Skip to main content

Natural Polyphenols a New Paradigm in Treatment of Various Diseases

  • Chapter
  • First Online:
Polyphenols-based Nanotherapeutics for Cancer Management

Abstract

Natural products are infinite resources of phytochemicals which continue to serve humans as natural drugs since ancient times. Polyphenols are natural plant-derived pharmacologically active compounds which have potential therapeutic properties including antioxidant, anti-inflammatory, and antitumor. Edible plants particularly phytochemicals and their biological activity in the human body is a trending subject of scientific investigations. Polyphenols are divided into three categories: flavonoids, non-flavonoids, and phenolic acids. Flavonoids have been further categorized as flavones, flavanones, flavonols, flavanols, and isoflavones, even as phenolic acids are classified into hydroxybenzoic and hydroxycinnamic acids. Polyphenols are bioactive compounds to manage the several autoimmune disorder such as vitiligo, ulcerative colitis, and multiple sclerosis through eliciting various intracellular pathways specifically (NF-κB), signaling pathway, mitogen-activated protein kinases (MAPKs) pathway, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. This chapter tends to provide a new insight into biomedical application of polyphenol for cancer, UTIs, diabetes, cardiovascular disorders, and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Satchanska G. Antimicrobial activity of natural polyphenols. Acta Microbiol Bulg. 2020;36(4):132–8.

    Google Scholar 

  2. Dragovic-Uzelac V, Levaj B, Mrkic V, Bursac D, Boras M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007;102(3):966–75.

    Article  CAS  Google Scholar 

  3. Long J, Guan P, Hu X, Yang L, He L, Lin Q, et al. Natural polyphenols as targeted modulators in colon cancer: molecular mechanisms and applications. Front Immunol. 2021;12 https://doi.org/10.3389/fimmu.2021.635484.

  4. Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: a therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci Ther. 2018;24(9):753–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ayissi VBO, Ebrahimi A, Schluesenner H. Epigenetic effects of natural polyphenols: a focus on SIRT1-mediated mechanisms. Mol Nutr Food Res. 2014;58(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  6. Gormaz JG, Valls N, Sotomayor C, Turner T, Rodrigo R. Potential role of polyphenols in the prevention of cardiovascular diseases: molecular bases. Curr Med Chem. 2016;23(2):115–28.

    Article  CAS  PubMed  Google Scholar 

  7. Cao L, Park Y, Lee S, Kim D-O. Extraction, identification, and health benefits of anthocyanins in blackcurrants (Ribes nigrum L.). Appl Sci. 1863;11(4):2021.

    Google Scholar 

  8. Lopez-Velez M, Martinez-Martinez F, Valle-Ribes CD. The study of phenolic compounds as natural antioxidants in wine. Crit Rev Food Sci Nutr. 2003;43(3):233–44.

    Article  CAS  PubMed  Google Scholar 

  9. Baron G, Altomare A, Mol M, Garcia JL, Correa C, Raucci A, et al. Analytical profile and antioxidant and anti-inflammatory activities of the enriched polyphenol fractions isolated from bergamot fruit and leave. Antioxidants. 2021;10(2):141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mukherjee C, Chakraborty S. Study of dietary polyphenols from natural herbal sources for providing protection against human degenerative disorders. Biocatal Agric Biotechnol. 2021;33:101956.

    Article  Google Scholar 

  11. Câmara JS, Albuquerque BR, Aguiar J, Corrêa RC, Gonçalves JL, Granato D, et al. Food bioactive compounds and emerging techniques for their extraction: polyphenols as a case study. Foods. 2021;10(1):37.

    Article  CAS  Google Scholar 

  12. Gumul D, Berski W. The polyphenol profile and antioxidant potential of irradiated Rye grains. Int J Food Sci. 2021;2021:8870754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2(12):1231–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramirez DA, Altamirano JC, Camargo AB. Multi-phytochemical determination of polar and non-polar garlic bioactive compounds in different food and nutraceutical preparations. Food Chem. 2021;337:127648.

    Article  CAS  PubMed  Google Scholar 

  15. Giuliano C, Cerri S, Blandini F. Potential therapeutic effects of polyphenols in Parkinson’s disease: in vivo and in vitro pre-clinical studies. Neural Regen Res. 2021;16(2):234.

    Article  PubMed  Google Scholar 

  16. Duthie GG, Gardner PT, Kyle JA. Plant polyphenols: are they the new magic bullet? Proc Nutr Soc. 2003;62(3):599–603.

    Article  CAS  PubMed  Google Scholar 

  17. El Gharras H. Polyphenols: food sources, properties and applications–a review. Int J Food Sci Tech. 2009;44(12):2512–8.

    Article  CAS  Google Scholar 

  18. Murthy NTV, Agrahari V, Chauhan H. Polyphenols against infectious diseases: controlled release Nano-formulations. Eur J Pharm Biopharm. 2021;161:66–79.

    Article  CAS  Google Scholar 

  19. Çelik EE, Rubio JMA, Andersen ML, Gökmen V. Interactions of dietary fiber bound antioxidants with hydroxycinnamic and hydroxybenzoic acids in aqueous and liposome media. Food Chem. 2019;278:294–304.

    Article  PubMed  CAS  Google Scholar 

  20. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99(1):191–203.

    Article  CAS  Google Scholar 

  21. Septembre-Malaterre A, Remize F, Poucheret P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation. Food Res Int. 2018;104:86–99.

    Article  CAS  PubMed  Google Scholar 

  22. Moreira AS, Nunes FM, Simões C, Maciel E, Domingues P, Domingues MRM, et al. Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: inhibition by Maillard reaction. Food Chem. 2017;227:422–31.

    Article  CAS  PubMed  Google Scholar 

  23. Olech M, Pietrzak W, Nowak R. Characterization of free and bound phenolic acids and flavonoid aglycones in Rosa rugosa thunb. Leaves and achenes using LC–ESI–MS/MS–MRM methods. Molecules. 2020;25(8):1804.

    Article  CAS  PubMed Central  Google Scholar 

  24. Pedro AC, Maurer JBB, Zawadzki-Baggio SF, Ávila S, Maciel GM, Haminiuk CWI. Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Ind Crop Prod. 2018;112:90–7.

    Article  CAS  Google Scholar 

  25. Baranska M, Schulz H, Joubert E, Manley M. In situ flavonoid analysis by FT-Raman spectroscopy: identification, distribution, and quantification of aspalathin in green rooibos (Aspalathus linearis). Anal Chem. 2006;78(22):7716–21.

    Article  CAS  PubMed  Google Scholar 

  26. Kinoshita T, Lepp Z, Chuman H. Construction of a novel database for flavonoids. J Med Investig. 2005;52(Supplement):291–2.

    Article  Google Scholar 

  27. Peterson J, Dwyer J. Flavonoids: dietary occurrence and biochemical activity. Nutr Res. 1998;18(12):1995–2018.

    Article  CAS  Google Scholar 

  28. Khan AK, Kousar S, Tungmunnithum D, Hano C, Abbasi BH, Anjum S. Nano-elicitation as an effective and emerging strategy for in vitro production of industrially important flavonoids. Appl Sci. 2021;11(4):1694.

    Article  CAS  Google Scholar 

  29. Krol W, Czuba Z, Scheller S, Paradowski Z, Shani J. Structure-activity relationship in the ability of flavonols to inhibit chemiluminescence. J Ethnopharmacol. 1994;41(1–2):121–6.

    Article  CAS  PubMed  Google Scholar 

  30. Kubina R, Iriti M, Kabała-Dzik A. Anticancer potential of selected flavonols: fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients. 2021;13(3):845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. González-de-Peredo AV, Vázquez-Espinosa M, Espada-Bellido E, Carrera C, Ferreiro-González M, Barbero GF, et al. Flavonol composition and antioxidant activity of onions (Allium cepa L.) based on the development of new analytical ultrasound-assisted extraction methods. Antioxidants. 2021;10(2):273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Paulsen E, Moreno DA, Periago PM, Lema P. Influence of microwave bag vs conventional microwave cooking on phytochemicals of industrially and domestically processed broccoli. Food Res Int. 2021;140:110077.

    Article  CAS  PubMed  Google Scholar 

  33. Shahrajabian MH, Sun W, Cheng Q. A Review of Leek (A. ampeloprasum L.), an important vegetable and food ingredient with remarkable pharmaceutical activities. Pharmacognosy Commun. 2021;11(1):9–12.

    Article  CAS  Google Scholar 

  34. Tomas M, Zhang L, Zengin G, Rocchetti G, Capanoglu E, Lucini L. Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Food Res Int. 2021;140:110039.

    Article  CAS  PubMed  Google Scholar 

  35. Yu Z, Zhang P, Lin W, Zheng X, Cai M, Peng C. Sequencing of anthocyanin synthesis-related enzyme genes and screening of reference genes in leaves of four dominant subtropical forest tree species. Gene. 2019;716:144024.

    Article  CAS  PubMed  Google Scholar 

  36. Adki KM, Kulkarni YA. Glycosides from natural sources in the treatment of diabetes mellitus. structure and health effects of natural products on diabetes mellitus. New York, NY: Springer; 2021. p. 81–102.

    Book  Google Scholar 

  37. Iannone M, Botrè F, Parenti S, Jardines D, de la Torre X. An investigation on the metabolic pathways of synthetic isoflavones by gas chromatography coupled to high accuracy mass spectrometry. Rapid Commun Mass Spectrom. 2019;33(19):1485–93.

    Article  CAS  PubMed  Google Scholar 

  38. Jung YS, Rha C-S, Baik M-Y, Baek N-I, Kim D-O. A brief history and spectroscopic analysis of soy isoflavones. Food Sci Biotechnol. 2020;29(12):1605–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sarkar N, Bose S. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds. Acta Biomater. 2020;114:407–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sreenivasan L, Watson RR. Reduction is the new youth: the effect of polyphenols on brain aging and diseases. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease; 2015. pp. 137–140.

    Google Scholar 

  41. Tsanova-Savova S, Ribarova F, Petkov V. Quercetin content and ratios to total flavonols and total flavonoids in Bulgarian fruits and vegetables. Bulg Chem Commun. 2018;50:69–73.

    Google Scholar 

  42. Harada M, Kan Y, Naoki H, Fukui Y, Kageyama N, Nakai M, et al. Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (−)-epicatechin. Biosci Biotechnol Biochem. 1999;63(6):973–7.

    Article  CAS  PubMed  Google Scholar 

  43. Tapas AR, Sakarkar D, Kakde R. Flavonoids as nutraceuticals: a review. Trop J Pharm Res. 2008;7(3):1089–99.

    Article  Google Scholar 

  44. Kumar P, Kumar S, Tripathi M, Mehta N, Ranjan R, Bhat Z, et al. Flavonoids in the development of functional meat products: a review. Vet World. 2013;6(8):573.

    Article  CAS  Google Scholar 

  45. Spiegel M, Andruniów T, Sroka Z. Flavones’ and flavonols’ antiradical structure–activity relationship—A quantum chemical study. Antioxidants. 2020;9(6):461.

    Article  PubMed Central  CAS  Google Scholar 

  46. LdLd O, Carvalho MV, Melo L. Health promoting and sensory properties of phenolic compounds in food. Revista Ceres. 2014;61:764–79.

    Article  Google Scholar 

  47. Man M-Q, Yang B, Elias PM. Benefits of hesperidin for cutaneous functions. Evid Based Complement Alternat Med. 2019;2019:2676307.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Moldovan B, David L. Bioactive flavonoids from Cornus mas L. fruits. Mini-Rev Org Chem. 2017;14(6):489–95.

    Article  CAS  Google Scholar 

  49. Domínguez-López I, Yago-Aragón M, Salas-Huetos A, Tresserra-Rimbau A, Hurtado-Barroso S. Effects of dietary phytoestrogens on hormones throughout a human lifespan: a review. Nutrients. 2020;12(8):2456.

    Article  PubMed Central  CAS  Google Scholar 

  50. Riswanto FDO, Desra A, Sari RM, Thomas V, Rohman A, Pramono S, et al. Employing an R software package rsm for optimizing of genistein, daidzein, and glycitein separation and its application for soy milk analysis by HPLC method. Indones J Chem. 2020; https://doi.org/10.22146/ijc.51669.

  51. Ikya JK, Gernah I, Ojobo E, Oni K. Effect of cooking temperature on some quality characteristics of soy milk. Adv J Food Sci Technol. 2013;5(5):543–6.

    Article  Google Scholar 

  52. Kasote DM, Duncan GJ, Neacsu M, Russell WR. Rapid method for quantification of anthocyanidins and anthocyanins in human biological samples. Food Chem. 2019;290:56–63.

    Article  CAS  PubMed  Google Scholar 

  53. Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res. 2017;61(1):1361779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Jiang W, Li N, Zhang D, Meinhardt L, Cao B, Li Y, et al. Elevated temperature and drought stress significantly affect fruit quality and activity of anthocyanin-related enzymes in jujube (Ziziphus jujuba Mill. cv.‘Lingwuchangzao’). PLoS One. 2020;15(11):e0241491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim B, Kang B, Vales TP, Yang SK, Lee J, Kim H-J. Polyphenol-functionalized hydrogels using an interpenetrating chitosan network and investigation of their antioxidant activity. Macromol Res. 2018;26(1):35–9.

    Article  CAS  Google Scholar 

  56. Nagar EE, Okun Z, Shpigelman A. Digestive fate of polyphenols: updated view of the influence of chemical structure and the presence of cell wall material. Curr Opin Food Sci. 2020;31:38–46.

    Article  Google Scholar 

  57. Hu X, Wang Y, Zhang L, Xu M. Construction of self-assembled polyelectrolyte complex hydrogel based on oppositely charged polysaccharides for sustained delivery of green tea polyphenols. Food Chem. 2020;306:125632.

    Article  CAS  PubMed  Google Scholar 

  58. Liu Z, Bruins ME, Ni L, Vincken J-P. Green and black tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota. J Agric Food Chem. 2018;66(32):8469–77.

    Article  CAS  PubMed  Google Scholar 

  59. Pereira-Caro G, Polyviou T, Ludwig IA, Nastase A-M, Moreno-Rojas JM, Garcia AL, et al. Bioavailability of orange juice (poly) phenols: the impact of short-term cessation of training by male endurance athletes. Am J Clin Nutr. 2017;106(3):791–800.

    CAS  PubMed  Google Scholar 

  60. Henning SM, Wang P, Abgaryan N, Vicinanza R, de Oliveira DM, Zhang Y, et al. Phenolic acid concentrations in plasma and urine from men consuming green or black tea and potential chemopreventive properties for colon cancer. Mol Nutr Food Res. 2013;57(3):483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Boyle S, Dobson V, Duthie SJ, Kyle J, Collins A. Absorption and DNA protective effects of flavonoid glycosides from an onion meal. Eur J Nutr. 2000;39(5):213–23.

    Article  CAS  PubMed  Google Scholar 

  62. Wang L, Morris ME. Liquid chromatography–tandem mass spectroscopy assay for quercetin and conjugated quercetin metabolites in human plasma and urine. J Chromatogr B. 2005;821(2):194–201.

    Article  CAS  Google Scholar 

  63. J-r J, Yuan S, J-f D, Zhu S-c, Xu H-d, Chen T, et al. Conversion of puerarin into its 7-O-glycoside derivatives by microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl Microbiol Biotechnol. 2008;81(4):647–57.

    Article  CAS  Google Scholar 

  64. Xiao J, Muzashvili TS, Georgiev MI. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol Adv. 2014;32(6):1145–56.

    Article  CAS  PubMed  Google Scholar 

  65. Ajmal G, Bonde GV, Mittal P, Khan G, Pandey VK, Bakade BV, et al. Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: a potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int J Pharm. 2019;567:118480.

    Article  CAS  PubMed  Google Scholar 

  66. Lee B-H, Hamaker BR. Maltase has most versatile α-hydrolytic activity among the mucosal α-glucosidases of the small intestine. J Pediatr Gastroenterol Nutr. 2018;66:S7–S10.

    Article  CAS  PubMed  Google Scholar 

  67. Den Hartogh DJ, Tsiani E. Antidiabetic properties of naringenin: a citrus fruit polyphenol. Biomol Ther. 2019;9(3):99.

    Google Scholar 

  68. Kim K, Vance TM, Chun OK. Greater flavonoid intake is associated with improved CVD risk factors in US adults. Br J Nutr. 2016;115(8):1481–8.

    Article  CAS  PubMed  Google Scholar 

  69. Tapiero H, Tew K, Ba GN, Mathe G. Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother. 2002;56(4):200–7.

    Article  CAS  PubMed  Google Scholar 

  70. Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy KM. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct. 2016;7(4):1788–96.

    Article  CAS  PubMed  Google Scholar 

  71. Quiñones M, Miguel M, Aleixandre A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res. 2013;68(1):125–31.

    Article  PubMed  CAS  Google Scholar 

  72. Vita JA. Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr. 2005;81(1):292S–7S.

    Article  CAS  PubMed  Google Scholar 

  73. Visioli F, Davalos A. Polyphenols and cardiovascular disease: a critical summary of the evidence. Mini Rev Med Chem. 2011;11(14):1186–90.

    CAS  PubMed  Google Scholar 

  74. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. Am J Clin Nutr. 2005;81(3):611–4.

    Article  CAS  PubMed  Google Scholar 

  75. Mathur S, Devaraj S, Grundy SM, Jialal I. Cocoa products decrease low density lipoprotein oxidative susceptibility but do not affect biomarkers of inflammation in humans. J Nutr. 2002;132(12):3663–7.

    Article  CAS  PubMed  Google Scholar 

  76. Stocker R, O’Halloran RA. Dealcoholized red wine decreases atherosclerosis in apolipoprotein E gene–deficient mice independently of inhibition of lipid peroxidation in the artery wall. Am J Clin Nutr. 2004;79(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  77. Ferri C, Grassi D, Grassi G. Cocoa beans, endothelial function and aging: an unexpected friendship? J Hypertens. 2006;24(8):1471–4.

    Article  CAS  PubMed  Google Scholar 

  78. Goldbohm RA, Hertog MG, Brants HA, van Poppel G, van den Brandt PA. Consumption of black tea and cancer risk: a prospective cohort study. J Natl Cancer Inst. 1996;88(2):93–100.

    Article  CAS  PubMed  Google Scholar 

  79. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  80. Noor F, Noor A, Ishaq AR, Farzeen I, Saleem MH, Ghaffar K, et al. Recent advances in diagnostic and therapeutic approaches for breast cancer: a comprehensive review. Curr Pharm Des. 2021; https://doi.org/10.2174/1381612827666210303141416.

  81. Estrela JM, Mena S, Obrador E, Benlloch M, Castellano G, Salvador R, et al. Polyphenolic phytochemicals in cancer prevention and therapy: bioavailability versus bioefficacy. J Med Chem. 2017;60(23):9413–36.

    Article  CAS  PubMed  Google Scholar 

  82. Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, et al. The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic and anti-melanoma agents. Antioxidants. 2019;8(4):106.

    Article  CAS  PubMed Central  Google Scholar 

  83. Park Y, Subar AF, Hollenbeck A, Schatzkin A. Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch Intern Med. 2011;171(12):1061–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cox S, Noronha L, Herald T, Bean S, Lee S-H, Perumal R, et al. Evaluation of ethanol-based extraction conditions of sorghum bran bioactive compounds with downstream anti-proliferative properties in human cancer cells. Heliyon. 2019;5(5):e01589.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dobrzynska M, Napierala M, Florek E. Flavonoid nanoparticles: a promising approach for cancer therapy. Biomol Ther. 2020;10(9):1268.

    CAS  Google Scholar 

  86. Pelucchi C, Bosetti C, Negri E, Lipworth L, La Vecchia C. Olive oil and cancer risk: an update of epidemiological findings through 2010. Curr Pharm Des. 2011;17(8):805–12.

    Article  CAS  PubMed  Google Scholar 

  87. van Muiswinkel FL, Kuiperij HB. The Nrf2-ARE signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord. 2005;4(3):267–81.

    Article  PubMed  Google Scholar 

  88. Achkar IW, Abdulrahman N, Al-Sulaiti H, Joseph JM, Uddin S, Mraiche F. Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J Transl Med. 2018;16(1):96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gao Q, Zhong C, Zhou X, Chen R, Xiong T, Hong M, et al. Inverse association of total polyphenols and flavonoids intake and the intake from fruits with the risk of gestational diabetes mellitus: a prospective cohort study. Clin Nutr. 2021;40(2):550–9.

    Article  CAS  PubMed  Google Scholar 

  90. Dong Y, Yin J, Zhang Y, Chen JD. Electronic bypass for diabetes: optimization of stimulation parameters and mechanisms of glucagon-like peptide-1. Neuromodulation. 2021; https://doi.org/10.1111/ner.13367.

  91. Jain C, Far FF, Homberg S, Wißmiller K, von Hahn FG, Raducanu A, et al. Inceptor counteracts insulin signalling in β-cells to control glycaemia. Nature. 2021;590(7845):326–31.

    Article  PubMed  CAS  Google Scholar 

  92. Ombra MN, d’Acierno A, Nazzaro F, Spigno P, Riccardi R, Zaccardelli M, et al. Alpha-amylase, α-glucosidase and lipase inhibiting activities of polyphenol-rich extracts from six common bean cultivars of southern Italy, before and after cooking. Int J Food Sci Nutr. 2018;69(7):824–34.

    Article  CAS  PubMed  Google Scholar 

  93. Forester SC, Gu Y, Lambert JD. Inhibition of starch digestion by the green tea polyphenol,(−)-epigallocatechin-3-gallate. Mol Nutr Food Res. 2012;56(11):1647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin N Am. 2013;28(1):1–13.

    Article  Google Scholar 

  95. Sánchez-Patán F, Bartolomé BA, Martín-Alvarez PJ, Anderson M, Howell A, Monagas M. Comprehensive assessment of the quality of commercial cranberry products. Phenolic characterization and in vitro bioactivity. J Agric Food Chem. 2012;60(13):3396–408.

    Article  PubMed  CAS  Google Scholar 

  96. Gonzalez de Llano D, Liu H, Khoo C, Moreno-Arribas MV, Ba B. Some new findings regarding the antiadhesive activity of cranberry phenolic compounds and their microbial-derived metabolites against uropathogenic bacteria. J Agric Food Chem. 2019;67(8):2166–74.

    Article  CAS  PubMed  Google Scholar 

  97. Kimble LL, Mathison BD, Kaspar KL, Khoo C, Chew BP. Development of a fluorometric microplate antiadhesion assay using uropathogenic Escherichia coli and human uroepithelial cells. J Nat Prod. 2014;77(5):1102–10.

    Article  CAS  PubMed  Google Scholar 

  98. Potì F, Santi D, Spaggiari G, Zimetti F, Zanotti I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: a review and meta-analysis. Int J Mol Sci. 2019;20(2):351.

    Article  PubMed Central  CAS  Google Scholar 

  99. Scapagnini G, Caruso C, Calabrese V. Therapeutic potential of dietary polyphenols against brain ageing and neurodegenerative disorders. Bio-farms for nutraceuticals. New York, NY: Springer; 2010. p. 27–35.

    Google Scholar 

  100. Di Meo F, Valentino A, Petillo O, Peluso G, Filosa S, Crispi S. Bioactive polyphenols and neuromodulation: molecular mechanisms in neurodegeneration. Int J Mol Sci. 2020;21(7):2564.

    Article  PubMed Central  CAS  Google Scholar 

  101. Chandran R, Abrahamse H. Identifying plant-based natural medicine against oxidative stress and neurodegenerative disorders. Oxidative Med Cell Longev. 2020;2020:8648742.

    Article  CAS  Google Scholar 

  102. Ebrahimi A, Schluesener H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res Rev. 2012;11(2):329–45.

    Article  CAS  PubMed  Google Scholar 

  103. Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P, Sarwar MS, et al. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol. 2020:173412. https://doi.org/10.1016/j.ejphar.2020.173412.

  104. Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z. Phenolic compounds as promising drug candidates in tuberculosis therapy. Molecules. 2019;24(13):2449.

    Article  CAS  PubMed Central  Google Scholar 

  105. Gröblacher B, Kunert O, Bucar F. Compounds of Alpinia katsumadai as potential efflux inhibitors in Mycobacterium smegmatis. Biorg Med Chem. 2012;20(8):2701–6.

    Article  CAS  Google Scholar 

  106. Jiménez-Arellanes A, León-Díaz R, Meckes M, Tapia A, Molina-Salinas GM, Luna-Herrera J, et al. Antiprotozoal and antimycobacterial activities of pure compounds from Aristolochia elegans rhizomes. Evid Based Complement Alternat Med. 2012;2012 https://doi.org/10.1155/2012/593403.

  107. Namdaung U, Aroonrerk N, Suksamrarn S, Danwisetkanjana K, Saenboonrueng J, Arjchomphu W, et al. Bioactive constituents of the root bark of Artocarpus rigidus subsp. rigidus. Chem Pharm Bull. 2006;54(10):1433–6.

    Article  CAS  Google Scholar 

  108. Chokchaisiri R, Suaisom C, Sriphota S, Chindaduang A, Chuprajob T, Suksamrarn A. Bioactive flavonoids of the flowers of Butea monosperma. Chem Pharm Bull. 2009;57(4):428–32.

    Article  CAS  Google Scholar 

  109. Lechner D, Gibbons S, Bucar F. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J Antimicrob Chemother. 2008;62(2):345–8.

    Article  CAS  PubMed  Google Scholar 

  110. Sharma A, Kaur M, Katnoria JK, Nagpal AK. Polyphenols in food: cancer prevention and apoptosis induction. Curr Med Chem. 2018;25(36):4740–57.

    Article  CAS  PubMed  Google Scholar 

  111. Blesso CN. Dietary anthocyanins and human health. Basel: Multidisciplinary Digital Publishing Institute; 2019.

    Book  Google Scholar 

  112. Nasir A, Bullo MMH, Ahmed Z, Imtiaz A, Yaqoob E, Jadoon M, et al. Nutrigenomics: epigenetics and cancer prevention: A comprehensive review. Crit Rev Food Sci Nutr. 2020;60(8):1375–87.

    Article  CAS  PubMed  Google Scholar 

  113. Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, et al. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomedicine. 2017;12:2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou Y, Zheng J, Li Y, Xu D, Li S, Chen Y, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients. 2016;8(8):515.

    Article  PubMed Central  CAS  Google Scholar 

  115. Khan N, Mukhtar H. Tea polyphenols in promotion of human health. Nutrients. 2019;11(1):39.

    Article  CAS  Google Scholar 

  116. Silva C, Correia-Branco A, Andrade N, Ferreira AC, Soares ML, Sonveaux P, et al. Selective pro-apoptotic and antimigratory effects of polyphenol complex catechin:lysine 1:2 in breast, pancreatic and colorectal cancer cell lines. Eur J Pharmacol. 2019;859:172533.

    Article  CAS  PubMed  Google Scholar 

  117. Lagoa R, Silva J, Rodrigues JR, Bishayee A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol Adv. 2020;38:107382.

    Article  CAS  PubMed  Google Scholar 

  118. Esfanjani AF, Jafari SM. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B Biointerfaces. 2016;146:532–43.

    Article  CAS  Google Scholar 

  119. Ghaffari S-B, Sarrafzadeh M-H, Fakhroueian Z, Khorramizadeh MR. Flower-like curcumin-loaded folic acid-conjugated ZnO-MPA-βcyclodextrin nanostructures enhanced anticancer activity and cellular uptake of curcumin in breast cancer cells. Mater Sci Eng C. 2019;103:109827.

    Article  CAS  Google Scholar 

  120. Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget. 2017;8(9):15996.

    Article  PubMed  Google Scholar 

  121. Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, et al. Kaempferol: a key emphasis to its anticancer potential. Molecules. 2019;24(12):2277.

    Article  CAS  PubMed Central  Google Scholar 

  122. Tang S-M, Deng X-T, Zhou J, Li Q-P, Ge X-X, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 2020;121:109604.

    Article  CAS  PubMed  Google Scholar 

  123. Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci. 2017;7(1):1–16.

    Article  CAS  Google Scholar 

  124. Kaur V, Kumar M, Kumar A, Kaur K, Dhillon VS, Kaur S. Pharmacotherapeutic potential of phytochemicals: implications in cancer chemoprevention and future perspectives. Biomed Pharmacother. 2018;97:564–86.

    Article  CAS  PubMed  Google Scholar 

  125. Jia Z, Dumont M-J, Orsat V. Encapsulation of phenolic compounds present in plants using protein matrices. Food Biosci. 2016;15:87–104.

    Article  CAS  Google Scholar 

  126. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011;1:1806–15.

    Article  CAS  Google Scholar 

  127. Rahaiee S, Assadpour E, Esfanjani AF, Silva AS, Jafari SM. Application of nano/microencapsulated phenolic compounds against cancer. Adv Colloid Interf Sci. 2020;279:102153.

    Article  CAS  Google Scholar 

  128. Liu C, Ge S, Yang J, Xu Y, Zhao M, Xiong L, et al. Adsorption mechanism of polyphenols onto starch nanoparticles and enhanced antioxidant activity under adverse conditions. J Funct Foods. 2016;26:632–44.

    Article  CAS  Google Scholar 

  129. Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.

    Article  CAS  PubMed  Google Scholar 

  130. Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci. 2014;19(5):417–27.

    Article  CAS  Google Scholar 

  131. Ramasamy T, Kim JH, Choi JY, Tran TH, Choi H-G, Yong CS, et al. pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J Mater Chem B. 2014;2(37):6324–33.

    Article  CAS  PubMed  Google Scholar 

  132. Qiu L, Qiao M, Chen Q, Tian C, Long M, Wang M, et al. Enhanced effect of pH-sensitive mixed copolymer micelles for overcoming multidrug resistance of doxorubicin. Biomaterials. 2014;35(37):9877–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

All Authors contributed equally.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishaq, A.R., Younis, T., Noor, A., Jabeen, F., Shouwen, C. (2021). Natural Polyphenols a New Paradigm in Treatment of Various Diseases. In: Tabrez, S., Imran Khan, M. (eds) Polyphenols-based Nanotherapeutics for Cancer Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4935-6_2

Download citation

Publish with us

Policies and ethics