Skip to main content
Log in

A study of dynamics of the tricomplex polynomial \(\eta ^p+c\)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, we give the exact interval of the cross section of the so-called Mandelbric set generated by the polynomial \(z^3+c\) where \(z\) and \(c\) are complex numbers. Following that result, we show that the Mandelbric defined on the hyperbolic numbers \(\mathbb {D}\) is a square with its center at the origin. Moreover, we define the Multibrot sets generated by a polynomial of the form \(Q_{p,c}(\eta )=\eta ^p+c\) (\(p \in \mathbb {N}\) and \(p \ge 2\)) for tricomplex numbers. More precisely, we prove that the tricomplex Mandelbric has four principal slices instead of eight principal 3D slices that arise for the case of the tricomplex Mandelbrot set. Finally, we prove that one of these four slices is an octahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baley Price, G.: An Introduction to Multicomplex Spaces and Functions. In: Monographs and textbooks on pure and applied mathematics. Marcel Dekker Inc., New York (1991)

  2. Bronshtein, I.N., Semundyayev, K.A., Musiol, G., Muchlig, H.: Hand Book of Mathematics. Springer, Berlin (2007)

    Google Scholar 

  3. Douady, A., Hubbard, J.H.: Iteration des polynômes quadratiques complexes. C. R. Math. Acad. Sci. Paris 294, 123–126 (1982)

    MATH  MathSciNet  Google Scholar 

  4. Eguether, G.: S Equations de degré 3 et 4; racines d’un polynôme mesurant les côté d’un triangle. http://iecl.univ-lorraine.fr/~Gerard.Eguether/zARTICLE/1S.pdf (2011). Accessed 15 May 2014

  5. Garant-Pelletier, V.: Ensembles de Mandelbrot et de Julia classiques, généralisés aux espaces multicomplexes et théorème de Fatou-Julia généralisé. Master Thesis, UQTR (2011)

  6. Garant-Pelletier, V., Rochon, D.: On a generalized Fatou–Julia theorem in multicomplex spaces. Fractals 17(3), 241–255 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gujar, U.G., Bhavsar, V.C.: Fractals from \(z \leftarrow z^{\alpha } + c\) in the complex c-plane. Comput. Graph. 15(3), 441–449 (1991)

    Article  Google Scholar 

  8. Lau, E., Schleicher, D.: Symmetries of fractals revisited. Math. Intell. 15(1), 441–449 (1991)

    MathSciNet  Google Scholar 

  9. Liu, X.-D., Zhu, W.-Y., al.: The Bounds of the general M and J sets and the estimations for the Hausdorff’s dimension of the general. J. Appl. Math. Mech. (English Ed.). 22(11), 1318–1324 (2001)

  10. Metzler, W.: The “mystery” of the quadratic Mandelbrot set. Am. J. Phys. 62(9), 813–814 (1994)

  11. Noah, H.R., Noah, C.R.: The radius of The n-Mandelbrot set. Appl. Math. Lett. 21, 877–879 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Norton, A.: Generation and display of geometric fractals in 3-D. Comput. Graph. 16(3), 61–67 (1992)

    Article  Google Scholar 

  13. Papathomas, T.V., Julesz, B.: Animation with fractals from variations on the mandelbrot set. Vis. Comput. 3, 23–26 (1987)

    Article  Google Scholar 

  14. Parisé, P.-O.: Les ensembles de Mandelbrots tricomplexes généralisés aux polynômes \(\zeta ^p+c\). Master Thesis, UQTR (to appear)

  15. Rochon, D.: A generalized mandelbrot set for bicomplex numbers. Fractals 8(4), 355–368 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rochon, D.: On a generalized Fatou–Julia theorem. Fractals 11(3), 213–219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rochon, D., Shapiro, M.: On algebraic properties of bicomplex and hyperbolic numbers. Anal. Univ. Oradea, fasc. math. 11, 71–110 (2009)

  18. Schleicher, D.: On fibers and local connectivity of Mandebrot and Multibrot sets. In: Fractal Geometry and Application: A Jubilee of Benoît Mandelbrot Analysis, Number Theory and Dynamical System. Proc. Sympos. Appl. Math. 72(1), pp. 477–517 (2004)

  19. Senn, P.: The Mandelbrot set for binary numbers. Am. J. Phys. 58(10), 1018 (1990)

    Article  MathSciNet  Google Scholar 

  20. Shapiro, M., Struppa, D.C., Vajiac, A., Vajiac, M.B.: Hyperbolic numbers and their functions. Anal. Univ. Oradea XIX(1), 265–283 (2012)

    MathSciNet  Google Scholar 

  21. Sheng, X., Spurr, M.J.: Symmetries of fractals. Math. Intell. 18(1), 35–42 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sobczyk, G.: The hyperbolic number plane. Coll. Math. J. 26(4), 268–280 (1995)

    Article  Google Scholar 

  23. Vajiac, A., Vajiac, M.B.: Multicomplex hyperfunctions. Complex Var. Elliptic Eqn. 57, 751–762 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang, X.-Y., Song, W.-J.: The genralized M–J sets for bicomplex numbers. Nonlinear Dyn. 72, 17–26 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

DR is grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. POP would also like to thank the NSERC for the award of a Summer undergraduate Research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Rochon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parisé, PO., Rochon, D. A study of dynamics of the tricomplex polynomial \(\eta ^p+c\) . Nonlinear Dyn 82, 157–171 (2015). https://doi.org/10.1007/s11071-015-2146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2146-6

Keywords

Navigation