proceedings of the Fourth International Conference. ASA/CSSA/SSSA, Madison, pp 839–846

    Google Scholar 

  • Mukul M (1998) A spatial statistics approach to the quantification of finite strain variation in penetratively deformed thrust sheets: an example from the Sheeprock Thrust Sheet, Sevier Fold-and-Thrust belt, Utah. J Struct Geol 20(4):371–384

    Article  Google Scholar 

  • Mulla DJ (1991) Using geostatistics and GIS to manage spatial patterns in soil fertility. In: Kranzler G (ed) Automated agriculture for the 21st century. American Society of Agriculture Engineers, St. Joseph, pp 336–345

    Google Scholar 

  • Mulla DJ (1993) Mapping and managing spatial patterns in soil fertility and crop yield. In: Robert P, Larson W, Rust R (eds) Soil specific crop management. American Society of Agronomy, Madison, pp 15–26

    Google Scholar 

  • Mulla DJ (1997) Geostatistics, remote sensing and precision farming. In: Stein A, Bouma J (eds) Precision agriculture: spatial and temporal variability of environmental quality, Ciba foundation symposium 210. Wiley, Chichester, pp 100–119

    Google Scholar 

  • Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114:358–371

    Article  Google Scholar 

  • Mulla DJ (2016) Spatial variability in precision agriculture. In: Shekhar S, Xiong H, Zhou X (eds) Encyclopedia of GIS. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-23519-6_1652-1

    Chapter  Google Scholar 

  • Mulla DJ, Hammond MW (1988) Mapping of soil test results from large irrigation circles, pp. 169–176. In: Proceedings 39th Annual far west regional fertilizer conference, Bozeman, MT, July 11–13

    Google Scholar 

  • Mulla D, Khosla R (2015) Historical evolution and recent advances in precision farming. In: Lal R, Stewart BA (eds) Soil-specific farming: precision agriculture. CRC Press. Taylor and Francis Group, Boca Raton, pp 1–35

    Google Scholar 

  • Mulla DJ, McBratney AB (2000) Soil spatial variability. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp A321–A352

    Google Scholar 

  • Mulla DJ, Miao Y (2016) Precision farming. In: Thenkabail PS (ed) Land resources monitoring, modeling, and mapping with remote sensing. CRC Press, Boca Raton, pp 161–178

    Google Scholar 

  • Mulla DJ, Perillo CA, Cogger CG (1996) A site-specific farm-scale GIS approach for reducing groundwater contamination by pesticides. J Environ Qual 25:419–425

    Article  Google Scholar 

  • Mumby PJ, Edwards AJ (2002) Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote Sens Environ 82:248–257

    Article  Google Scholar 

  • Murai S (1999) GIS work book: fundamental and technical courses, vols 1 & 2. National Space Development Agency of Japan (NASDA)/Remote Sensing Technology Center of Japan (RESTEC), Japan Association of surveyors

    Google Scholar 

  • Murrell TS (2004) Using advanced technologies to refine nitrogen management at the farm scale: a case study from the US Midwest. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment. SCOPE 65. Ch. 11. Island Press, Washington, DC, pp 155–165

    Google Scholar 

  • Myers DE (2008) Aniosotropic radial basis functions. Int J Pure Appl Math 42:197–203

    Google Scholar 

  • Mzuku M, Khosla R, Reich R, Inman D, Smith F, MacDonald L (2005) Spatial variability of measured soil properties across site-specific management zones. Soil Sci Soc Am J 69:1572–1579

    Article  Google Scholar 

  • Nabi A, Narayan S, Afroza B, Mushtaq F, Mufti S, Ummyiah HM, Malik A (2017) Precision farming in vegetables. J Pharmacogn Phytochem 6(6):370–375

    Google Scholar 

  • Navalgund RR, Jayaraman V, Roy PS (2007) Remote sensing applications: an overview. Curr Sci 93(12):1747–1766

    Google Scholar 

  • Nebiker S, Annen A, Scherrer M, Oesch D (2008) A light-weight multispectral sensor for micro UAV: opportunities for very high resolution airborne remote sensing. Int Arch Photogramm Remote Sens Spatial Inf Sci 37(B1):1193–1200

    Google Scholar 

  • Neupane J, Guo W (2019) Agronomic basis and strategies for precision water management: a review. Agronomy 9(2):87

    Article  Google Scholar 

  • Nex F, Remondino F (2014) UAV for 3D mapping application: a review. Appl Geomat 6:1–15

    Article  Google Scholar 

  • Nolan SC, Goddard TW, Lohstraeter G (2000) Assessing management units on rolling topography. In: Robert PC et al (eds) Precision agriculture. Proceedings International Conference, 5th, Bloomington, MN, 16–19 July 2000. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  • Nourzadeh M, Mahdian MH, Malakouti MJ, Khavazi K (2012) Investigation and prediction spatial variability in chemical properties of agricultural soil using geostatistics. Arch Agron Soil Sci 58(5):461–475

    Article  Google Scholar 

  • Oetter DR, Cohen WB, Berterretch EM, Maiersperger TK, Kennedy RE (2000) Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data. Remote Sens Environ 76:139–155

    Article  Google Scholar 

  • Oh Y (2004) Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces. IEEE Trans Geosci Remote Sens 42(3):596–601

    Article  Google Scholar 

  • Olea RA (2009) A practical primer on geostatistics: U.S. Geological Survey, Open-File Report 2009-1103. U.S. Geological Survey, Reston, p 346

    Google Scholar 

  • Olesen JE, Sørensen P, Thomsen IK, Eriksen J, Thomsen AG, Berntsen J (2004) Integrated nitrogen input systems in Denmark. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle. Assessing the impacts of fertilizer use on food production and the environment. SCOPE 65, ch. 9. Island Press, Washington, DC, pp 129–140

    Google Scholar 

  • Oliver MA (2010) Geostatistical applications for precision agriculture. Springer, Dordrecht

    Book  Google Scholar 

  • Oliver MA (2013) Precision agriculture and geostatistics. How to manage agriculture more exactly. R Stat Soc 4:7–22

    Google Scholar 

  • Oliver MA, Carroll ZL (2004) Description of spatial variation in soil to optimize cereal management. Project Report no. 330. Home-Grown Cereals Authority, London

    Google Scholar 

  • Olson K (1998) Precision agriculture: current economic and environmental issues. In: Proceedings of the Sixth Joint Conference on Food, Agriculture, and the Environment, Minneapolis, MN, USA, 31 August–2 September 1998

    Google Scholar 

  • Oppelt N, Mauser W (2004) Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data. Int J Remote Sens 25:145–159

    Article  Google Scholar 

  • Paciorek CJ, Schervish MJ (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17:483–506

    Article  Google Scholar 

  • Paelinck JHP, Klaassen LH (1979) Spatial Econometrics. Saxon House, Farnborough

    Google Scholar 

  • Palmer RJ (1996) Positioning aspects of site-specific applications. In: Proceedings of site-specific management for agricultural system, 27–30 March, 1996. ASA-CSSA-SSSA, Madison, pp 613–618

    Google Scholar 

  • Paloscia S, Pettinato S, Santi E (2012) Combining L-and X-band SAR data for estimating biomass and soil moisture of agricultural fields. Eur J Remote Sens 45:99–109

    Article  Google Scholar 

  • Pan G, Gaard D, Moss K, Heiner T (1993) A comparison between cokriging and ordinary kriging: case study with a Polymetallic deposit. Math Geol 25(3):377–398

    Article  Google Scholar 

  • Panciera R, Tanase MA, Lowell K, Walker JP (2013) Evaluation of IEM, Dubois, and Oh radar backscatter models using airborne L-band SAR. IEEE Trans Geosci Remote Sens 52:4966–4979

    Article  Google Scholar 

  • Panigrahy S, Sharma SA (1997) Mapping of crop rotation using multidate Indian remote sensing satellite digital data. ISPRS J Photogramm Remote Sens 52:85–91

    Article  Google Scholar 

  • Panigrahy S, Chakraborty M, Sharma SA, Kundu N, Ghose SC, Pal M (1997) Early estimation of rice acre using temporal ERS-1 synthetic aperture radar data – a case study for Howrah and Hooghly districts of West Bengal, India. Int J Remote Sens 18:1827–1833

    Article  Google Scholar 

  • Panigrahy S, Chakraborty M, Manjunath KR, Kundu N, Parihar JS (2000) Evaluation of RADARSAT ScanSAR synthetic aperture radar data for rice crop inventory and monitoring. J Indian Soc Remote Sens 28(1):59–65

    Google Scholar 

  • Parihar JS, Oza MP (2006) FASAL: an integrated approach for crop assessment and production forecasting. In: Robert J, Kuligowski, Parihar JS, Saito G (eds) Proceedings of Society of Photo-Optical Instrumentation Engineers, Agricultural and hydrology applications (vol 6411), pp 641101–641113

    Google Scholar 

  • Partel V, Kakarla SC, Ampatzidis Y (2019) Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput Electron Agric 157:339–350

    Article  Google Scholar 

  • Patel P, Srivastava HS (2013) RADARSAT-2 announcement of opportunity project on soil moisture, surface roughness and vegetation parameter retrieval using SAR polarimetry, Technical Report: SAC/EPSA/MPSG/CVD/TDP-R&D/01/13. Indian Space Research Organisation, Ahmedabad, pp 1–81

    Google Scholar 

  • Patel NK, Medhavy TT, Patnaik C, Hussain A (1995) Multi-temporal ERS-1 SAR data for identification of rice crop. J Indian Soc Remote Sens 23:33–39

    Article  Google Scholar 

  • Patel P, Srivastava HS, Panigrahy S, Parihar JS (2006a) Comparative evaluation of the sensitivity of multi-polarized multifrequency SAR backscatter to plant density. Int J Remote Sens 27(2):293–305

    Article  Google Scholar 

  • Patel P, Srivastava HS, Navalgund RR (2006b) Estimating wheat yield: An approach for estimating number of grains using cross polarized Envisat-1 ASAR data. Microwave Remote Sensing of the Atmosphere and Environment. In: Valinia A, Uratsuka S, Tapan Misra (eds). Proceedings of Soci Photo-Optical Instrument Engineers, 6410 (641009) pp 01–12

    Google Scholar 

  • Patil SS, Bhalerao SA (2013) Precision farming: the most scientific and modern approach to sustainable agriculture. Int Res J Sci Eng 1(2):21–30

    Google Scholar 

  • Patil VC, Shanwad UK (2009) Relevance of precision farming to Indian agriculture. In: Second national conference on agro-informatics and precision farming, December 2009

    Google Scholar 

  • Penuelas J, Filella I, Lloret P, Munoz F, Vilajeliu M (1995) Reflectance assessment of mite effects on apple trees. Int J Remote Sens 16:2727–2733

    Article  Google Scholar 

  • Pettinato S, Santi E, Paloscia S, Pampaloni P, Fontanelli G (2013) The inter comparison of X-band SAR images from COSMO-SkyMed and TerraSAR-X satellites: case studies. Remote Sens 5:2928–2942

    Article  Google Scholar 

  • Pfost D, Cassady W, Shanon K (1998) Precision agriculture, Global Positiong System (GPS). Water quality, WQ 451. University Extension. University of Missouri-System, Columbia, pp 1–6

    Google Scholar 

  • Pfost D, Casady W, Shannon K (1999) Global positioning system receivers. Site-specific management guidelines, 6th edn. Potash & Phosphate Institute, Norcross

    Google Scholar 

  • Pierce FJ, Nowak P (1999) Aspects of precision agriculture. Adv Agron 67:1–85

    Article  Google Scholar 

  • Pieri C (1997) Planning a sustainable land management: the hierarchy of user needs. ITC J 3(4):223–228

    Google Scholar 

  • Pinter PJ Jr, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CST, Upchurch DR (2003) Remote sensing for crop management. Photogramm Eng Remote Sens 69:647–664

    Article  Google Scholar 

  • Primicerio J, Di Gennaro SF, Fiorillo E, Genesio L, Lugato E, Matese A, Vaccari FP (2012) A flexible unmanned aerial vehicle for precision agriculture. Precis Agric 13:517–523. https://doi.org/10.1007/s11119-012-9257-6

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete AR, Keer YH, Sorooshian S (1994) A modified soil vegetation adjusted index. Remote Sens Environ 48:119–126

    Article  Google Scholar 

  • Qi J, Wang C, Inoue Y, Zhang R, Gao W (2004) Synergy of optical and radar remote sensing in agricultural applications.In: Gao W, Shaw DR (ed) Ecosystems’ dynamics, agricultural remote sensing and modeling, and site-specific agriculture. Proceedings of the international society for optical engineering (SPIE) August 2004, Bellingham, WA, 5153, p 153–158. https://doi.org/10.1117/12.514562

  • Qi ZP, Wei ZY, Li FY, Tang SM (2009) Chinese J Soil Sci 40:1292–1296

    Google Scholar 

  • Qiu B, Fan Z, Zhong M, Tang Z, Chen C (2014) A new approach for crop identification with wavelet variance and JM distance. Environ Monit Assess 186:7929–7940

    Article  Google Scholar 

  • Rahman M, Moran M, Thoma D, Bryant R, Collins CH, Jackson T, Orr BJ, Tischler M (2008) Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sens Environ 112:391–402

    Article  Google Scholar 

  • Raju PLN (2003) Fundamentals of geographic information systems. In: Sivakumar MVK, Roy PS, Harmsen K, Saha SK (eds) Workshop: satellite remote sensing and GIS applications in agricultural meteorology, India

    Google Scholar 

  • Rango A, Laliberte AS, Herrick JE, Winters C, Havstad K, Steele C, Browning D (2009) Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. J Appl Remote Sens 3(033542):1–15

    Google Scholar 

  • Rao NR (2008) Development of a crop-specific spectral library and discrimination of various agricultural crop varieties using hyperspectral imagery. Int J Remote Sens 29:131–144

    Article  Google Scholar 

  • Rao NR, Garg PK, Ghosh SK (2007) Estimation of plant chlorophyll and nitrogen concentration of agricultural crops using EO-1 Hyperion hyperspectral imagery. J Agric Sci 146:1–11

    Google Scholar 

  • Raun WR, Solie JB, Johnson GV, Stone ML, Mullen RW, Freeman KW et al (2002) Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron J 94:815–820

    Article  Google Scholar 

  • Ray SS, Panigrahy S, Parihar JS (2010) Precision Farming in Indian Context. Geospatial World 12/08/2010. http://geospatialmedia.net

  • Reddy GPO (2018) Satellite Remote Sensing Sensors: Principles and Applications. In: Reddy GPO, Singh SK (eds). Geospatial technologies in land resources mapping, monitoring and management (pp 21–43). Springer International Publishing. https://doi.org/10.1007/978-3-319-78711-4

  • Ren GX, Yang GH, Zhang ZM, Nie JF (2002) Fertilizer application model on winter wheat with plastic film mulching in Weibei Dryland. J Northwest Sci-Tech, Univ Agric For 30:38–46

    Google Scholar 

  • Reusch S, Jasper J, Link A (2010) Estimating crop biomass and nitrogen uptake using Cropspec, a newly developed active crop-canopy reflectance sensor. In: Proceedings of the 10th International Conference on Positron Annihilation (ICPA), Denver, CO, USA, 18–21 July 2010, p 381

    Google Scholar 

  • Richardson AJ, Weigand C (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43(12):1541–1552

    Google Scholar 

  • Risser MD, Calder CA (2015) Regression-based covariance functions for nonstationary spatial modeling. Environmetrics 26:284–297

    Article  Google Scholar 

  • Risser MD, Caldery CA, Berrocalz VJ, Berrettx C (2019) Nonstationary spatial prediction of soil organic carbon: implications for stock assessment decision making. Ann Appl Stat 13(1):165–188

    Article  Google Scholar 

  • Rodriguez D, Fitzgerald GJ, Belford R, Christensen LK (2006) Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Aust J Agric Res 57(7):781–790. https://doi.org/10.1071/ar05361

    Article  Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sen Environ 55:95–107

    Article  Google Scholar 

  • Rougean JL, Breon FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51:375–384

    Article  Google Scholar 

  • Rouse JW Jr, Hass RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the great plains with ERTS. In: Proceedings 3rd Earth Resources Technology Satellite (ERTS) symposium, vol 1. NASA SP-351, NASA, Washington, DC, pp 309–317

    Google Scholar 

  • Royal K (1998) Creating good management zones: how to capitalize from flexible data integration. Modern Agric Fall:26–28

    Google Scholar 

  • Ryerson RA, Dobbins RN, Thibault C (1985) Timely crop area estimates from Landsat. Photogramm Eng Remote Sens 51:1735–1743

    Google Scholar 

  • Sahebi M, Angles J (2010) An inversion method based on multi-angular approaches for estimating bare soil surface parameters from RADARSAT-1. Hydrol Earth Syst Sci 14:2355–2366

    Article  Google Scholar 

  • Sahebi MR, Angles J, Bonn F (2002) A comparison of multi-polarization and multi-angular approaches for estimating bare soil surface roughness from spaceborne radar data. Can J Remote Sens 28:641–652

    Article  Google Scholar 

  • Sahoo RN (2011) Precision farming: concepts, limitations, and opportunities in Indian agriculture. In: Sharma AR, Behera UK (eds) Resource conserving techniques in crop production (pp 439–450). Scientific Publishers in India

    Google Scholar 

  • Salami E, Berrado C, Pastor E (2014) UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sens 6:11051–11081

    Article  Google Scholar 

  • Samborski SM, Tremblay N, Fallon E (2009) Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron J 101:800–816

    Article  Google Scholar 

  • Santra P, Chopra UK, Chakraborty D (2008) Spatial variability of soil properties and its application in predicting surface map of hydraulic parameters in an agricultural farm. Curr Sci 95:937–945

    Google Scholar 

  • Satalino G, Mattia F, Davidson MW, Le Toan T, Pasquariello G, Borgeaud M (2002) On current limits of soil moisture retrieval from ERS-SAR data. IEEE Trans Geosci Remote Sens 40:2438–2447

    Article  Google Scholar 

  • Sawaya KE, Olmanson LG, Heinert NJ, Brezonik PL, Bauer ME (2003) Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sens Environ 88:144–156

    Article  Google Scholar 

  • Scharf PC, Shannon DK, Palm HL, Sudduth KA, Drummond ST, Kitchen NR, Mueller LJ, Hubbard VC, Oliveira LF (2011) Sensor-based nitrogen applications out-performed producer-chosen rates for corn in on-farm demonstrations. Agron J 103:1683–1691

    Article  Google Scholar 

  • Schepers JS, Francis DD, Vigil M, Below FE (1992) Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Commun Soil Sci Plant Anal 23:2173–2187

    Article  Google Scholar 

  • Schoknecht N, Tille P, Purdie B (2004) Soil landscape mapping in south-western Australia. Overview of methods and outputs. Resource management technical report 280. Department of Agriculture, Government of Western Australia, Kensington

    Google Scholar 

  • Schroder D, Haneklaus S, Schung E (1997) Information management in precisionagriculture with LORIS. In: Stafford JV (ed) Precision Agriculture’97, Technology, IT and management, vol II. BIOS Scientific Publishers Ltd, Oxford, pp 821–826

    Google Scholar 

  • Scotford IM, Miller PCH (2005) Applications of spectral reflectance techniques in northern European cereal production: a review. Biosyst Eng 90:235–250

    Article  Google Scholar 

  • Seelan SK, Laguette S, Casady GM, Seielstad GA (2003) Remote sensing applications for precision agriculture: a learning community pproach. Remote Sens Environ 88:157–169

    Article  Google Scholar 

  • Serrano L, Penuelas J, Ustin SL (2002) Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sens Environ 81:355–364

    Article  Google Scholar 

  • Shanahan JF, Schepers JS, Francis DD, Varvel GE, Wilhelm WW, Tringe JM (2001) Use of remote sensing imagery to estimate corn grain yield. Agron J 93:583–589

    Article  Google Scholar 

  • Shi J, Wang J, Hsu AY, O’Neill PE, Engman ET (1997) Estimation of bare surface soil moisture and surface roughness parameter using L band SAR image data. IEEE Trans Geosci Remote Sens 35(5):1254–1266

    Article  Google Scholar 

  • Shippert P (2004) Why use hyperspectral imagery? Photogramm Eng Remote Sens 70(4):377–396

    Google Scholar 

  • Sivasankar T, Kumar D, Srivastava HS, Patel P (2018) Advances in radar remote sensing of agricultural crops: a review. Int J Adv Sci Eng Inf Technol 8(4):1126–1137

    Article  Google Scholar 

  • Skriver H (2012) Crop classification by multitemporal C- and L-Band single- and dual-polarization and fully polarimetric SAR. IEEE Trans Geosci Remote Sens 50(6):2138–2149. https://doi.org/10.1109/TGRS.2011.2172994

    Article  Google Scholar 

  • Slaymaker O (2001) The role of remote sensing in geomorphology and terrain analysis in the Canadian Cordillera. Int J Appl Earth Obs Geoinf 3(1):11–17

    Google Scholar 

  • Smith RC, Adams G, Stephens J, Hick PT (1995) Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Aust J Agric Res 46:113–125

    Article  Google Scholar 

  • Sökefeld M (2010) Variable rate technology for herbicide application herbicide application. In: Precision crop protection-the challenge and use of heterogeneity. Springer, Heidelberg, pp 335–347

    Chapter  Google Scholar 

  • Sonobe R, Yamaya Y, Tani H, Wang X, Kobayashi N, Mochizuki K (2017) Assessing the suitability of data from Sentinel-1A and 2A for crop classification. GI Sci Remote Sens 54(6):918–938. https://doi.org/10.1080/15481603.2017.1351149

    Article  Google Scholar 

  • Srinivasan S (2015) Spatial regression models. In: Encyclopedia of GIS: living edition. Springer, Cham. https://doi.org/10.1007/978-2-319-23519-6_1294-2

  • Sripada RP, Heiniger RW, White JG, Weisz R (2005) Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agron J 97(5):1443–1451

    Article  Google Scholar 

  • Sripada RP, Heiniger RW, White JG, Crozier CR, Meijer AD (2006) Attempt to validate a remote sensing-based late-season corn nitrogen requirement prediction system. Crop Manag 5(1). https://doi.org/10.1094/CM-2006-0405-01-RS

  • Sripada RP, Schmidt JP, Dellinger AE, Beegle DB (2008) Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agron J 100:1553–1561

    Article  Google Scholar 

  • Srivastava HS, Patel P, Navalgund RR (2006) Application potentials of synthetic aperture radar interferometry for land-use mapping and crop height estimation. Curr Sci 91(6):783–788

    Google Scholar 

  • Srivastava HS, Patel P, Sharma Y, Navalgund RR (2009) Large area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data. IEEE Trans Geosci Remote Sens 47(8):2528–2534. https://doi.org/10.1109/TGRS.2009.2018448

    Article  Google Scholar 

  • Srivastava HS, Sivasankar T, Sharma PK (2016) Biophysical parameters retrieval using RISAT-1 hybrid polarimetric SAR data. In: National Symposium on Recent Advances in Remote Sensing and GIS with Special Emphasis on Mountain Ecosystems, Dehradun, India

    Google Scholar 

  • Stafford JV (2000) Implementing precision agriculture in the 21st century. J Agric Eng Res 76:267–275

    Article  Google Scholar 

  • Stone ML, Solie JB, Raun WR, Whitney RW, Taylor SL, Ringer JD (1996) Use of spectral radiance for correcting in season fertilizer nitrogen deficiencies in winter wheat. Trans ASAE 39:1623–1631

    Article  Google Scholar 

  • Stoorvogel JJ, Kooistra L, Bouma J (2016) Managing soil variability at different spatial scales as a basis for precision agriculture. In: Lal R, Stewart BA (eds) Soil specific farming- precison agriculture. CRC Press, Boca Raton, pp 37–71

    Google Scholar 

  • Sudduth KA, Kitchen NR, Drummond ST (2011) Nadir and oblique canopy reflectance sensing for N application in corn. Liccosec 7:162–172

    Google Scholar 

  • Sullivan DG, Shaw JN, Rickman D (2005) IKONOS imagery to estimate surface soil property variability in two Alabama physiographies. Soil Sci Soc Am J 69:1789–1798

    Article  Google Scholar 

  • Swain KC, Jayasuriya HPW, Salokhe VM (2007) Suitability of low-altitude remote sensing images for estimating nitrogen treatment variations in rice cropping for precision agriculture adoption. J Appl Remote Sens 1:013547

    Article  Google Scholar 

  • Swain KC, Thomson SJ, Jayasuriya HPW (2010) Adoption of an unmanned helicopter for low altitude remote sensing to estimate yield and total biomass of a rice crop. Trans ASABE 53:21–27

    Article  Google Scholar 

  • Sylvester G (2018) E-agriculture in action: drones for agriculture. FAO and International Telecommunication Union, Bangkok, pp 1–112

    Google Scholar 

  • Sylvester-Bradley R, Lord E, Sparkes DL, Scott RK, Wiltshire JJJ, Orson J (1999) An analysis of the potential of precision farming in Northern Europe. Soil Use Manag 15:1–8

    Article  Google Scholar 

  • Tan SY (2017) Developments in hyperspectral sensing. In: Pelton JN et al (eds) Handbook of satellite applications. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-23386-4_101

    Chapter  Google Scholar 

  • Tan CP, Ewe HT, Chuah HT (2011) Agricultural crop-type classification of multi-polarization SAR images using a hybrid entropy decomposition and support vector machine technique. Int J Remote Sens 2(22):7057–7071

    Article  Google Scholar 

  • Tang QF, Yang AF, Wang TZ, Tang SM (2007) Spatial variation of soil main nutrients on arable land in Ding'an county. Chinese J Trop Crops 28:44–50

    Google Scholar 

  • Thenkabail SP, Ward AD, Lyon JG, Merry CJ (1994a) Thematic mapper vegetation indices for determining soybean and corn crop growth parameters. Photogramm Eng Remote Sens 60(4):437–442

    Google Scholar 

  • Thenkabail SP, Ward AD, Lyon JG (1994b) LANDSAT-5 Thematic Mapper models of soybean and corn crop characteristics. Int J Remote Sens 15(1):49–61

    Article  Google Scholar 

  • Thenkabail PS, Smith RB, Ede P (2000) Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ 71:158–182

    Article  Google Scholar 

  • Thenkabail PS, Enclona EA, Ashton MS, Van Der Meer V (2004a) Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens Environ 91(2–3):354–376

    Article  Google Scholar 

  • Thenkabail PS, Enclona EA, Ashton MS, Legg C, Jean De Dieu M (2004b) Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sens Environ 90:23–43

    Article  Google Scholar 

  • Thenkabail PS, Lyon JG, Huete A (2010) Hyperspectral remote sensing of vegetation and agricultural crops: knowledge gain and knowledge gap after 40 years of research. Ch. 28. In: Thenkabail PS, Lyon JG, Huete A (eds) Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton, p 705

    Google Scholar 

  • Thenkabail PS, Lyon JG, Huete A (2011) Advances in hyperspectral remote sensing of vegetation and agricultural croplands. In: Thenkabail PS, Lyon JG, Huete A (eds) Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton, pp 3–36

    Chapter  Google Scholar 

  • Thiam S, Eastmen RJ (1999) Chapter on vegetation indices. In: Guide to GIS and image processing, volume 2; Idrisi Production. Clarke University, Worcester, pp 107–122

    Google Scholar 

  • Thorp KR, Tian LF (2004) A review on remote sensing of weeds in agriculture. Precis Agric 5:477–508

    Article  Google Scholar 

  • Thylen L, Murphy DP (1996) The control of errors in momentary yield data from combine harvesters. J Agric Eng Res 64(4):271–278

    Article  Google Scholar 

  • Tilling SK, O’Leary GJ, Ferwerda JG, Jones SD, Fitzgerald GJ, Rodriguez D, Belford R (2007) Remote sensing of nitrogen and water stress in wheat. Field Crops Res 104:77–85. https://doi.org/10.1016/j.fcr.2007.03.023

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Turker M, Ozdarici A (2011) Field-based crop classification using SPOT4, SPOT5, IKONOS and QuickBird imagery for agricultural areas: a comparison study. Int J Remote Sens 32:9735–9768

    Article  Google Scholar 

  • Turner D, Lucieer A, Watson C (2011) Development of an unmanned aerial vehicle (UAV) for hyper resolution vineyard mapping based on visible, multispectral, and thermal imagery. In: Abstracts of 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10–15 April 2011

    Google Scholar 

  • Ulaby FT, Batlivala PP, Dobson MC (1978) Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: part I-bare soil. IEEE Trans Geosci Electron 16:286–295

    Article  Google Scholar 

  • Ulaby FT, Allen CT, Eger G, Kanemasu E (1984) Relating the microwave backscattering coefficient to leaf area index. Remote Sens Environ 14:113–133

    Article  Google Scholar 

  • Ulaby FT, Moore RK, Fung AK (1986) Microwave remote sensing: active and passive, vol. II. Artech House, Norwood

    Google Scholar 

  • Ulaby FT, Sarabandi K, Dobson MC (1999) Development of SAR algorithm for mapping soil moisture and vegetation biomass, Technical Report 032601-F. University of Michigan, Ann Arbor, pp 1–24

    Google Scholar 

  • Uppala D, Kothapalli RV, Poloju S, Mullapudi SSVR, Dadhwal VK (2015) Rice crop discrimination using single date RISAT-1 hybrid (RH, RV) polarimetric data. Photogramm Eng Remote Sens 81(7):557–563

    Article  Google Scholar 

  • Valcarce-Diñeiro R, Lopez-Sanchez JM, Sánchez N, Arias-Pérez B, Martínez-Fernández J (2019) Influence of incidence angle in the correlation of C-band polarimetric parameters with biophysical variables of rainfed crops. Can J Remote Sens. https://doi.org/10.1080/07038992.2019.1579051

  • van Evert FK, Gaitán-Cremaschi D, Fountas S, Kempenaar C (2017) Can precision agriculture increase the profitability and sustainability of the production of potatoes and olives? Sustainability 9:1863. https://doi.org/10.3390/su9101863

    Article  Google Scholar 

  • Vanac M (2014) Drones are the latest idea to improve farm productivity. The Columbus Dispatch. pp 1–3. http://www.dispatch.com/content/stories/business/2013/09/19/eyes-in-the-skies.html

  • Vaudour E, Bel L, Gilliot JM, Coquet Y, Hadjar D, Cambier P, Michelin J, Houot S (2013) Potential of spot multispectral satellite images for mapping topsoil organic carbon content over Peri-Urban croplands. Soil Sci Soc Am J 77:2122–2139. https://doi.org/10.2136/sssaj2013.02.0062

    Article  Google Scholar 

  • Vellidis G, Perry CD, Durrence JS, Thomas DL, Hill RW, Kvien CK, Hamrita TK, Rains G (2001) The peanut yield monitoring system. Am Soc Agric Eng 44(4):775–785

    Google Scholar 

  • Vieira SR, Villa CE, Vázquez EV, González AP (2007) Geostatistical analysis of soil fertility data sampled in two consecutive years in Castilla, Spain. In: Stafford JV (ed) Precision agriculture ’07. Academic Publishers, Wageningen, pp 257–263

    Google Scholar 

  • Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75

    Article  Google Scholar 

  • Vogelmann JE, Rock BN, Moss DM (1993) Red edge spectral measurements from sugar maple leaves. Int J Remote Sens 14:1563–1575

    Article  Google Scholar 

  • Vorovencii I (2009) The hyperspectral sensors used in satellite and aerial remote sensing. Bull Transilvania Univ Brasov 2(51) Series II: 51–56

    Google Scholar 

  • Waltz FA, Holm EA (1986) Modeling narcotic crop-growing sites with MOSS. In: Proceedings Third National MOSS Users Workshop. Bureau of Land Management, Denver, p 236

    Google Scholar 

  • Wang JR (1980) The dielectric properties of soil-water mixtures at microwave frequencies. Radio Sci 15:977–985

    Article  Google Scholar 

  • Wang MH (1999) Field information collection and process technology. Agric Mech 7:22–24

    Google Scholar 

  • Wang F, Wu Y (2010) Research and applications of UAS Borne Remote Sensing, pp 1–8. http://en.cnki.com.cn/Article_en/CJFDTotal-NYGU201419025, pp 3–4

  • Wang XR, Chen XP, Zhang FS, Mao DR (1998) Application of fertilization model for fertilizer recommendation in China. Plant Nutr Fertil Sci 4:67–74

    Google Scholar 

  • Wang L, Sousa WP, Gong P, Biging GS (2004) Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sens Environ 91:432–440

    Article  Google Scholar 

  • Wang FM, Huang J, Wang XZ (2008) Identification of optimal hyperspectral bands for estimation of rice biophysical parameters. J Integ Plant Biol 50(3):291–299

    Article  Google Scholar 

  • Wang H, Bai YL, Yang LP, Lu YL, Wang L (2010) Application of fertilizer recommendation based on ASI systematic approach in maize in Northeast China. Soil Fertil Sci China 5:31–37

    Google Scholar 

  • Warren G, Metternicht G (2005) Agricultural applications of high-resolution digital multispectral imagery: evaluating within-field spatial variability of canola (Brassica napus) in Western Australia. Photogramm Eng Remote Sens 71:595–602

    Article  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists, 2nd edn. John Wiley and Sons Ltd, London

    Book  Google Scholar 

  • Wei Z, Qi Z (2013) The application of GIS techniques in soil testing and fertilizer recommendations: part I a review. Adv Mater Res 610–613:3693–3696

    Google Scholar 

  • Weis M, Andujar D, Peteinatos GG, Gerhards R (2013) Improving the determination of plant characteristics by fusion of four different sensors. In: Stafford JV (ed) Precision agriculture ’13. Academic Publisher, Wageningen, pp 63–69

    Google Scholar 

  • Welch R, Remillard MM, Fung SS (1986) Monitoring aquatic vegetation and water quality with a geographic information system. In: Proeedings of Geographic Information Systems Workshop. American Society Photogrammetric Remote Sensing, Atlanta, Georgia, p 425

    Google Scholar 

  • Whelan B, Taylor J (2013) Precision agriculture for grain production systems. CSIRO Publishing, Collingwood, pp 1–199

    Book  Google Scholar 

  • White MS (1984) Modeling forest pest impacts – aided by a GIS in a decision support system framework. In: Proceedings Third National MOSSUsers Workshop. Bureau of Land Management, Denver, p 236

    Google Scholar 

  • Wilcox GH, Frazier BE, Ball ST (1994) Relationship between Soil Organic Garbon and Landsat TM Data in Eastern Washington. Photogramm Eng Remote Sens 60(6):777–781

    Google Scholar 

  • Wright C, Gallant A (2007) Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens Environ 107:582–605

    Article  Google Scholar 

  • Wu C, Wang L, Niu Z, Gao S, Wu M (2010) Nondestructive estimation of canopy chlorophyll content using Hyperion and Landsat/TM images. Int J Remote Sens 31:2159–2167

    Article  Google Scholar 

  • Wu F, Wang C, Zhang H, Zhang B, Tang Y (2011) Rice crop monitoring in South China with RADARSAT-2 quad-polarization SAR data. IEEE Geosci Remote Sensing Lett 8(2):196–200

    Article  Google Scholar 

  • Xavier B, Vanhalle L, Defourny P (2005) Efficiency of crop identification based on optical and SAR image time series. Remote Sens Environ 96:352–365

    Article  Google Scholar 

  • Xia FQ, Guo TW, Jiang XF, Zhang XC (2011) Research progress on soil testing and fertilizer recommendation. Gansu Agric Sci Technol 7:46–49

    Google Scholar 

  • Xiang H, Tian L (2011) Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosyst Eng 108:104–113

    Article  Google Scholar 

  • Xu W (1996) Conditional curvilinear stochastic simuation using pixel-based algorithms. Math Geol 28(7):937–949

    Article  Google Scholar 

  • Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sensors 2017:1–17

    Article  Google Scholar 

  • Yang C, Everitt JH (2002) Relationships between yield monitor data and airborne multidate multispectral digital imagery for grain sorghum. Precis Agric 3:373–388

    Article  Google Scholar 

  • Yang C, Everitt JH, Bradford JM, Escobar DE (2000) Mapping grain sorghum growth and yield variations using airborne multispectral digital imagery. Trans ASAE 43:1927–1938

    Article  Google Scholar 

  • Yang Z, Rao MN, Elliott NC, Kindler SD, Popham TW (2005) Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera Aphididiae) infestation. Comput Electron Agric 47(2):121–135

    Article  Google Scholar 

  • Yang C, Everitt JH, Murden D (2011) Evaluating high resolution SPOT 5 satellite imagery for crop identification. Comput Electron Agric 75:347–354

    Article  Google Scholar 

  • Yang S, Zhao X, Li B, Hua G (2012) Interpreting RADARSAT-2 quad-polarization SAR signatures from rice paddy based on experiments. IEEE Geosci Remote Sens Lett 9:65–69

    Article  Google Scholar 

  • Yang R, Rossiter DG, Liu F, Lu Y, Yang F, Yang F, Zhao Y, Li D, Zhang G (2015) Predictive mapping of topsoil organic carbon in an alpine environment aided by Landsat TM. PLoS One 10(10):e0139042

    Article  Google Scholar 

  • Yao HL, Tang L, Tian, Brown RL, Bhatnagar D, Cleveland TE (2010) Using hyperspectral data in precision farming applications. Ch. 25. In: Thenkabail PS, Lyon JG, Huete A (eds) Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton, p 705

    Google Scholar 

  • Young DS (1987) Random vectors and spatial analysis by geostatistics for geotechnical applications. Math Geol 19(6):467–479

    Article  Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Morales A, Berjó NA, Aguera J (2004) Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens Environ 90:463–476

    Article  Google Scholar 

  • Zhang Y (2011) Introduction to geostatistics-course notes (pp 1–31)

    Google Scholar 

  • Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13:693–712

    Article  Google Scholar 

  • Zhang M, Li MZ, Liu G, Wang MH (2008) Yield mapping in precision farming. In: Li D (ed) Computer and computing technologies in agriculture, The International Federation for Information Processing 259, vol 2. Springer, Boston, pp 1407–1410

    Google Scholar 

  • Zhang B, Wu D, Zhang L, Jiao Q, Li Q (2012) Application of hyperspectral remote sensing for environment monitoring in mining areas. Environ Earth Sci 65(3):649–658

    Article  Google Scholar 

  • Zhao D, Huang L, Li J, Qi J (2007) A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS J Photogramm Remote Sens 62(1):25–33

    Article  Google Scholar 

  • Zhao X, Huang N, Song XF, Li ZY, Niu ZJ, Waves M (2016) A new method for soil moisture inversion in vegetation-covered area based on Radarsat 2 and Landsat 8. J Infrared Millim Waves 35:609–616

    Google Scholar 

  • Zhu Y, Zhou D, Yao X, Tian Y, Cao W (2007) Quantitative relationships of leaf nitrogen status to canopy spectral reflectance in rice. Aust J Agric Res 58(11):1077–1085. https://doi.org/10.1071/AR06413

    Article  Google Scholar 

  • Zirschky J (1985) Geostatistics for environmental monitoring and survey design. Environ Int 11:515–524

    Article  Google Scholar 

  • Zribi M, Baghdadi N, Holah N, Fafin O (2005) New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidencedata inversion. Remote Sens Environ 96:485–496

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mani, P.K., Mandal, A., Biswas, S., Sarkar, B., Mitran, T., Meena, R.S. (2021). Remote Sensing and Geographic Information System: A Tool for Precision Farming. In: Mitran, T., Meena, R.S., Chakraborty, A. (eds) Geospatial Technologies for Crops and Soils. Springer, Singapore. https://doi.org/10.1007/978-981-15-6864-0_2

Download citation

Publish with us

Policies and ethics