Skip to main content

Integrated Approaches for Biofortification of Food Crops by Improving Input Use Efficiency

  • Chapter
  • First Online:
Input Use Efficiency for Food and Environmental Security

Abstract

About 33% of the human population is facing micronutrients deficiencies like zinc, iron, iodine, and selenium which have become serious health problems across the globe especially in the developing nations including Asian and African countries. The hidden hunger reduces the gross domestic product of the developing world up to 5 per cent. So the adequate intake of these micro/trace elements is required for normal human health. Supplemental intake through injections, tablets, and supplements although are effective but are not economical. So bio-fortifying cereal grain crops with zinc, iron, iodine, and selenium are today’s dire need of the world through improved input use efficiency. The recent studies advocated the grain yield enhancement of rice and wheat with soil application of ZnSO4 at 50 kg/ha under zinc-deficient soils but enhancement in grain zinc concentration is only 2–3 mg/kg. Using foliar zinc sulphate heptatehydrate at 0.5% at earing and early milk stage appreciably improves the Zn concentrations by 35% in rice and about 100% in wheat. The foliar Zn application along with pesticides which are required to control insects and diseases in wheat and rice can also be used without any adverse effect on the crop, it not only enhances grain Zn and controls insects and diseases but also reduces the application costs of the chemicals. A mixture of the micro/trace elements (zinc sulphate, potassium iodate, and sodium selenate) can be used together to enrich these nutrients together in rice and wheat. The optimum nitrogen application directly enhanced the protein, zinc, and iron in the grains. Overuse of phosphorus fertilizer may hamper the absorption of zinc through roots due to negative interaction. But integrated nutrients management using organic manure along with chemical fertilizer directly affects the micronutrients uptake and grain yield of the crops. Some of the varieties of rice, wheat, pearl millets that have been developed through genetic biofortification are also being consumed in the developing world for meeting the micro/trace elements requirement of masses. So, integration of genetic and agronomic biofortification can improve the nutrient use efficiency which enhances the nutrient content in the grains and will help in mitigating the deficiency of nutrients in crops and human beings across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfthan G, Eurola M, Ekholm P, Venalainen E, Root T, Korkalainen K, Hartikainen H, Salminen P, Hietaniemi V, Aspila P, Aro A (2015) Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: from deficiency to optimal selenium status of the population. J Trace Elem Med Biol 31:142–147

    Article  CAS  PubMed  Google Scholar 

  • Ali LKM, Mohamed NA, El-Maghraby TA (2011) Effect of P and Zn fertilization on wheat yield and nutrient uptake in calcareous soil. J Soil Sci Agric Eng 2:555–569

    Google Scholar 

  • Anees MA, Ali A, Shakoor U, Ahmed F, Hasnain Z, Hussain A (2016) Foliar applied potassium and zinc enhances growth and yield performance of maize under rainfed conditions. Int J Agric Biol 18:1025–1032

    Article  CAS  Google Scholar 

  • Aref F (2012) Manganese, iron and copper contents in leaves of maize plants (Zea mays L.) grown with different boron and micronutrients. Afr J Biotech 11:896–903

    CAS  Google Scholar 

  • Barunawati N, Hettwer Giehl RF, Bauer B, Von Wirén N (2013) The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat. Front Plant Sci 4:320. https://doi.org/10.3389/fpls.2013.00320

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatta M, Stephen Baenziger P, Waters BM, Poudel R, Belamkar V, Poland J (2018) Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int J Mol Sci 19:1–18

    Google Scholar 

  • Cakmak I (2004) Identification and correction of widespread zinc deficiency in Turkey: a success story. Proc Int Fertil Soc 552:1–26

    CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol 23:281–289

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2014) Agronomic biofortification conference brief #8, in: proceedings of the 2nd global conference on biofortification: getting nutritious foods to people, Rwanda, 2014

    Google Scholar 

  • Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst WJ (2010a) Biofortification and localization of zinc in wheat grain. J Agric Food Chem 58:9092–9102

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Kutman UB (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69:172–180

    Article  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010b) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Chakirwa ZP, Sarkodie-Addo J, Adjei-Gyapong T, Lubobo AK, Bashagaluke BJ (2019) Growth, nodulation and nutrients uptakes of cowpea (Vigna unguiculata L. Walp) following zinc fertilizer applications in the semi-deciduous Forest zone of Ghana. J Experi Agricul Intl 35(5):1–13

    Google Scholar 

  • Chilimba ADC, Young SD, Edward JMJ (2014) Agronomic biofortification of maize, soybean and groundnut with selenium in intercropping systems. African J Agril Res 9:3620–3626

    Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1–like transporters. Ann Bot 103:1–11. https://doi.org/10.1093/aob/mcn207

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal SS, Ram H, Shukla AK, Mavi GS (2019) Zinc biofortification of bread wheat, triticale, and durum wheat cultivars by foliar zinc fertilization. J Plant Nut 42:813–822

    Article  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2020) Genesis and management of seleniferous soils in northwestern India. Agril Res J 57:460–476

    Google Scholar 

  • Duffner A, Hoffland E, Stomph TJ, Melse-Boonstra A, Bindraban PS (2014) Eliminating zinc deficiency in rice-based systems. VFRC report 2014/2 virtual fertilizer research center, Washington, DC

    Google Scholar 

  • Ekiz H, Bagci SA, Kiral AS, Eker S, Gultekin I, Alkan A, Cakmak I (1998) Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soil. J Plant Nutr 21:2245–2256

    Article  CAS  Google Scholar 

  • Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol 189:438–448

    Article  CAS  PubMed  Google Scholar 

  • Fageria NK (2002) Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops. Pesq agropec bras 37:1765–1772

    Article  Google Scholar 

  • Garcia-Banuelos ML, Sida-Arreola JP, Sanches E (2014) Biofortification – promising approach to increasing the content of iron and zinc in staple food crops. J Elem 19:865–888

    Google Scholar 

  • Ghasal PC, Shivay YS, Pooniya V, Choudhary M, Verma RK (2017) Zinc partitioning in basmati rice varieties as influenced by Zn fertilization. Crop J 6:136–147

    Article  Google Scholar 

  • Graham RD, Ascher JS, Hynes SC (1992) Selection of zinc efficient cereal genotypes for soils of low zinc status. Plant Soil 146:241–250

    Article  CAS  Google Scholar 

  • Gupta N, Ram H, Kumar B (2016) Mechanism of zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Biotech 15:89–109

    Article  CAS  Google Scholar 

  • Habib M (2009) Effect of foliar application of Zn and Fe on wheat yield and quality. Afr J Biotech 8:6795–6798

    CAS  Google Scholar 

  • Hart DJ, Fairweather-Tait SJ, Broadley MR, Dickinson SJ, Foot I, Knott P, McGrath SP, Mowat H, Norman K, Scott PR, Stroud JL, Tucker M, White PJ, Zhao FJ, Hurst R (2011) Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of se-enriched food. Food Chem 126:1771–1778

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Maqsood MA, Rengel Z, Aziz T, Abid M (2013) Estimated zinc bioavailability in milling fractions of biofortified wheat grains and in flours of different extraction rates. Int J Agric Biol 15:921–926

    CAS  Google Scholar 

  • Jat G, Majumdar SP, Jat NK, Mazumdar SP (2014) Effect of potassium and zinc fertilizer on crop yield, nutrient uptake and distribution of potassium and zinc fractions in Typic Ustipsamment. Indian J Agricul Sci 84(7):832–838

    CAS  Google Scholar 

  • Joy EJM, Stein AJ, Young SD, Ander EL, Watts MJ, Broadley MR (2015) Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant Soil 389:1–24

    Article  CAS  Google Scholar 

  • Kapil U, Jain K (2011) Magnitude of zinc deficiency amongst under five children in India. Indian J Pediatr 89:1069–1072

    Article  Google Scholar 

  • Karim MR, Zhang YQ, Zhao RR, Chen XP, Zhang FS, Zou CQ (2012) Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J Plant Nutr Soil Sci 175:142–151

    Article  Google Scholar 

  • Khokhar JS, Sareen S, Tyagi BS, Singh G, Wilson L, King IP et al (2018) Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat. PLoS ONE 13:e0192026. https://doi.org/10.1371/journal.pone.0192026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimenko I, Razgulayeva N, Gau M, Okumura K, Nakaya A, Tabata S, Kozlov NN, Isobe S (2010) Mapping candidate QTLs related to plant persistency in red clover. Theor Appl Genet 120:1253–1263

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Meena RS (2020) Impact of various sowing environment and nutrient sources on growth performance of Indian mustard (Brassica juncea). Indian J Agrono 65(4):465–470

    CAS  Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brass 9(1):72–76

    Google Scholar 

  • Kumar S, Meena RS, Singh RK, Munir TM, Datta R, Danish S, Singh GSY, Kumar S (2021) Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice based cropping system. Sci Rep 11:5289. https://doi.org/10.1038/s41598-021-84742-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I (2011a) Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J Cereal Sci 53:118–125

    Article  CAS  Google Scholar 

  • Kutman UB, Yildiz B, Cakmak I (2011b) Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil 342:149–164

    Article  CAS  Google Scholar 

  • Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9. https://doi.org/10.1094/CCHEM-87-1-0001

    Article  CAS  Google Scholar 

  • Lawson PG, Daum D, Czaudema R, Meuser H, Harling JW (2015) Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front Plant Sci 6:450. https://doi.org/10.3389/fpls.2015.00450

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabesa RL, Impa SM, Grewal D, Johnson-Beebout SE (2013) Contrasting grain-Zn response of biofortification rice (Oryza sativa L) breeding lines to foliar Zn application. Field Crop Res 149:223–233

    Article  Google Scholar 

  • Mangueze AVJ, Pessoa MFG, Silva MJ, Ndayiragije A, Magaia HE, Cossa VSI et al (2018) Simultaneous zinc and selenium biofortification inrice. Accumulation, localization and implications on the overall mineral contentof the flour. J. Cereal Sci 82:34–41. https://doi.org/10.1016/j.jcs.2018.05.005

    Article  CAS  Google Scholar 

  • Manzeke GM, Mtambanengwe F, Nezomba H, Mapfumo P (2014) Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe. Field Crop Res 166:128–136

    Article  Google Scholar 

  • Mao H, Wang J, Wang Z, Zan Y, Lyons G, Zou C (2014) Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J Soil Sci Plant Nutr 14:459–470. https://doi.org/10.4067/S0718-95162014005000036

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752. https://doi.org/10.1016/j.catena.2020.104752

    Article  CAS  Google Scholar 

  • Niyigaba E, Twizerimana A, Mugenzi I, Ngnadong WA, Ye YP, Wu B, Mand HJB (2019) Winter wheat grain quality, zinc and Iron concentration affected by a combined foliar spray of zinc and Iron fertilizers. Agronomy 9:250. https://doi.org/10.3390/agronomy9050250

    Article  CAS  Google Scholar 

  • Oseni TO (2009) Growth and zinc uptake of sorghum and cowpea in response to phosphorus and zinc fertilization. World J Agricul Sci 5:670–674

    CAS  Google Scholar 

  • Pal V, Singh G, Dhaliwal SS (2019) Agronomic biofortification of chickpea with zinc and iron through application of zinc and urea. Commun Soil Sci Plant Anal 50:1864–1877. https://doi.org/10.1080/00103624.2019.1648490

    Article  CAS  Google Scholar 

  • Paramesh V, Dhar S, Dass A, Kumar B, Kumar A, El-Ansary DO, Elansary HO (2020) Role of integrated nutrient management and agronomic fortification of zinc on yield, nutrient uptake and quality of wheat. Sustainability 12:3513. https://doi.org/10.3390/su12093513

    Article  Google Scholar 

  • Pearson D, De-Bang T, Pedas P, Kutman U, Cakmak I, Andersen B, Finnie CK, Schjoerring J, Husted S (2016) Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytol 211:1255–1265

    Article  Google Scholar 

  • Phattarakul N, Rerkasem B, Li LJ, Wu LH, Zou CQ, Ram H, Sohu VS, Kang BS, Surek H, Kalayci M, Yazici A, Zhang FS, Cakmak I (2012) Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361:131–141

    Article  CAS  Google Scholar 

  • Pooniya V, Shivay YS, Rana A, Nain L, Prasanna R (2012) Enhancing soil nutrient dynamics and productivity of basmati rice through residue incorporation and zinc fertilization. Eur J Agron 41:28–37

    Article  CAS  Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2014) Chapter two - agronomic biofortification of cereal grains with iron and zinc. Adv Agron 125:55–91

    Article  Google Scholar 

  • Ram H, Kaur C, Mavi GS, Kaur M, Sohu VS, Cakmak I (2019) Zinc bio-fortification and sustainable wheat productivity for nutritional and food security”in 1st international wheat congress “held on 21-26 July, 2019 at University of Saskatchewan, Saskatoon, Canada

    Google Scholar 

  • Ram H, Rashid A, Zhang W, Duarte AP, Phattarakul N, Simunji S, Kalayci M, Freitas R, Rerkasem B, Bal RS, Mahmood K, Savasli E, Lungu O, Wang ZH, De Barros VLNP, Malik SS, Arisoy RZ, Guo JX, Sohu VS, Zou CQ, Cakmak I (2016a) Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant Soil 403:389–401

    Article  CAS  Google Scholar 

  • Ram H, Singh S, Gupta N, Kumar B (2016b) Biofortified wheat for mitigating malnutrition. In: Singh U et al (eds) Biofortification of Food Crops, pp 375–387. https://doi.org/10.1007/978-81-322-2716-8_27

    Chapter  Google Scholar 

  • Ram H, Sohu VS, Cakmak I, Singh K, Buttar GS, Sodhi GPS, Gill HS, Bhagat I, Singh P, Dhaliwal SS, Mavi GS (2015) Agronomic fortification of rice and wheat grains with zinc for nutritional security. Curr Sci 109:1171–1176

    Article  CAS  Google Scholar 

  • Rao BKR, Krishnappa K, Srinivasarao SP, Wani KL, Sahrawat KL, Pardhasaradhi G (2012) Alleviation of multinutrient deficiency for productivity enhancement of rainfed soybean and finger millet in semi-arid region of India. Commun Soil Sci Plant Anal 43:1427–1435

    Article  Google Scholar 

  • Rashid A, Ram H, Zou C, Rerkasem B, Duarte AP, Simunji S, Yazici A, Guo S, Rizwan M, Bal RS, Wang Z, Malik SS, Phattarakul N, De Freitas RS, Lungu O, NLNP B, Cakmak I (2019) Effect of zinc-biofortified seeds on grain yield of wheat, rice, and common bean grown in six countries. J Plant Nutr Soil Sci 182:791–804

    Article  CAS  Google Scholar 

  • Rathore DK, Kumar R, Singh M, Meena VK, Kumar U, Gupta PS, Yadav T, Makarana G (2015) Phosphorus and zinc fertilization in fodder cowpea - a review. Agri Review 36(4):333–338

    Article  Google Scholar 

  • Rietra RPJJ, Heinen M, Dimpka C, Bindraban PS (2015) Effects of nutrient antagonism and synergism on fertilizer use efficiency. VFRC report 2015/5 virtual fertilizer research Centre, Washington, DC

    Google Scholar 

  • Sadana US, Manchanda JS, Khurana MPS, Dhaliwal SS, Singh H (2010) The current scenario and efficient management of zinc, iron, and manganese deficiencies. Better Crops 2010:24–26

    Google Scholar 

  • Saini DK, Devi P, Kaushik P (2020) Advances in genomic interventions for wheat biofortification: a review. Agronomy 10:62

    Article  CAS  Google Scholar 

  • Santos S, Costa CAE, Duarte AC, Scherer HW, Schneider RJ, Esteves VI, Santos EBH (2010) Influence of different organic amendments on the potential availability of metals from soil: a study on metal fractionation and extraction kinetics by EDTA. Chemosphere 78:389–396

    Article  CAS  PubMed  Google Scholar 

  • Shahzad Z, Rouached H, Rakha A (2014) Combating mineral malnutrition through iron and zinc biofortification of cereals. Compr Rev Food Sci Food Saf 13:329–346

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Zhang Y, Chen X, Sun Q, Zhang F, Römheld V, Zou C (2010) Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L). J Cereal Sci 51:165–170

    Article  CAS  Google Scholar 

  • Shiway YS, Kumar D, Prasad R (2008) Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice wheat cropping system. Nutr Cycl Agroecosyst 81:229–243

    Article  Google Scholar 

  • Singh BR, Timsina YN, Lind OC, Cagno S, Janssens K (2018) Zinc and iron concentration as affected by nitrogen fertilization and their localization in wheat grain. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00307

  • Singh JP, Karamanos RE, Stewart JWB (1988) The mechanism of phosphorus induced zinc deficiency in bean (Phaseolusvulgaris L). Can J Soil Sci 68:345–358

    Article  CAS  Google Scholar 

  • Singh MV (2011) Assessing extent of zinc deficiency for soil fertility mapping and nutrition security in humans and animals. Indian J Fertilizer 7:36–43

    CAS  Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered 100:771–776

    Article  CAS  PubMed  Google Scholar 

  • Vanlauwe B, Bationo A, Chianu J, Giller KE, Merckx R, Mokwunye U, Ohiokpehai O, Pypers P, Tabo R, Shepherd KD, Smaling EMA, Woomer PL, Sanginga N (2010) Integrated soil fertility management – operational definition and consequences for implementation and dissemination. Outlook Agric 39:17–24

    Article  Google Scholar 

  • Van-Noordwijk M, Cerri C, Woomer PL, Nugroho K, Bernoux M (1997) Soil carbon dynamics in the humid tropical forest zone. Geoderma 79:187–225

    Article  CAS  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2013) Biofortication strategies to increase grain Zinc& Iron concentration in wheat. J Cereal Sci 59:365–372

    Article  Google Scholar 

  • Wei Y, Shohag MJI, Yang X (2012) Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar zinc fertilization. PLoS One 7:e45428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 306:37–48

    Article  CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS (2020) Vehicular traffic effects on hydraulic properties of a Crosby silt loam under a long-term no-till farming in Central Ohio, USA. Soil Till Res 202:104654. https://doi.org/10.1016/j.still.2020.104654

    Article  Google Scholar 

  • Yerokun OA, Chirwa M (2014) Soil and foliar application of zinc to maize and wheat grown on a Zambian Alfisol. Afr J Agric Res 9:963–970

    Article  CAS  Google Scholar 

  • Yilmaz A, Ekiz H, Torun B, Gultekin I, Karanlik S, Bagci SA, Cakmak I (1997) Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. J Plant Nutr 20:461–471

    Article  CAS  Google Scholar 

  • Zhang S, Meng L, Wang J, Zhang L (2017) Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses. Heredity 119:256–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zingore S, Delve RJ, Nyamangara J, Giller KE (2008) Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholderfarms. Nutr Cycl Agroecosyst 80:267–282

    Article  Google Scholar 

  • Zou C, Du Y, Rashid A, Ram H, Savasli E, Pieterse PJ, Monasterio O, Yazici A, Kaur C, Mahmood K, Singh S, Le Roux MR, Kuang W, Onder O, Kalayci M, Cakmak I (2019) Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J Agril Food Chem 67:8096–8106

    Article  CAS  Google Scholar 

  • Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunji S, Wang ZH, Sohu V, Hassan M, Kaya Y, Onder O, Lungu O, Yaqub MM, Joshi AK, Zelenskiy Y, Zhang FS, Cakmak I (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361:119–130

    Article  CAS  Google Scholar 

  • Zuchi S, Cesso S, Astolfi S (2012) High S supply improves Fe accumulation in durum wheat plants grown under Fe limitation. Environ Exp Bot 77:25–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ram, H., Kaur, M., Gupta, N., Kumar, B. (2021). Integrated Approaches for Biofortification of Food Crops by Improving Input Use Efficiency. In: Bhatt, R., Meena, R.S., Hossain, A. (eds) Input Use Efficiency for Food and Environmental Security. Springer, Singapore. https://doi.org/10.1007/978-981-16-5199-1_14

Download citation

Publish with us

Policies and ethics