Skip to main content
Log in

Polyphenol-functionalized hydrogels using an interpenetrating chitosan network and investigation of their antioxidant activity

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this work, polyphenol-modified hydrogels were prepared and their antioxidant activities were investigated. Poly(2-hydroxyethyl methacrylate) (pHEMA)-based hydrogels were first synthesized and subsequently functionalized with an interpenetrating polymer network (IPN) structure comprising crosslinked chitosans and p(HEMA) networks. The resulting hydrogels were further modified with polyphenols such as gallic acid and dopamine through amide coupling reactions to afford the antioxidant hydrogels. The antioxidant activity of the prepared hydrogels were evaluated using 2,2-diphenyl-1-picrylhydrazyl and 2,2’-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) radical scavenging assays. The gallic-acid-modified hydrogels exhibited superior antioxidant activity when compared to their dopamine-functionalized counterparts; this was correlated to the number of hydroxyl groups in the benzene ring. Moreover, longer chitosan moieties afforded larger amounts of polyphenols. Thus, hydrogels containing the same polyphenols but longer chitosan moieties exhibited stronger antioxidant activity. This work demonstrates that the development of antioxidant hydrogels based on chitosan-IPN structures shows great potential for application in biomedical devices and ophthalmic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Llorens, L. J. Valle, and J. Puiggali, Macromol. Res., 22, 388 (2014).

    Article  CAS  Google Scholar 

  2. J. Kawabata, Y. Okamoto, A. Kodama, T. Makimoto, and T. Kasai, J. Agric. Food Chem., 50, 5468 (2002).

    Article  CAS  Google Scholar 

  3. D. Vilano, M. S. Fernández-Pachón, A. M. Troncoso, and M. C. García- Parrilla, Anal. Chim. Acta, 538, 391 (2005).

    Article  Google Scholar 

  4. A. Kodama, H. Shibano, and J. Kawabata, Biosci. Biotechnol. Biochem., 71, 1731 (2007).

    Article  CAS  Google Scholar 

  5. E. Giannakopoulos, K. C. Christoforidis, A. Tsipis, M. Jerzykiewicz, and Y. Deligiannakis, J. Phys. Chem. A, 109, 2223 (2005).

    Article  CAS  Google Scholar 

  6. M. Scoponi, S. Cimmino, and M. Kaci, Polymer, 41, 7969 (2000).

    Article  CAS  Google Scholar 

  7. G. Cirillo, K. Kraemer, S. Fuessel, F. Puoci, M. Curcio, U. G. Spizzirri, I. Altimari, and F. Iemma, Biomacromolecules, 11, 3309 (2010).

    Article  CAS  Google Scholar 

  8. Y. S. Cho, S. K. Kim, C. B. Ahn, and J. Y. Je, Carbohydr. Polym., 83, 1617 (2011).

    Article  CAS  Google Scholar 

  9. E. Giannakopoulos, P. Stathi, K. Dimos, D. Gournis, Y. Sanakis, and Y. Deligiannakis, Langmuir, 22, 6863 (2206).

    Article  Google Scholar 

  10. Y. Deligiannakis, G. A. Sotiriou, and S. E. Pratsinis, ACS. Appl. Mater. Interfaces, 4, 6609 (2012).

    Article  CAS  Google Scholar 

  11. S. Ashraf, H. K. Park, H. Park, and S. H. Lee, Macromol. Res., 24, 297 (2016).

    Article  CAS  Google Scholar 

  12. J. Li, M. Darabi, J. Gu, J. Shi, J. Xue, L. Huang, Y. Liu, L. Zhang, N. Liu, W. Zhong, and L. Zhang, Biomaterials, 102, 72 (2016).

    Article  CAS  Google Scholar 

  13. K. Kim, B. Bae, Y. J. Kang, J. M. Nam, S. Kang, and J. H. Ryu, Biomacromolecules, 14, 3515 (2013).

    Article  CAS  Google Scholar 

  14. J. Wang and J. Wei, Appl. Surf. Sci., 382, 202 (2016).

    Article  CAS  Google Scholar 

  15. C. Zhou, V. X. Truong, Y. Qu, T. Lithgow, G. Fu, and J. S. Forsythe, J. Polym. Sci., Part A: Polym. Chem., 54, 656 (2015).

    Article  Google Scholar 

  16. M. V. Bee, L. Jones, and H. Sheardown, Biomaterials, 29, 780 (2008).

    Article  Google Scholar 

  17. S. S. Es-haghi and R. A. Weiss, Macromolecules, 49, 8980 (2016).

    Article  Google Scholar 

  18. C. W. Lee, S. H. Lee, Y. K. Yang, G. C. Rye, and H. J. Kim, J. Appl. Polym. Sci., 134, 45120 (2017).

    Article  Google Scholar 

  19. H.-L. Lim, H.-J. Kim, and J. Jun, J. Nanosci. Nanotechnol., 16, 11952 (2016).

    Article  CAS  Google Scholar 

  20. A. R. Viguera, M. J. Villa, and F. M. Goñi, J. Biol. Chem., 265, 2527 (1990).

    CAS  Google Scholar 

  21. W. B. Williams, M. E. Cuvelier, and C. Berset, Food Sci. Technol. Int., 28, 25 (1995).

    Google Scholar 

  22. M. B. Arnao, A. Cano, and M. Acosta, Food Chem., 73, 239 (2001).

    Article  CAS  Google Scholar 

  23. H. Tan, C. R. Chu, K. Payne, and K. G. Marra, Biomaterials, 30, 2499 (2009).

    Article  CAS  Google Scholar 

  24. T. Wu, Y. Li, and D.S. Lee, Macromol. Res., 25, 480 (2017).

    Article  CAS  Google Scholar 

  25. M. Rossi, F. Caruso, C. Opazo, and J. Salciccioli, J. Agric. Food Chem., 56, 10557 (2008).

    Article  CAS  Google Scholar 

  26. R. Farhoosh, S. Johnny, M. Asnaashari, N. Molaahmadibahraseman, and A. Sharif, Food Chem., 194, 128 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si Kyung Yang, Joomin Lee or Ho-Joong Kim.

Additional information

Acknowledgment: This study was supported by research funds provided by Chosun University in 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Kang, B., Vales, T.P. et al. Polyphenol-functionalized hydrogels using an interpenetrating chitosan network and investigation of their antioxidant activity. Macromol. Res. 26, 35–39 (2018). https://doi.org/10.1007/s13233-018-6001-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6001-8

Keywords

Navigation