Skip to main content

Application of Fixed Point Iterative Methods to Construct Fractals and Anti-fractals

  • Chapter
  • First Online:
Metric Fixed Point Theory

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 453 Accesses

Abstract

In the present chapter, we demonstrate an application of fixed point iterative methods to construct fractals (Mandelbrot and Julia sets) and anti-fractals (tricorns, multicorns and Anti-Julia sets) for the complex polynomials and antipolynomials of the type \(F_{d}(z) = z^{n}+d\) and \(A_{d}(z)=\bar{z}^{m}+d\), respectively, where \(d\in \mathbb {C}\) and \(n,m\ge 2\). We derive some escape criteria to generate fractals and anti-fractals by adopting the Suantai type iterative method. Moreover, we graphically visualize and examine the dynamics of these fractals and anti-fractals for certain complex polynomials and antipolynomials, respectively. Several beautiful aesthetic patterns have been obtained which explore the geometry of fractals and anti-fractals and therefore enrich the theory of fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnsley, M.F.: Fractals Everywhere, 2nd edn. Academic Press, San Diego, CA, USA (1993)

    MATH  Google Scholar 

  2. ZauĂ´kovĂ¹, A.H.: On the convergence of fixed point iterations for the moving geometry in a fluid-structure interaction problem. J. Differ. Equ. 267, 7002–7046 (2019)

    Article  MathSciNet  Google Scholar 

  3. Rahmani, M., Koutsopoulos, H.N., Jenelius, E.: Travel time estimation from sparse floating car data with consistent path inference: a fixed point approach. Transp. Res. Part C Emerg. Technol. 85, 628–643 (2017)

    Article  Google Scholar 

  4. Strogatz, S.H.: Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. CRC Press, Boca Raton, FL, USA (2018)

    MATH  Google Scholar 

  5. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  6. Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 47–150 (1974)

    Article  MathSciNet  Google Scholar 

  7. Khan, S.H.: A Picard-Mann hybrid iterative process. Fixed Point Theory Appl. (2013). https://doi.org/10.1186/1687-1812-2013-69

  8. Noor, M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 25, 217–229 (2000)

    Article  MathSciNet  Google Scholar 

  9. Suantai, S.: Weak and strong convergence criteria of noor iteration for asymptotically non-expansive mappings. J. Math. Anal. Appl. 311, 506–517 (2005)

    Article  MathSciNet  Google Scholar 

  10. Phuengrattana, W., Suantai, S.: On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 235, 3006–3014 (2011)

    Article  MathSciNet  Google Scholar 

  11. Agarwal, R.P., Regan, D.O., Sahu, D.R.: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 8, 61–79 (2007)

    Google Scholar 

  12. Chugh, R., Kumar, V., Kumar, S.: Strong convergence of a new three step iterative scheme in Banach spaces. Am. J. Comp. Math. 2, 345–357 (2012)

    Google Scholar 

  13. Rani, M., Kumar, V.: Superior Julia set. J. Korean Soc. Math. Edu. Res. Ser. D 8, 261–277 (2004)

    Google Scholar 

  14. Rani, M., Kumar, V.: Superior Mandelbrot set. J. Korean Soc. Math. Edu. Res. Ser. D 8, 279–291 (2004)

    Google Scholar 

  15. Rani, M.: Superior antifractals. In: Proceedings of 2nd International Conference on Computer Automation Engineering (ICCAE)

    Google Scholar 

  16. Rani, M.: Superior tricorns and multicorns. In: Proceedings of 9th WSEAS International Conference on Application Computer Engineering, pp. 58–61 (2010)

    Google Scholar 

  17. Chauhan, Y.S., Rana, R., Negi, A.: New Julia sets of Ishikawa iterates. Int. J. Comput. Appl. 7, 34–42 (2010)

    Google Scholar 

  18. Mishra, M.K., Ojha, D.B., Sharma, D.: Fixed point results in tricorn and multicorns of Ishikawa iteration and s-convexity. Int. J. Adv. Eng. Sci. Tech. 2, 157–160 (2011)

    Google Scholar 

  19. Kang, S.M., Rafiq, A., Latif, A., Shahid, A.A., Kwun, Y.C.: Tricorns and multicorns of S-iteration scheme. J. Funct. Spaces 2015, 1–7 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Chen, Z., Shahid, A.A., Zia, T.J., Ahmed, I., Nazeer, W.: Dynamics of antifractals in modified S-iteration orbit. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2934748

  21. Ashish, M., Rani, R.: Chugh, Julia sets and Mandelbrot sets in Noor orbit. Appl. Math. Comput. 228, 615–631 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Ashish, M., Rani, R.: Chugh, dynamics of antifractals in Noor orbit. Int. J. Comput. Appl. 57, 11–15 (2012)

    Google Scholar 

  23. Kwun, Y.C., Tanveer, M., Nazeer, W., Gdawiec, K., Kang, S.M.: Mandelbrot and Julia sets via Jungck-CR iteration with s-convexity. IEEE Access 7, 12167–12176 (2019)

    Article  Google Scholar 

  24. Li, D., Shahid, A.A., Tassaddiq, A., Khan, A., Guo, X., Ahmad, M.: CR iteration in generation of antifractals with s-convexity. IEEE Access 8, 61621–61630 (2020)

    Article  Google Scholar 

  25. Kumari, S., Kumari, M., Chugh, R.: Generation of new fractals via SP orbit with s-convexity. Int. J Eng. Tech. 9, 2491–2504 (2017)

    Article  Google Scholar 

  26. Kumari, S., Kumari, M., Chugh, R.: Dynamics of superior fractals via Jungck SP orbit with s-convexity. An. Univ. Craiova Ser. Mat. Inform. 46, 344–365 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Kumari, S., Kumari, M., Chugh, R.: Graphics for complex polynomials in Jungck-SP orbit. IAENG Int. J. Appl. Math. 49, 568–576 (2019)

    MATH  Google Scholar 

  28. Zhang, X., Wang, L., Zhou, Z., Niu, Y.: A Chaos-based image encryption technique utilizing Hilbert curves and H-fractals. IEEE Access 7, 734–74 (2019)

    Google Scholar 

  29. Fisher, Y.: Fractal image compression. Fractals 2, 347–361 (1994)

    Article  Google Scholar 

  30. Kumar, S.: Public key cryptographic system using Mandelbrot sets. In: MILCOM 2006-2006 IEEE Military Communications Conference. IEEE, pp. 1–5 (2006)

    Google Scholar 

  31. Kharbanda, B.N.: An exploration of fractal art in fashion design. In: International Conference on Communication and Signal Processing, pp. 226–230. IEEE (2013)

    Google Scholar 

  32. Cohen, N.: Fractal antenna applications in wireless telecommunications. In: Professional Program Proceedings of Electronic Industries Forum of New England. IEEE, pp. 43–49 (1997)

    Google Scholar 

  33. Krzysztofik, J. Wojciech, F. Brambila, Fractals in antennas and metamaterials applications. Fract. Anal. Appl. Phys. Eng. Technol. 953–978 (2017)

    Google Scholar 

  34. Orsucci, F.: Complexity Science, Living Systems, and Reflexing Interfaces: New Models and Perspectives. IGI Global (2012)

    Google Scholar 

  35. Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 2. W.H. Freeman, New York, NY, USA (1983)

    Google Scholar 

  36. Julia, G.: Memoire sur l’iteration des functions rationnelles. J. Math. Pures Appl. 8, 737–747 (1918)

    MATH  Google Scholar 

  37. Dang, Y., Kauffman, L., Sandin, D.: Hypercomplex Iterations: Distance Estimation and Higher Dimensional Fractals. World Scientific, Singapore (2002)

    Book  Google Scholar 

  38. Wang, X.Y., Song, W.J.: The generalized MJ sets for bicomplex numbers. Nonlinear Dyn. 72, 17–26 (2013)

    Article  Google Scholar 

  39. Parise, P.O., Rochon, D.: A study of dynamics of the tricomplex polynomial \(\eta ^{h} + c\). Nonlinear Dyn. 82, 157–171 (2015)

    Article  MathSciNet  Google Scholar 

  40. Rochon, D.: A generalized Mandelbrot set for bicomplex numbers. Fractals 8, 355–368 (2000)

    Article  MathSciNet  Google Scholar 

  41. Wang, X., Chang, P.: Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques. Appl. Math. Comput. 175, 1007–1025 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Wang, X., Wei, L., Xuejig, Y.: Research on Brownian movement based on generalized Mandelbrot Julia sets from a class complex mapping system. Mod. Phys. Lett. B 21, 1321–1341 (2007)

    Article  Google Scholar 

  43. Wang, X., Zhang, X., Sun, Y., Fanping, L.: Dynamics of the generalized M set on escape-line diagram. Appl. Math. Comput. 206, 474–484 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Wang, X., He, Y., Sun, Y.: Accurate computation of periodic regions centers in the general M-set with integer index number. Discre. Dynam. Natur. Soc. 2010, 1–12 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Chauhan, Y.S., Rana, R., Negi, A.: Complex dynamics of Ishikawa iterates for non integer values. Int. J. Comput. Appl. 9, 9–16 (2010)

    Google Scholar 

  46. Kang, S.M., Rafiq, A., Latif, A., Shahid, A.A., Ali, F.: Fractals through modified iteration scheme. Filomat 30, 3033–3046 (2016)

    Article  MathSciNet  Google Scholar 

  47. Abbas, M., Iqbal, H., De la Sen, M.: Generation of Julia and Mandelbrot sets via fixed points. Symmetry 12, 86 (2020). https://doi.org/10.3390/sym12010086

  48. Nakane, S., Schleicher, D.: On multicorns an unicorns I: Antiholomorphic dynamics, hyperbolic components and real cubic polynomials. Internat. J. Bifur. Chaos 13, 2825–2844 (2003)

    Article  MathSciNet  Google Scholar 

  49. Milnor, J.W.: Dynamics in one complex variable: Introductory lectures. arXiv:math/9201272 (1990)

  50. Branner, B.: The Mandelbrot set. Proc. Symp. Appl. Math 39, 75–105 (1989)

    Google Scholar 

  51. Lau, E., Schleicher, D.: Symmetries of fractals revisited. Math. Intell. 18, 45–51 (1996)

    Article  MathSciNet  Google Scholar 

  52. Chauhan, Y.S., Rana, R., Negi, A.: New tricorn and multicorns of ishikawa iterates. Int. J. Comput. Appl. 7, 25–33 (2010)

    Google Scholar 

  53. Partap, N., Jain, S., Chugh, R.: Computation of antifractals-tricorns and multicorns and their complex nature. Pertanika J. Sci. Technol. 26, 863–872 (2018)

    Google Scholar 

  54. Devaney, R.: A First Course in Chaotic Dynamical Systems: Theory and Experiment. Addison-Wesley, New York (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Nandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, S., Nandal, A., Chugh, R. (2021). Application of Fixed Point Iterative Methods to Construct Fractals and Anti-fractals. In: Debnath, P., Konwar, N., Radenović, S. (eds) Metric Fixed Point Theory. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-16-4896-0_13

Download citation

Publish with us

Policies and ethics